期刊文献+
共找到632篇文章
< 1 2 32 >
每页显示 20 50 100
Microstructure evolution and strengthening mechanism of high -performance powder metallurgy TA15 titanium alloy by hot rolling 被引量:1
1
作者 Ying Gao Ce Zhang +1 位作者 Jiazhen Zhang Xin Lu 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2024年第6期1426-1436,共11页
Hot deformation of sintered billets by powder metallurgy(PM)is an effective preparation technique for titanium alloys,which is more significant for high-alloying alloys.In this study,Ti–6.5Al–2Zr–Mo–V(TA15)titaniu... Hot deformation of sintered billets by powder metallurgy(PM)is an effective preparation technique for titanium alloys,which is more significant for high-alloying alloys.In this study,Ti–6.5Al–2Zr–Mo–V(TA15)titanium alloy plates were prepared by cold press-ing sintering combined with high-temperature hot rolling.The microstructure and mechanical properties under different process paramet-ers were investigated.Optical microscope,electron backscatter diffraction,and others were applied to characterize the microstructure evolution and mechanical properties strengthening mechanism.The results showed that the chemical compositions were uniformly dif-fused without segregation during sintering,and the closing of the matrix craters was accelerated by increasing the sintering temperature.The block was hot rolled at 1200℃ with an 80%reduction under only two passes without annealing.The strength and elongation of the plate at 20–25℃ after solution and aging were 1247 MPa and 14.0%,respectively,which were increased by 24.5%and 40.0%,respect-ively,compared with the as-sintered alloy at 1300℃.The microstructure was significantly refined by continuous dynamic recrystalliza-tion,which was completed by the rotation and dislocation absorption of the substructure surrounded by low-angle grain boundaries.After hot rolling combined with heat treatment,the strength and plasticity of PM-TA15 were significantly improved,which resulted from the dense,uniform,and fine recrystallization structure and the synergistic effect of multiple slip systems. 展开更多
关键词 elemental powder powder metallurgy titanium alloy hot rolling strength and plasticity
下载PDF
Design,preparation,microstructure and mechanical property of the lightweight radiation-shielding Mg-Ta-Al composites basing differential temperature hot rolling
2
作者 Wenbo Luo Songya Feng +7 位作者 Xiuzhu Han Li Zhou Qinke Kong Zhiyong Xue Jianzhao Wang Mei Zhan Xianhua Chen Fusheng Pan 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2024年第6期2433-2446,共14页
A novel lightweight,radiation-shielding Mg-Ta-Al layered metal-matrix composite(LMC)was successful designed by doping the extremely refractory metal(Ta)into Mg sheets.These Mg-based LMCs sheets shows excellent radiati... A novel lightweight,radiation-shielding Mg-Ta-Al layered metal-matrix composite(LMC)was successful designed by doping the extremely refractory metal(Ta)into Mg sheets.These Mg-based LMCs sheets shows excellent radiation-dose shield effect,about 145 krad·a^(−1),which is about 17 times of traditional Mg alloy,while its surface density is only about 0.9 g·cm^(−2),reducing by 60%than that of pure Ta.The quantitate relationship between radiation-dose and the materials’thickness was also confirmed to the logistic function when the surface density is in the range of 0.6-1.5 g·cm^(−2).Meantime,the rolling parameters,interface microstructure and mechanical properties in both as-rolled and annealing treated samples were evaluated.The sheets possess a special dissimilar atoms diffusion transitional zone containing an obvious inter-diffusion Mg-Al interface and the unique micro-corrugated Ta-Al interface,as well as a thin Al film with a thickness of about 10μm.The special zone could reduce the stress concentration and enhance the strength of Mg-Ta-Al LMCs.The interface bonding strength reaches up to 54-76 MPa.The ultimate tensile strength(UTS)and yield strength(TYS)of the Mg-Ta-Al sheet were high to 413 MPa and 263 MPa,respectively,along with an elongation of 5.8%.The molecular dynamics(MD)analysis results show that the two interfaces exhibit different formation mechanism,the Mg-Al interface primarily depended on Mg/Al atoms diffusion basing point defects movement,while the Ta-Al interface with a micro-interlock pining shape formed by close-packed planes slipping during high temperature strain-induced deformation process. 展开更多
关键词 Dissimilar metals composites Mg based alloys Radiation shielding hot rolling LIGHTWEIGHT
下载PDF
