In order to improve the threading stability and the head thickness precision in tandem hot rolling process, an adaptive threading strategy was proposed. The proposed strategy was realized by the rolling characteristic...In order to improve the threading stability and the head thickness precision in tandem hot rolling process, an adaptive threading strategy was proposed. The proposed strategy was realized by the rolling characteristics analysis, and factors which affect the rolling force and the final thickness were determined and analyzed based on the influence coefficients calculation process. An objective function consisting of the influenced factors was founded, and the disturbance quantity was obtained by minimizing the function with the Nelder-Mead simplex method, and the proposed adaptive threading strategy was realized based on the calculation results. The adaptive threading strategy has been applied to one 7-stand hot tandem mill successfully, actual statistics data show that the predicted rolling force prediction in the range of +/- 5.0% is improved to 97.8%, the head thickness precision in the range of +/- 35 mu m is improved to 98.5%, and the threading stability and the head thickness precision are enhanced to a high level.展开更多
A semi-parametric single-index model based approach was proposed for prediction of mechanical properties of hot rolled strip. Based on industrial production data, a semi-parametric single-index model was developed by ...A semi-parametric single-index model based approach was proposed for prediction of mechanical properties of hot rolled strip. Based on industrial production data, a semi-parametric single-index model was developed by choo-sing the appropriate kernel function and window width to predict the yield strength, tensile strength and elongation. When data samples are limited, compared with regression method and neural network method, the prediction results show that the semi-parametric single-index model based method is more adaptive and the prediction performance is superior to those by both regression and neural network methods.展开更多
The roll contour pattern and variety of work and backup rolls in service and its effect on profile and flatness control performance in 1 700 mm hot strip mill at Wuhan Iron and Steel(Group) Corporation were tested and...The roll contour pattern and variety of work and backup rolls in service and its effect on profile and flatness control performance in 1 700 mm hot strip mill at Wuhan Iron and Steel(Group) Corporation were tested and analyzed by the developed finite element models of different typical roll contours configurations.A rather smooth local work roll contour near strip edges and an increase in rolled length can be obtained by application of long stroke work roll shifting system with conventional work roll contours that is incapable of the crown control.In comparison with the conventional backup and work roll contours configuration,the crown control range by the roll bending force enhances by 12.79% and the roll gap stiffness increases by 25.26% with the developed asymmetry self-compensating work rolls(ASR) and varying contact backup rolls(VCR).A better strip profile and flatness quality,an increase in coil numbers within the rolling campaign and a significant alleviated effect of severe work roll wear contours on performance of edge drop control are achieved by the application of ASR with crown control and wear control ability in downstream stand F5 and VCR in all stands of 1 700 mm hot strip mill.展开更多
Roll eccentricity is an important factor causing thickness variations during hot strip rolling and might define the limit of strip thickness control accuracy. An improved multi-resolution wavelet transform algorithm w...Roll eccentricity is an important factor causing thickness variations during hot strip rolling and might define the limit of strip thickness control accuracy. An improved multi-resolution wavelet transform algorithm was proposed to compensate for the roll eccentricity. The wavelet transform method had good localization characteristics in both the time and frequency domains for signal analysis; however, the wavelet method had a frequency-aliasing problem owing to the less than ideal cut-off frequency characteristics of wavelets. This made its component reconstruction of an inaccurate signal. To eliminate inherent frequency aliases in the wavelet transform, fast Fourier transform (FFT) and inverse fast Fourier transform (IFFT) were combined with the Mallat algorithm. This synthesis was described in detail. Then, the roll eccentricity component was extracted from rolling force signal. An automatic gauge control (AGC) system added with a multi-resolution wavelet analyzer was designed. Experimental results showed that the anti-aliasing method could greatly restrain the inverse effect of eccentricity and the thickness control accuracy was improved from ±40 μm to ±15 μm.展开更多
基金Project(51504061)supported by the National Natural Science Foundation of China
文摘In order to improve the threading stability and the head thickness precision in tandem hot rolling process, an adaptive threading strategy was proposed. The proposed strategy was realized by the rolling characteristics analysis, and factors which affect the rolling force and the final thickness were determined and analyzed based on the influence coefficients calculation process. An objective function consisting of the influenced factors was founded, and the disturbance quantity was obtained by minimizing the function with the Nelder-Mead simplex method, and the proposed adaptive threading strategy was realized based on the calculation results. The adaptive threading strategy has been applied to one 7-stand hot tandem mill successfully, actual statistics data show that the predicted rolling force prediction in the range of +/- 5.0% is improved to 97.8%, the head thickness precision in the range of +/- 35 mu m is improved to 98.5%, and the threading stability and the head thickness precision are enhanced to a high level.
基金Item Sponsored by National Key Technology Research and Development Program of China (2006BAE03A09)National Natural Science Foundation of China ( 61203219 )
文摘A semi-parametric single-index model based approach was proposed for prediction of mechanical properties of hot rolled strip. Based on industrial production data, a semi-parametric single-index model was developed by choo-sing the appropriate kernel function and window width to predict the yield strength, tensile strength and elongation. When data samples are limited, compared with regression method and neural network method, the prediction results show that the semi-parametric single-index model based method is more adaptive and the prediction performance is superior to those by both regression and neural network methods.
基金Project(20040311890) supported by the Science and Technology Development Foundation of University of Science and Technology Beijing
文摘The roll contour pattern and variety of work and backup rolls in service and its effect on profile and flatness control performance in 1 700 mm hot strip mill at Wuhan Iron and Steel(Group) Corporation were tested and analyzed by the developed finite element models of different typical roll contours configurations.A rather smooth local work roll contour near strip edges and an increase in rolled length can be obtained by application of long stroke work roll shifting system with conventional work roll contours that is incapable of the crown control.In comparison with the conventional backup and work roll contours configuration,the crown control range by the roll bending force enhances by 12.79% and the roll gap stiffness increases by 25.26% with the developed asymmetry self-compensating work rolls(ASR) and varying contact backup rolls(VCR).A better strip profile and flatness quality,an increase in coil numbers within the rolling campaign and a significant alleviated effect of severe work roll wear contours on performance of edge drop control are achieved by the application of ASR with crown control and wear control ability in downstream stand F5 and VCR in all stands of 1 700 mm hot strip mill.
基金Item Sponsored by National Natural Science Foundation of China (60774032)Provincial Natural Science Foundation of Guangdong Province of China (06025724)+1 种基金Key Project of Guangzhou Scientific Program of China (2007Z2-D0121)Special Research Fund of Ministry of Education of China for College Doctoral Subjects (20070561006)
文摘Roll eccentricity is an important factor causing thickness variations during hot strip rolling and might define the limit of strip thickness control accuracy. An improved multi-resolution wavelet transform algorithm was proposed to compensate for the roll eccentricity. The wavelet transform method had good localization characteristics in both the time and frequency domains for signal analysis; however, the wavelet method had a frequency-aliasing problem owing to the less than ideal cut-off frequency characteristics of wavelets. This made its component reconstruction of an inaccurate signal. To eliminate inherent frequency aliases in the wavelet transform, fast Fourier transform (FFT) and inverse fast Fourier transform (IFFT) were combined with the Mallat algorithm. This synthesis was described in detail. Then, the roll eccentricity component was extracted from rolling force signal. An automatic gauge control (AGC) system added with a multi-resolution wavelet analyzer was designed. Experimental results showed that the anti-aliasing method could greatly restrain the inverse effect of eccentricity and the thickness control accuracy was improved from ±40 μm to ±15 μm.