针对轧机厚度机理模型逐渐不满足现有的控制精度要求的现象,提出了一种基于数据驱动的热轧带钢厚度预测与控制方法.该方法通过对输入空间数据进行在线聚类划分,在各子空间使用最小二乘支持向量机(least square support vector machine,L...针对轧机厚度机理模型逐渐不满足现有的控制精度要求的现象,提出了一种基于数据驱动的热轧带钢厚度预测与控制方法.该方法通过对输入空间数据进行在线聚类划分,在各子空间使用最小二乘支持向量机(least square support vector machine,LS-SVM)在线算法建立非线性模型,并预测系统的输出值,利用预测控制方法求得控制量,根据控制器加权策略得到全局控制量.仿真结果证明了该方法的有效性.展开更多
文摘针对轧机厚度机理模型逐渐不满足现有的控制精度要求的现象,提出了一种基于数据驱动的热轧带钢厚度预测与控制方法.该方法通过对输入空间数据进行在线聚类划分,在各子空间使用最小二乘支持向量机(least square support vector machine,LS-SVM)在线算法建立非线性模型,并预测系统的输出值,利用预测控制方法求得控制量,根据控制器加权策略得到全局控制量.仿真结果证明了该方法的有效性.