Influence of Production Sequence of Aluminum Alloy Hot Rolling on Strip Surface Quality
3
作者 Hui Song Weixuan Jiang 《Frontiers of Metallurgical Industry》 2024年第1期12-14,共3页
With the intensification of market competition in the aluminum alloy strip processing industry,it is dif-ficult to control the mass production of the same specifications,which is bound to affect the hot rolling produc... With the intensification of market competition in the aluminum alloy strip processing industry,it is dif-ficult to control the mass production of the same specifications,which is bound to affect the hot rolling production.This paper studied the effect of the hot rolling order of aluminum alloy on the surface quality of strip,such as roll printing,color difference,anodic oxidation,etc.,reasonable discharge sequence and corresponding optimization measures were formulated. 展开更多
关键词 hot rolling production sequence surface quality aluminum alloy chromate treatment
下载PDF
Interfacial structure and mechanical properties of hot-roll bonded joints between titanium alloy and stainless steel using niobium interlayer 被引量:10
4
作者 赵东升 闫久春 +1 位作者 刘玉君 纪卓尚 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2014年第9期2839-2844,共6页
The hot-roll bonding was carried out in vacuum between titanium alloy and stainless steel using niobium interlayer. The interfacial structure and mechanical properties were analyzed. The results show that the plastici... The hot-roll bonding was carried out in vacuum between titanium alloy and stainless steel using niobium interlayer. The interfacial structure and mechanical properties were analyzed. The results show that the plasticity of bonded joint is improved significantly. When the bonding temperature is 800 °C or 900 °C, there is not intermetallic layer at the interface between stainless steel and niobium. When the bonding temperature is 1000 °C or 1050 °C, Fe-Nb intermetallic layer forms at the interface. When the bonding temperature is 1050 °C, cracking occurs between stainless steel and intermetallic layer. The maximum strength of -417.5 MPa is obtained at the bonding temperature of 900 °C, the reduction of 25% and the rolling speed of 38 mm/s, and the tensile specimen fractures in the niobium interlayer with plastic fracture characteristics. When the hot-roll bonded transition joints were TIG welded with titanium alloy and stainless steel respectively, the tensile strength of the transition joints after TIG welding is -410.3 MPa, and the specimen fractures in the niobium interlayer. 展开更多
关键词 hot roll bonding titanium alloy stainless steel NIOBIUM
下载PDF
FEM modeling of dynamical recrystallization during multi-pass hot rolling of AM50 alloy and experimental verification 被引量:9
5
作者 丁汉林 王天一 +1 位作者 杨磊 Shigeharu KAMADO 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2013年第9期2678-2685,共8页
The microstructure simulation during the multi-pass hot rolling of AM50 alloy was studied by DEFORM-3D. The excellent agreement with the experiment observations shows that the present modeling and user routine are fea... The microstructure simulation during the multi-pass hot rolling of AM50 alloy was studied by DEFORM-3D. The excellent agreement with the experiment observations shows that the present modeling and user routine are feasible for the reproduce of the hot rolling process. The multi-pass hot rolling contributes to the achievement of a uniformly recrystallized microstructure with fine grains in the rolled sheet. The sheet temperature before the finish rolling strongly affects the final grain size, but hardly affects the grain size distribution. This modeling and the user routine also have a potential to be applied in the researches of the other multi-pass hot deformation process. 展开更多
关键词 Mg alloy dynamic recrystallization hot rolling finite element method
下载PDF
Effects of magnetic field and hot rolling on microstructures and properties of cryo ECAPed 1050 aluminum alloy during annealing 被引量:3
6
作者 曹以恒 何立子 +3 位作者 张林 周亦胄 王平 崔建忠 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2016年第3期620-626,共7页
