High strength steel products with good ductility can be produced via Q&P hot stamping process,while the phase transformation of the process is more complicated than common hot stamping since two-step quenching and...High strength steel products with good ductility can be produced via Q&P hot stamping process,while the phase transformation of the process is more complicated than common hot stamping since two-step quenching and one-step carbon partitioning processes are involved.In this study,an integrated model of microstructure evolution relating to Q&P hot stamping was presented with a persuasively predicted results of mechanical properties.The transformation of diffusional phase and non-diffusional phase,including original austenite grain size individually,were considered,as well as the carbon partitioning process which affects the secondary martensite transformation temperature and the subsequent phase transformations.Afterwards,the mechanical properties including hardness,strength,and elongation were calculated through a series of theoretical and empirical models in accordance with phase contents.Especially,a modified elongation prediction model was generated ultimately with higher accuracy than the existed Mileiko’s model.In the end,the unified model was applied to simulate the Q&P hot stamping process of a U-cup part based on the finite element software LS-DYNA,where the calculated outputs were coincident with the measured consequences.展开更多
In this article,current application,materials,key equipments,finite element(FE) simulation and parts properties of hot stamping are introduced.The investigations of all processes and further excellent processes are de...In this article,current application,materials,key equipments,finite element(FE) simulation and parts properties of hot stamping are introduced.The investigations of all processes and further excellent processes are described.The survey of existing works,especially key equipments has revealed several gaps.Some new ideas and programs are proposed on the basis of traditional process.This article aims at providing an insight into a whole process backgrounds and pointing out the great potential for further investigations and innovations of hot stamping.展开更多
Hot stamping components with 1500 MPa ultra-high strength are obtained by press hardening during hot stamping, and the properties depend on the microstructures. It is very important that the microstructure evolution r...Hot stamping components with 1500 MPa ultra-high strength are obtained by press hardening during hot stamping, and the properties depend on the microstructures. It is very important that the microstructure evolution rule is found out during hot stamping process. To characterize the microstructure evolution during hot stamping, a method combining finite element and experiment is carried out. Samples were heated to 950°C and held for 300 second at a induction heating furnace, then taken out from the furnace and stayed in the air at different time (7 s, 11 s, 13 s, 22 s), respectively, finally the specimens were formed and quenched at a die. Microstructural observation as well as surface hardness profiling of formed specimens was performed. And the numerical simulation to predict the austenite transformation into ferrite, pearlite, bainite, and martensite and the volume fraction of each phase during the hot stamping process was made with ABAQUS software. The results show that the ferrite is observed when the specimen stays in the air for 22 s, and the temperature drops to 325°C when the dwell time increases from 7 s to 22 s. The results of numerical simulation and experimental results are in good agreement. So the method finite element can be used to guide the optimization of hot stamping process parameters.展开更多
采用盐浴法对热成形钢22MnB5进行了Q&P工艺(quenching and partitioningprocess)处理,研究了淬火终点温度、分配温度和分配时间对试验钢的显微组织、力学性能和残余奥氏体含量的影响。结果表明:Q&P工艺处理22MnB5钢的显微组织...采用盐浴法对热成形钢22MnB5进行了Q&P工艺(quenching and partitioningprocess)处理,研究了淬火终点温度、分配温度和分配时间对试验钢的显微组织、力学性能和残余奥氏体含量的影响。结果表明:Q&P工艺处理22MnB5钢的显微组织主要为马氏体和残余奥氏体组织,同时有一定量的碳化物析出,随着淬火终点温度和分配温度的升高或分配时间的延长,马氏体和碳化物的微观形貌会发生变化;在淬火终点温度和分配温度为325℃,分配时间为60s时得到的试样强塑积最高,达到20435MPa.%;试样的拉伸断口都显示出良好的韧性断裂特征;XRD分析表明,在Q&P工艺处理后试验钢的残余奥氏体含量可达5.5%。展开更多
