期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Review on studies of reducing Cu-induced surface hot shortness in steel 被引量:2
1
作者 WANG Wei 《Baosteel Technical Research》 CAS 2015年第2期3-13,共11页
There is an increasing trend for producing copper-containing steels, with copper being either a residual element from scraps or an intentional addition, i. e. , in weathering steel. The issue of surface hot shortness ... There is an increasing trend for producing copper-containing steels, with copper being either a residual element from scraps or an intentional addition, i. e. , in weathering steel. The issue of surface hot shortness occurs during the hot working of steels containing copper, and a significant amount of work has been performed on this topic. This paper provides a review of related studies on this phenomenon. The formation mechanism, as analyzed, is the liquid metal embrittlement caused by the liquid copper penetration into austenite grain boundaries at the metal surface, where the copper originates from the selective oxidation of the steel at high temperature. On the basis of the mechanism, more importance is placed on analyzing the effect on the phenomenon by varying the controlling factors, including the heating process, alloying additions, and deformation conditions. Possible solutions to the problem are finalized, and some further work must be performed in the future. 展开更多
关键词 hot shortness copper liquid embrittlement grain boundary penetration DUCTILITY
下载PDF
Damage prediction for magnesium matrix composites formed by liquid-solid extrusion process based on finite element simulation 被引量:6
2
作者 齐乐华 刘健 +2 位作者 关俊涛 苏力争 周计明 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2010年第9期1737-1742,共6页
A damage prediction method based on FE simulation was proposed to predict the occurrence of hot shortness crocks and surface cracks in liquid-solid extrusion process. This method integrated the critical temperature cr... A damage prediction method based on FE simulation was proposed to predict the occurrence of hot shortness crocks and surface cracks in liquid-solid extrusion process. This method integrated the critical temperature criterion and Cockcroft & Latham ductile damage model, which were used to predict the initiation of hot shortness cracks and surface cracks of products, respectively. A coupling simulation of deformation with heat transfer as well as ductile damage was carried out to investigate the effect of extrusion temperature and extrusion speed on the damage behavior of Csf/AZ91D composites. It is concluded that the semisolid zone moves gradually toward deformation zone with the punch descending. The amplitude of the temperature rise at the exit of die from the initial billet temperature increases with the increase of extrusion speed during steady-state extrusion at a given punch displacement. In order to prevent the surface temperature of products beyond the incipient melting temperature of composites, the critical extrusion speed is decreased with the increase of extrusion temperature, otherwise the hot shortness cracks will occur. The maximum damage values increase with increasing extrusion speed or extrusion temperature. Theoretical results obtained by the Deform^TM-2D simulation agree well with the experiments. 展开更多
关键词 magnesium matrix composite liquid-solid extrusion hot shortness cracks surface cracks finite element method
下载PDF
Effect of Tempcore Processing on Mitigating Problems of Tramp Elements in Low C Steel Produced from Recycled Material
3
作者 Ahmed RAMADAN A.Y.SHASH +2 位作者 I.S.EL-MAHALLAWI D.SENK Taha MATTAR 《Journal of Iron and Steel Research International》 SCIE EI CAS CSCD 2015年第7期582-589,共8页
The effect of tramp elements in the steel was intensively studied. It was found that the solubility of tramp elements decreased as the temperature decreased under normal cooling conditions. The tramp elements (Cu, Pb... The effect of tramp elements in the steel was intensively studied. It was found that the solubility of tramp elements decreased as the temperature decreased under normal cooling conditions. The tramp elements (Cu, Pb, and Sn) diffused toward the grain boundaries, and intermetallic compounds or rich phases which have low melting points were formed, causing reduction in ductility and failure during the bending test. Rebars with Cu content which were left to air cooling after the last step showed drop in elongation, up to 32 %. On contrast, the samples with high per- centage of tramp elements (Cu, Pb, and Sn) in the billet, which were rolled and subjected to Tempcore process, did not show drop in elongation or failure in bending test (especially for rebar with diameter less than 32 mm); however, copper must be less than 0.35 mass% to prevent the precipitation of Cu-rich zones of critical size in 32 mm. When quench- ing was applied, the tramp elements remained in the interstitial supersaturated solid solution positions inside the grains and would not have the chance to diffuse and form precipitates, hindering the copper precipitates from reac- hing the critical size necessary for impairing the properties. This would hinder the occurrence of the harmful effect of the tramp elements on the elongation or the hot shortness after rolling. 展开更多
关键词 recycled steel hot shortness crack susceptibility Tempcore process tramp element residual melt
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部