The evolution of hardness and microstructures of 1050 aluminum alloy prepared by hot rolling and subsequent equal- channel angular pressing at cryogenic temperature (cryoECAP) after annealing at 150?400 °C for 1 ... The evolution of hardness and microstructures of 1050 aluminum alloy prepared by hot rolling and subsequent equal- channel angular pressing at cryogenic temperature (cryoECAP) after annealing at 150?400 °C for 1 h without and with magnetic field of 12 T was investigated. The electron back scattering diffraction pattern (EBSD) and transmission electron microscopy (TEM) were utilized to characterize the grain microstructures and dislocations. It is demonstrated that the hot rolling before cryoECAP produces more equiaxed grains with a smaller average size and a higher fraction of high angle boundaries (HABs) in the subsequent cryoECAPed 1050 aluminum alloy, thus accelerating the recovery and recrystallization of cryoECAPed alloy and produces more homogeneous microstructure during annealing. The magnetic field promotes the recovery and recrystallization and leads to much lower hardness at 150?250 °C, while it can suppress the abnormal grain growth and form more homogeneous grain size distributions annealed at 300?400 °C. 展开更多
关键词 1050 aluminum alloy magnetic annealing hot rolling cryoECAP HARDNESS grain growth
下载PDF
Effect of intermetallic compounds on heat resistance of hot roll bonded titanium alloy-stainless steel transition joint 被引量:4
7
作者 赵东升 闫久春 刘玉君 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2013年第7期1966-1970,共5页
The effect of intermetallic compounds on the heat resistance of transition joint was investigated. The experiment of post-weld heat treatment for the hot roll bonded titanium alloy-stainless steel joint using nickels ... The effect of intermetallic compounds on the heat resistance of transition joint was investigated. The experiment of post-weld heat treatment for the hot roll bonded titanium alloy-stainless steel joint using nickels interlayer was carried out, and the interface microstructure evolution due to heat treatment was presented. There was not found significant interdiffusion at stainless steel/nickel interface, when the specimens were heat treated in the temperature range of 600-800 °C for 10 and 30 min, while micro-cracks occurred at the stainless steel/nickel interface heat treated at 700 °C for 30 min. The thickness of intermetallic layers at nickel/titanium alloy interface increased at 600 °C, and micro-cracks occurred at 700 and 800 °C. The micro-cracks occurred between intermetallic layers or between intermetallic layer and nickel interlayer as well. The tensile strength of the transition joint decreased with the increase of heat treatment temperature or holding time. 展开更多
关键词 INTERMETALLICS titanium alloy stainless steel transition joint heat resistance heat treatment hot roll bonding
下载PDF
Comparison of evolution laws of stress and strain fields in hot rolling of titanium alloy large rings with different sizes 被引量:3
8
作者 王敏 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2011年第7期1611-1619,共9页
For hot rolling of titanium alloy large rings,evolution laws of stress and strain fields in rings with various sizes were explored and compared based on a reliable coupled thermo-mechanical three-dimensional (3D) fi... For hot rolling of titanium alloy large rings,evolution laws of stress and strain fields in rings with various sizes were explored and compared based on a reliable coupled thermo-mechanical three-dimensional (3D) finite element (FE) model.The results show that for forming processes of different rings,as γ^-(the equivalent distribution ratio of feed amount per revolution of a process) decreases,the final peak Mises stress may transfer from the biting point at the driver roll side to that at the idle roll side,and the final peak equivalent plastic strain may transfer from the outside surface to the inside surface;as L^- (the equivalent deformation zone length of a process) increases,the final peak Mises stress may appear in the middle layer.The final positions of peak Mises stress and equivalent plastic strain are the combined effects of the above two aspects.In the deformation zone of a deformed ring,the surface layers are in the 3D compressive stress state,while the middle layer is in the 1D compressive and 2D tensile stress state or 2D compressive and 1D tensile stress state;the whole ring is in the 1D compressive and 2D tensile strain state. 展开更多
关键词 titanium alloy hot rolling of large rings stress and strain modeling and simulation finite element
下载PDF
Self-Learning and Its Application to Laminar Cooling Model of Hot Rolled Strip 被引量:16
9
作者 GONG Dian-yao XU Jian-zhong PENG Liang-gui WANG Guo-dong LIU Xiang-hua 《Journal of Iron and Steel Research International》 SCIE EI CAS CSCD 2007年第4期11-14,共4页