Hot stamping steels have become a crucial strategy for achieving lightweighting and enhancing crash safety in the automo-tive industry over the past two decades.However,the carbon emissions of the materials and their ...Hot stamping steels have become a crucial strategy for achieving lightweighting and enhancing crash safety in the automo-tive industry over the past two decades.However,the carbon emissions of the materials and their related stamping processes have been frequently overlooked.It is essential to consider these emissions during the design stage.Emerging materials and technologies in hot stamping pose challenges to the automotive industry's future development in carbon emission reduc-tion.This review discusses the promising materials for future application and their special features,as well as the emerging manufacturing and part design processes that have extended the limit of application for new materials.Advanced heating processes and corresponding equipment have been proven to improve heating efficiency and control temperature uniformity.The material utilization and the overall performance of the components are improved by tailored blanks and an integrated part design approach.To achieve low-carbon-emission(LCE)hot stamping,it is necessary to systematically consider the steel grade,heating process,and part design,rather than solely focusing on reducing carbon emissions during the manufacturing process stage.This review aims to present the latest progress in steel grade,heating process,and part design of hot stamping in the automotive industry,providing solutions for LCE from a holistic perspective.展开更多
Cold forming of high strength materials is accompanied by an undesirable spring-back effect and therefore the automotive industry prefers to produce components from high strength steels by hot stamping.Hot deformation...Cold forming of high strength materials is accompanied by an undesirable spring-back effect and therefore the automotive industry prefers to produce components from high strength steels by hot stamping.Hot deformation and cooling in a die are applied to obtain shaped components with martensitic microstructure and high yield strength and ultimate tensile strength.This article presents new applications of this forming technology by incorporating another innovative heat treatment by the Q-P process,which improves both strength and ductility of obtained structures at the same time.Ultimate strengths over 2000 MPa with ductility above 10% can be achieved by this processing.To test microstructure development,thin sheet was hot formed and a corresponding FEM simulation was created.This processing was applied to low alloyed AHS steel with 0.42% of carbon and with an alloying strategy based on Mn,Si and Cr.Martensitic microstructure with retained austenite was obtained by this processing with a strength of around 2000 MPa and ductility of 10%.展开更多
Hot stamping(press hardening) is widely used to fabricate safety components such as door beams and B pillars with increased strength via quenching. However, parts that are hot-stamped from ultra-high-strength steel(UH...Hot stamping(press hardening) is widely used to fabricate safety components such as door beams and B pillars with increased strength via quenching. However, parts that are hot-stamped from ultra-high-strength steel(UHSS) have very limited elongation,i.e., low ductility. In the present study, a novel variant of hot stamping technology called quenching-and-partitioning(Q&P) hot stamping was developed. This approach was tested on several UHSS sheet metals, and it was confirmed that this method can be used to overcome the drawbacks associated with conventional hot stamping. The applicability of Q&P hot stamping to each of these steels was also assessed. The part properties and performances of three widely used ultra-high-strength sheet metals, B1500 HS,27 SiMn, and TRIP780, were evaluated through tensile testing and microstructural observations. The results demonstrated that the ductility of Q&P hot-stamped sheet metals was notably higher than that of the conventionally hot-stamped parts because Q&P hot stamping gives rise to a dual-phase structure of both martensite and austenite. Further, material tests demonstrated that the Q&P treatment had positive effects on all three selected materials, of which TRIP780 had the best ductility and the highest value of the product of strength and plasticity. Scanning electron microscopy images indicated that the silicon in the steels could limit the formation of cementite and would, therefore, improve the mechanical properties of Q&P hot-stamped products.展开更多
