Based on the thermal conduction equations, the three-dimensional (3D) temperature field of a work roll was investigated using finite element method (FEM). The variations in the surface temperature of the work roll...Based on the thermal conduction equations, the three-dimensional (3D) temperature field of a work roll was investigated using finite element method (FEM). The variations in the surface temperature of the work roll during hot strip rolling were described, and the thermal stress field of the work roll was also analyzed. The results showed that the highest roll surface temperature is 593 ℃, and the difference between the minimum and maximum values of thermal stress of the work roll surface is 145.7 MPa. Furthermore, the results of this analysis indicate that temperature and thermal stress are useful parameters for the investigation of roll thermal fatigue and also for improving the quality of strip during rolling.展开更多
The structure of laminar cooling control system for hot rolling was introduced and the control mode, cooling strategy, segment tracking and model recalculation were analyzed. The parameters of air/water cooling models...The structure of laminar cooling control system for hot rolling was introduced and the control mode, cooling strategy, segment tracking and model recalculation were analyzed. The parameters of air/water cooling models were optimized by regressing the data gathering in situ, and satisfactory effect was obtained. The coiling temperature can be controlled within ±15℃.展开更多
The mathematical model for online controlling hot rolled steel cooling on run-out table (ROT for abbreviation) was analyzed, and water cooling is found to be the main cooling mode for hot rolled steel. The calculati...The mathematical model for online controlling hot rolled steel cooling on run-out table (ROT for abbreviation) was analyzed, and water cooling is found to be the main cooling mode for hot rolled steel. The calculation of the drop in strip temperature by both water cooling and air cooling is summed up to obtain the change of heat transfer coefficient. It is found that the learning coefficient of heat transfer coefficient is the kernel coefficient of coiler temperature control (CTC) model tuning. To decrease the deviation between the calculated steel temperature and the measured one at coiler entrance, a laminar cooling control self-learning strategy is used. Using the data acquired in the field, the results of the self-learning model used in the field were analyzed. The analyzed results show that the self-learning function is effective.展开更多
Accurate estimation of the remaining useful life(RUL)and health state for rollers is of great significance to hot rolling production.It can provide decision support for roller management so as to improve the productiv...Accurate estimation of the remaining useful life(RUL)and health state for rollers is of great significance to hot rolling production.It can provide decision support for roller management so as to improve the productivity of the hot rolling process.In addition,the RUL prediction for rollers is helpful in transitioning from the current regular maintenance strategy to conditional-based maintenance.Therefore,a new method that can extract coarse-grained and fine-grained features from batch data to predict the RUL of the rollers is proposed in this paper.Firstly,a new deep learning network architecture based on recurrent neural networks that can make full use of the extracted coarsegrained fine-grained features to estimate the heath indicator(HI)is developed,where the HI is able to indicate the health state of the roller.Following that,a state-space model is constructed to describe the HI,and the probabilistic distribution of RUL can be estimated by extrapolating the HI degradation model to a predefined failure threshold.Finally,application to a hot strip mill is given to verify the effectiveness of the proposed methods using data collected from an industrial site,and the relatively low RMSE and MAE values demonstrate its advantages compared with some other popular deep learning methods.展开更多
In order to meet the severe requirements of market and reduce production costs of high quality steels,advanced run-out table cooling based on ultra fast cooling(UFC) and laminar cooling(LC) was proposed and applied to...In order to meet the severe requirements of market and reduce production costs of high quality steels,advanced run-out table cooling based on ultra fast cooling(UFC) and laminar cooling(LC) was proposed and applied to industrial production.Cooling mechanism of UFC and LC was introduced first,and then the control system and control models were described.By using UFC and LC,low-cost Q345B strips had been produced in a large scale,and industrial trials of producing low-cost dual phase strips were completed successfully.Application results show that the ultra fast cooling is uniform along the strip width and length,and does not affect the flatness of strips.The run-out table cooling system runs stably with a high precision,and makes it possible for the user to develop more high quality steels with low costs.展开更多
Varying contact-length backup roll and linearly variable crown work roll are provided for improving the mill performance of profile and flatness control. Integrated with theses technologies, relevant profile and flatn...Varying contact-length backup roll and linearly variable crown work roll are provided for improving the mill performance of profile and flatness control. Integrated with theses technologies, relevant profile and flatness control models are developed for hot strip mills on the basis of large amount of finite element calculation. These models include shape setup control model in process control system, bending force feedforward control model, crown feedback control model and flatness feedback control model in basis automation system. Such a profile and flatness control system with full functions is applied in 1 700 mm industrial hot strip mills of Ansteel. Large amount of production data shows that the crown precision with the tolerance of±18 μm is over 90%, the strip percentage which the actual flatness is within ±25 I-unit surpasses 96%, and general roll consume is reduced by 28% by using the profile and fiatness control system. In addition, schedule-free rolling is realized.展开更多