The mathematical model for online controlling hot rolled steel cooling on run-out table (ROT for abbreviation) was analyzed, and water cooling is found to be the main cooling mode for hot rolled steel. The calculati... The mathematical model for online controlling hot rolled steel cooling on run-out table (ROT for abbreviation) was analyzed, and water cooling is found to be the main cooling mode for hot rolled steel. The calculation of the drop in strip temperature by both water cooling and air cooling is summed up to obtain the change of heat transfer coefficient. It is found that the learning coefficient of heat transfer coefficient is the kernel coefficient of coiler temperature control (CTC) model tuning. To decrease the deviation between the calculated steel temperature and the measured one at coiler entrance, a laminar cooling control self-learning strategy is used. Using the data acquired in the field, the results of the self-learning model used in the field were analyzed. The analyzed results show that the self-learning function is effective. 展开更多
关键词 laminar cooling hot rolled strip SELF-LEARNING process control model
下载PDF
Effect of Ce-base mischmetal addition on the microstructure and mechanical properties of hot-rolled ZK60 alloy 被引量:9
10
作者 E.P.Silva R.H.Buzolin +3 位作者 F.Marques F.Soldera U.Alfaro H.C.Pinto 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2021年第3期995-1006,共12页
Mg-Zn-Zr(ZK)alloys exhibit notably high mechanical strength amongst all magnesium alloy grades.However,due to the formation of low melting point Mg_3Zn_7-precipitates,these alloys are susceptible to hot cracking,thus ... Mg-Zn-Zr(ZK)alloys exhibit notably high mechanical strength amongst all magnesium alloy grades.However,due to the formation of low melting point Mg_3Zn_7-precipitates,these alloys are susceptible to hot cracking,thus compromising their metallurgical processing.The addition of rare earths to ZK alloys is an alternative to form higher melting point intermetallic compounds,speed up dynamic recrystallization,refine grain size,enhance corrosion resistance and extend the service temperature due to improved creep resistance.This work deals with the effect of Ce-base mischmetal addition on the hot rolling behaviour of as-cast ZK60 alloy.The microstructure investigation conducted using electron microscopy and X-Ray diffraction shows that precipitation of Mg_(7)Zn_(3) intermetallics occur during hot rolling,whereas no further precipitation is observed for the ZK60-Mm alloys.The fragmentation of the intermetallic compounds occur during hot rolling and finer particles of Mg_(7)Zn_(3) are observed for the ZK60,whereas Mg_(7)Zn_(3) and Mg Zn_(2) Ce intermetallics are formed in the alloy modified with mischmetal addition.A higher fraction of dynamically recrystallized grains is observed for the ZK60-Mm in comparison to the ZK60.Continuous recrystallization takes place in ZK60 with the formation of sub-grains near to the intermetallics and the addition of mischmetal promotes the occurrence of discontinuous recrystallization with the nucleation of new grains close to the precipitates.The mechanical strength and,in particular,the ductility of the hot-rolled alloys are notably improved when compared to the same alloys in the as-cast condition.The mechanical strength is,however,higher for the ZK60 alloy.Less solid solution strengthening,softer Mg Zn_(2) Ce intermetallics and more extensive recrystallization contribute to reduce the mechanical strength of ZK60-Mm.Failure in both alloys are initiated at coarse intermetallics and propagate through intermetallic-rich regions. 展开更多
关键词 Magnesium alloys hot rolling Mischmetal RECRYSTALLIZATION Microstructure Mechanical properties
下载PDF
Mechanical properties and texture evolution during hot rolling of AZ31 magnesium alloy 被引量:8
11
作者 SUN Hong-fei LIANG Shu-jin WANG Er-de 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2009年第S02期349-354,共6页
Mechanical properties and texture evolutions of the as-rolled AZ31 Mg sheets were investigated.The results show that the grains of the sheets are significantly refined after hot rolling.The mechanical properties of th... Mechanical properties and texture evolutions of the as-rolled AZ31 Mg sheets were investigated.The results show that the grains of the sheets are significantly refined after hot rolling.The mechanical properties of the as-rolled samples are enhanced due to the grain size refinement.The intensity of basal texture decreases with the increase of deformation ratio,and double-peak type basal texture is discovered in the intermediate and large strain hot rolling processes.The formation of the texture is ascribed to the activities of prismatic and non-basalslips,which is the same as the 30%rolled and 50%rolled samples.The incline of basal planes exerts an effect on the mechanical anisotropy during tension along rolling direction(RD)and transverse direction(TD)at room temperature. 展开更多