A transformation-induced plasticity (TRIP) steel was applied to test its mechanical properties in quenching and partitioning (Q&P) process. A series of Q&P experiments followed by tensile tests, Charpy impact ...A transformation-induced plasticity (TRIP) steel was applied to test its mechanical properties in quenching and partitioning (Q&P) process. A series of Q&P experiments followed by tensile tests, Charpy impact tests, fracture morphology analyses and microstructure observations were conducted. The experimental results showed that the Q&P treatment could increase the mechanical properties of TRIP steel evidently. The strength of tested TRIP780 after Q&P process reaches more than 1500 MPa with elongation of 17.8%, which is obviously greater than that of 22MnB5 after hot stamping. The microstructure observations indicate that the good combination of high strength and plasticity of TRIP steel after Q&P process is attributed to the multi-phase microstructure of hard martensite matrix and soft retained austenite.展开更多
基金Supported by National Natural Science Foundation of China (Grant Nos. 51775336,U1564203)Program of Shanghai Academic Research Leadership (Grant No. 19XD1401900)
文摘High strength steel products with good ductility can be produced via Q&P hot stamping process,while the phase transformation of the process is more complicated than common hot stamping since two-step quenching and one-step carbon partitioning processes are involved.In this study,an integrated model of microstructure evolution relating to Q&P hot stamping was presented with a persuasively predicted results of mechanical properties.The transformation of diffusional phase and non-diffusional phase,including original austenite grain size individually,were considered,as well as the carbon partitioning process which affects the secondary martensite transformation temperature and the subsequent phase transformations.Afterwards,the mechanical properties including hardness,strength,and elongation were calculated through a series of theoretical and empirical models in accordance with phase contents.Especially,a modified elongation prediction model was generated ultimately with higher accuracy than the existed Mileiko’s model.In the end,the unified model was applied to simulate the Q&P hot stamping process of a U-cup part based on the finite element software LS-DYNA,where the calculated outputs were coincident with the measured consequences.
基金National Science and Technology Supporting Program of China(No.2011BAG03B02)
文摘In this article,current application,materials,key equipments,finite element(FE) simulation and parts properties of hot stamping are introduced.The investigations of all processes and further excellent processes are described.The survey of existing works,especially key equipments has revealed several gaps.Some new ideas and programs are proposed on the basis of traditional process.This article aims at providing an insight into a whole process backgrounds and pointing out the great potential for further investigations and innovations of hot stamping.
文摘Hot stamping components with 1500 MPa ultra-high strength are obtained by press hardening during hot stamping, and the properties depend on the microstructures. It is very important that the microstructure evolution rule is found out during hot stamping process. To characterize the microstructure evolution during hot stamping, a method combining finite element and experiment is carried out. Samples were heated to 950°C and held for 300 second at a induction heating furnace, then taken out from the furnace and stayed in the air at different time (7 s, 11 s, 13 s, 22 s), respectively, finally the specimens were formed and quenched at a die. Microstructural observation as well as surface hardness profiling of formed specimens was performed. And the numerical simulation to predict the austenite transformation into ferrite, pearlite, bainite, and martensite and the volume fraction of each phase during the hot stamping process was made with ABAQUS software. The results show that the ferrite is observed when the specimen stays in the air for 22 s, and the temperature drops to 325°C when the dwell time increases from 7 s to 22 s. The results of numerical simulation and experimental results are in good agreement. So the method finite element can be used to guide the optimization of hot stamping process parameters.
文摘采用盐浴法对热成形钢22MnB5进行了Q&P工艺(quenching and partitioningprocess)处理,研究了淬火终点温度、分配温度和分配时间对试验钢的显微组织、力学性能和残余奥氏体含量的影响。结果表明:Q&P工艺处理22MnB5钢的显微组织主要为马氏体和残余奥氏体组织,同时有一定量的碳化物析出,随着淬火终点温度和分配温度的升高或分配时间的延长,马氏体和碳化物的微观形貌会发生变化;在淬火终点温度和分配温度为325℃,分配时间为60s时得到的试样强塑积最高,达到20435MPa.%;试样的拉伸断口都显示出良好的韧性断裂特征;XRD分析表明,在Q&P工艺处理后试验钢的残余奥氏体含量可达5.5%。
基金support from the National Natural Science Foundation of China(No.52105395)China Postdoctoral Science Foundation(No.2022T150478)Science and Technology Commission of Shanghai Municipality(No.21170711200).