关键词 magnesium alloy AZ31 hot rolling TEXTURE mechanical properties electron backscattered diffraction
下载PDF
Application of multi-scale feature extraction to surface defect classification of hot-rolled steels 被引量:7
12
作者 Ke Xu Yong-hao Ai Xiu-yong Wu 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2013年第1期37-41,共5页
Feature extraction is essential to the classification of surface defect images. The defects of hot-rolled steels distribute in different directions. Therefore, the methods of multi-scale geometric analysis (MGA) wer... Feature extraction is essential to the classification of surface defect images. The defects of hot-rolled steels distribute in different directions. Therefore, the methods of multi-scale geometric analysis (MGA) were employed to decompose the image into several directional subba^ds at several scales. Then, the statistical features of each subband were calculated to produce a high-dimensional feature vector, which was reduced to a lower-dimensional vector by graph embedding algorithms. Finally, support vector machine (SVM) was used for defect classification. The multi-scale feature extraction method was implemented via curvelet transform and kernel locality preserving projections (KLPP). Experiment results show that the proposed method is effective for classifying the surface defects of hot-rolled steels and the total classification rate is up to 97.33%. 展开更多
关键词 hot rolling strip metal surface defects CLASSIFICATION feature extraction
下载PDF
Influence of Hot Deformation and Subsequent Austempering on the Mechanical Properties of Hot Rolled Multiphase Steel 被引量:6
13
作者 Zhuang LI Di WU 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2006年第6期763-768,共6页
Influence of hot deformation and subsequent austempering on the mechanical properties of hot rolled multiphase steel was investigated. Thermo-mechanical control processing (TMCP) was conducted by using a laboratory ... Influence of hot deformation and subsequent austempering on the mechanical properties of hot rolled multiphase steel was investigated. Thermo-mechanical control processing (TMCP) was conducted by using a laboratory hot rolling mill, where three different kinds of finishing rolling reduction, and austemperings with various isothermal holding duration were applied. The results have shown that a multiphase microstructure consisting of polygonal ferrite, granular bainite and larger amount of stabilized retained austenite can be obtained by controlled rolling processes. Mechanical properties increase with increasing the amount of deformation because of the stabilization of retained austenite. Ultimate tensile strength (σb), total elongation (σ) and the product of ultimate tensile strength and total elongation (σb-σ) reach the maximum values (791 MPa, 36% and 28476 MPa%, respectively) at optimal processes. 展开更多
关键词 hot deformation AUSTEMPERING hot rolled multiphase steels Mechanical properties
下载PDF
Three-Di mensional Model for Strip Hot Rolling 被引量:6
14
作者 ZHANG Guo-min XIAO Hong WANG Chun-hua 《Journal of Iron and Steel Research International》 SCIE EI CAS CSCD 2006年第1期23-26,共4页
A three-dimensional model for strip hot rolling was developed, in which the plastic deformation of strip, the thermal crown of rolls, roll deflection and flattening were calculated by rigid-plastic finite element meth... A three-dimensional model for strip hot rolling was developed, in which the plastic deformation of strip, the thermal crown of rolls, roll deflection and flattening were calculated by rigid-plastic finite element method, finite difference method, influential function method and elastic finite element method respectively. The roll wear was taken into consideration. The model can provide detailed information such as rolling pressure distribution, contact pressure distribution between backup rolls and work rolls, deflection and flattening of work rolls, lateral distribution of strip thickness, and lateral distribution of front and back tensions. The finish rolling on a 1 450 mm hot strip mill was simulated. 展开更多
关键词 strip hot rolling MODEL finite difference method influential function method finite element method
下载PDF
Comprehensive contour prediction model of work rolls in hot wide strip mill 被引量:8
15