文摘Hot stamping steels have become a crucial strategy for achieving lightweighting and enhancing crash safety in the automo-tive industry over the past two decades.However,the carbon emissions of the materials and their related stamping processes have been frequently overlooked.It is essential to consider these emissions during the design stage.Emerging materials and technologies in hot stamping pose challenges to the automotive industry's future development in carbon emission reduc-tion.This review discusses the promising materials for future application and their special features,as well as the emerging manufacturing and part design processes that have extended the limit of application for new materials.Advanced heating processes and corresponding equipment have been proven to improve heating efficiency and control temperature uniformity.The material utilization and the overall performance of the components are improved by tailored blanks and an integrated part design approach.To achieve low-carbon-emission(LCE)hot stamping,it is necessary to systematically consider the steel grade,heating process,and part design,rather than solely focusing on reducing carbon emissions during the manufacturing process stage.This review aims to present the latest progress in steel grade,heating process,and part design of hot stamping in the automotive industry,providing solutions for LCE from a holistic perspective.
基金the project 1M06032 Research Centre of Forming Technology
文摘Cold forming of high strength materials is accompanied by an undesirable spring-back effect and therefore the automotive industry prefers to produce components from high strength steels by hot stamping.Hot deformation and cooling in a die are applied to obtain shaped components with martensitic microstructure and high yield strength and ultimate tensile strength.This article presents new applications of this forming technology by incorporating another innovative heat treatment by the Q-P process,which improves both strength and ductility of obtained structures at the same time.Ultimate strengths over 2000 MPa with ductility above 10% can be achieved by this processing.To test microstructure development,thin sheet was hot formed and a corresponding FEM simulation was created.This processing was applied to low alloyed AHS steel with 0.42% of carbon and with an alloying strategy based on Mn,Si and Cr.Martensitic microstructure with retained austenite was obtained by this processing with a strength of around 2000 MPa and ductility of 10%.
基金supported by the National Natural Science Foundation of China(Grant Nos.51105247&U1564203)
文摘Hot stamping(press hardening) is widely used to fabricate safety components such as door beams and B pillars with increased strength via quenching. However, parts that are hot-stamped from ultra-high-strength steel(UHSS) have very limited elongation,i.e., low ductility. In the present study, a novel variant of hot stamping technology called quenching-and-partitioning(Q&P) hot stamping was developed. This approach was tested on several UHSS sheet metals, and it was confirmed that this method can be used to overcome the drawbacks associated with conventional hot stamping. The applicability of Q&P hot stamping to each of these steels was also assessed. The part properties and performances of three widely used ultra-high-strength sheet metals, B1500 HS,27 SiMn, and TRIP780, were evaluated through tensile testing and microstructural observations. The results demonstrated that the ductility of Q&P hot-stamped sheet metals was notably higher than that of the conventionally hot-stamped parts because Q&P hot stamping gives rise to a dual-phase structure of both martensite and austenite. Further, material tests demonstrated that the Q&P treatment had positive effects on all three selected materials, of which TRIP780 had the best ductility and the highest value of the product of strength and plasticity. Scanning electron microscopy images indicated that the silicon in the steels could limit the formation of cementite and would, therefore, improve the mechanical properties of Q&P hot-stamped products.
基金The authors would like to acknowledge the support by the National Natural Science Foundation of China under grant Nos. 51775336, U1564203Shanghai Pujiang Program under Grant No. 17PJD019.
文摘A transformation-induced plasticity (TRIP) steel was applied to test its mechanical properties in quenching and partitioning (Q&P) process. A series of Q&P experiments followed by tensile tests, Charpy impact tests, fracture morphology analyses and microstructure observations were conducted. The experimental results showed that the Q&P treatment could increase the mechanical properties of TRIP steel evidently. The strength of tested TRIP780 after Q&P process reaches more than 1500 MPa with elongation of 17.8%, which is obviously greater than that of 22MnB5 after hot stamping. The microstructure observations indicate that the good combination of high strength and plasticity of TRIP steel after Q&P process is attributed to the multi-phase microstructure of hard martensite matrix and soft retained austenite.