作者 Xiaodong Wang Quan Yang Anrui He Renzhong Wang 《Journal of University of Science and Technology Beijing》 CSCD 2007年第3期240-245,共6页
The predictive calculation of comprehensive contour of work rolls in the on-line strip shape control model during hot rolling consists of two important parts of wear contour calculation and thermal contour calculation... The predictive calculation of comprehensive contour of work rolls in the on-line strip shape control model during hot rolling consists of two important parts of wear contour calculation and thermal contour calculation, which have a direct influence on the ac- curacy of shape control. A statistical wear model and a finite difference thermal contour model of work rolls were described. The comprehensive contour is the equivalence treatment of the sum of grinding, wear, and thermal contours. This comprehensive contour calculation model has been applied successfully in the real on-line strip shape control model. Its high precision has been proved through the large amounts of actual roll profile measurements and theoretical analyses. The hit rates (percent of shape index satisfying re- quirement) of crown and head flatness of the strips rolled, by using the shape control model, which includes the comprehensive contour calculation model, have about 16% and 10% increase respectively, compared to those of strips rolled by using manual operation. 展开更多
关键词 hot rolled strip strip shape control comprehensive contour wear contour thermal contour
下载PDF
Enhanced mechanical properties and formability of hot-rolled Mg-Zn-Mn alloy by Ca and Sm alloying 被引量:5
16
作者 Wen-xue FAN Yu BAI +2 位作者 Guang-yang LI Xing-yang CHANG Hai HAO 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2022年第4期1119-1132,共14页
In order to broaden the application of wrought Mg alloy sheets in the automotive industry,the influence of Ca and Sm alloying on the texture evolution,mechanical properties,and formability of a hot-rolled Mg-2Zn-0.2Mn... In order to broaden the application of wrought Mg alloy sheets in the automotive industry,the influence of Ca and Sm alloying on the texture evolution,mechanical properties,and formability of a hot-rolled Mg-2Zn-0.2Mn alloy was investigated by OM,XRD,SEM,EBSD,tensile tests,and Erichsen test.The results showed that the average grain size and basal texture intensity of Mg-2Zn-0.2Mn alloys were remarkably decreased after Ca and Sm additions.0.64 wt.%Ca or 0.48 wt.%Sm addition significantly increased the tensile strength,ductility and formability.Moreover,the synergetic addition of Sm and Ca improved the ductility and formability of Mg-2Zn-0.2Mn alloy,which was due to the change of Ca distribution and further reduction of the size of Ca-containing particles by Sm addition.The results provided a possibility of replacing RE elements with Ca and Sm in Mg alloys which bring about outstanding mechanical properties and formability. 展开更多
关键词 Mg-Zn-Mn alloy micro-alloying hot rolling texture evolution FORMABILITY
下载PDF
Austempering of Hot Rolled Si-Mn TRIP Steels 被引量:5
17
作者 LI Zhuang WU Di HU Rong 《Journal of Iron and Steel Research International》 SCIE EI CAS CSCD 2006年第5期41-46,共6页
The austempering after hot roiling in hot roiled Si-Mn TRIP (transformation-induced plasticity) steels was investigated. The mechanism of TRIP was discussed through examination of the microstructure and the mechanic... The austempering after hot roiling in hot roiled Si-Mn TRIP (transformation-induced plasticity) steels was investigated. The mechanism of TRIP was discussed through examination of the microstructure and the mechanical properties of this kind of steel. The results showed that the strain induced transformation to martensite of retained austenite occurs in hot rolled Si-Mn TRIP steels. The sample exhibited a good combination of ultimate tensile strength and total elongation when it was held at the bainite transformation temperature after hot deformation. The stability of retained austenite increases with an increase in isothermal holding time, and a further increase in the hold- ing duration resulted in the decrease of stability. The mechanical properties were optimal when holding for 25 min, and tensile strength and total elongation reached the maximum values (774 MPa and 33 ;, respectively). 展开更多
关键词 AUSTEMPERING hot rolling TRIP mechanical property
下载PDF
On the texture evolution of Mg-Zn-Ca alloy with different hot rolling paths 被引量:10
18
作者 Q.Li G.J.Huang +3 位作者 X.D.Huang S.W.Pan C.L.Tan Q.Liu 《Journal of Magnesium and Alloys》 SCIE EI CAS 2017年第2期166-172,共7页
In the present study,the texture evolution and mechanical anisotropy in a typical Mg–Zn–Ca alloy through hot cross rolling(CR)and unidirectional rolling(UR)were systematically studied.The results show that the rolli... In the present study,the texture evolution and mechanical anisotropy in a typical Mg–Zn–Ca alloy through hot cross rolling(CR)and unidirectional rolling(UR)were systematically studied.The results show that the rolling path greatly affects the annealed texture.The UR develops a texture with basal poles mainly distributing along the transverse direction(TD).By contrast,an ellipse-like(0002)texture with basal pole inclining largely away from the normal direction(ND)is developed after hot cross rolling and annealing.Therefore,the CR is an effective method to tailor the texture of the experimental alloy.Unfortunately,this ellipse-like texture could not reserve during the subsequent unidirectional hot rolling and annealing.Both UR and CR plates exhibit a strong planar mechanical anisotropy compared with the traditional unidirectional rolled plate. 展开更多
关键词 Mg alloys hot cross rolling TEXTURE Mechanical anisotropy
下载PDF
Mechanism of hot-rolling crack formation in lean duplex stainless steel 2101 被引量:4
19
作者 Zhi-hui Feng Jing-yuan Li Yi-de Wang 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2016年第4期425-433,共9页
The thermoplasticity of duplex stainless steel 2205(DSS2205) is better than that of lean duplex steel 2101(LDX2101), which undergoes severe cracking during hot rolling. The microstructure, microhardness, phase rat... The thermoplasticity of duplex stainless steel 2205(DSS2205) is better than that of lean duplex steel 2101(LDX2101), which undergoes severe cracking during hot rolling. The microstructure, microhardness, phase ratio, and recrystallization dependence of the deformation compatibility of LDX2101 and DSS2205 were investigated using optical microscopy(OM), electron backscatter diffraction(EBSD), Thermo-Calc software, and transmission electron microscopy(TEM). The results showed that the phase-ratio transformations of LDX2101 and DSS2205 were almost equal under the condition of increasing solution temperature. Thus, the phase transformation was not the main cause for the hot plasticity difference of these two steels. The grain size of LDX2101 was substantially greater than that of DSS2205, and the microhardness difference of LDX2101 was larger than that of DSS2205. This difference hinders the transfer of strain from ferrite to austenite. In the rolling process, the ferrite grains of LDX2101 underwent continuous softening and were substantially refined. However, although little recrystallization occurred at the boundaries of austenite, serious deformation accumulated in the interior of austenite, leading to a substantial increase in hardness. The main cause of crack formation is the microhardness difference between ferrite and austenite. 展开更多
关键词 duplex stainless steel hot rolling crack formation THERMOPLASTICITY grain size PRECIPITATES softening mechanisms
下载PDF
Microstructure and mechanical properties of Mg-6Al-0.3Mn-xY alloys prepared by casting and hot rolling 被引量:4
20
作者 苏桂花 张亮 +2 位作者 程丽任 刘勇兵 曹占义 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2010年第3期383-389,共7页
Mg-6Al-0.3Mn-xY(x=0,0.3,0.6 and 0.9,mass fraction,%) magnesium alloys were prepared by casting and hot rolling process.The influence of yttrium on microstructure and tensile mechanical properties of the AM60 magnesium... Mg-6Al-0.3Mn-xY(x=0,0.3,0.6 and 0.9,mass fraction,%) magnesium alloys were prepared by casting and hot rolling process.The influence of yttrium on microstructure and tensile mechanical properties of the AM60 magnesium alloy was investigated.The results reveal that with increasing the yttrium content,Al2Y precipitates form and the grain size is reduced.The ultimate strength,yield strength and elongation at room temperature are 192 MPa,62 MPa and 12.6%,respectively,for the as-cast Mg-6Al-0.3Mn-0.9Y alloy.All these properties are improved obviously by hot rolling,and the values are up to 303 MPa,255 MPa and 17.1%,respectively,for the rolled Mg-6Al-0.3Mn-0.9Y alloy.The improvement of mechanical properties is attributed to continuous dynamic recrystallization and the existence of highly thermal stable Al2Y precipitate which impedes the movement of dislocation effectively. 展开更多
关键词 magnesium alloy YTTRIUM hot rolling dynamic recrystallization mechanical properties
下载PDF
上一页 1 2 32 下一页 到第
使用帮助 返回顶部