Based on experimental data of positron annihilation technology, electrolyticdissolution technique, electron back-scattered pattern, etc. and by analysis the strengtheningfactors, the strengthening mechanism of ultra-t...Based on experimental data of positron annihilation technology, electrolyticdissolution technique, electron back-scattered pattern, etc. and by analysis the strengtheningfactors, the strengthening mechanism of ultra-thin hot strip of low carbon steel produced by CSP(Compact Strip Production) technique was investigated. The value of each strengthening mechanism andits contribution percentage to yield strength were achieved. The results show that refinementstrengthening is the predominant strengthening mode; precipitation strengthening and dislocationstrengthening are second to it, their contributions to yield strength are almost equal.展开更多
The predictive calculation of comprehensive contour of work rolls in the on-line strip shape control model during hot rolling consists of two important parts of wear contour calculation and thermal contour calculation...The predictive calculation of comprehensive contour of work rolls in the on-line strip shape control model during hot rolling consists of two important parts of wear contour calculation and thermal contour calculation, which have a direct influence on the ac- curacy of shape control. A statistical wear model and a finite difference thermal contour model of work rolls were described. The comprehensive contour is the equivalence treatment of the sum of grinding, wear, and thermal contours. This comprehensive contour calculation model has been applied successfully in the real on-line strip shape control model. Its high precision has been proved through the large amounts of actual roll profile measurements and theoretical analyses. The hit rates (percent of shape index satisfying re- quirement) of crown and head flatness of the strips rolled, by using the shape control model, which includes the comprehensive contour calculation model, have about 16% and 10% increase respectively, compared to those of strips rolled by using manual operation.展开更多
A 2-dimension axisymmetric model was developed by the finite-differencemethod, which can be used to predict the transient temperature field and thermal profile of workrolls in the hot strip rolling process. To demonst...A 2-dimension axisymmetric model was developed by the finite-differencemethod, which can be used to predict the transient temperature field and thermal profile of workrolls in the hot strip rolling process. To demonstrate the accuracy and reliability of the solutiondeveloped, the calculation results were compared with the production data of a 1700 mm hot striprolling mill and good agreement was found between them. The effect of strip width and roll shiftingon the thermal expansion of the work rolls was studied. It is found that the strip width has markedeffect on the efficient thermal crown. Initially, when the rolling strip changes from narrow towide, a bigger efficient thermal crown can be quickly achieved; afterwards, when the rolling stripchanges from wide to narrow, not only the influence of uneven wear can be reduced but also theexcessive efficient thermal crown can be avoided. It is also found that the work roll shifting has adeterminate but not obvious effect on the reduction of the efficient thermal crown, and will makethe strip shape unstable without being used properly.展开更多
The microstructural banding in steels is often found in hot rolling strips, which plays a very important role in mechanical properties. Much work has been done to investigate how the microstructural banding is formed ...The microstructural banding in steels is often found in hot rolling strips, which plays a very important role in mechanical properties. Much work has been done to investigate how the microstructural banding is formed during hot rolling. In the present study, the microstructure of hot rolling strips was examined in term of optical microscopy and transmission electron microscopy. Electron probe microanalysis was also used to decide the distribution of microchemical bands, by this means, the phases in these strips were found to be ferrite and pearlite. The average distance between the carbon lamellas in pearlite is about 0.06-0.1μm. It is also shown that microstructural banding in hot rolled carbon steel was closely related to the segregation of manganese and silicon into those bands. Based on the transformation kinetic, the simulated results pointed out that the thermodynamic stability of austenite would increase with the increasing of Mn, which led to a decrease of ferrite growth rate. The effect of Mn on the decomposition of austenite is attributed to segregation of Mn atoms along the ferrite/austenite phase boundary which causes a strong solute drag effect. The addition of Mn to steel decreases the activity of austenite, thereby it is beneficial to the formation of non-equilibrium phase, such as degenerate pearlite. The formation of banded structure on the hot rolled process was discussed.展开更多
A three-dimensional model for strip hot rolling was developed, in which the plastic deformation of strip, the thermal crown of rolls, roll deflection and flattening were calculated by rigid-plastic finite element meth...A three-dimensional model for strip hot rolling was developed, in which the plastic deformation of strip, the thermal crown of rolls, roll deflection and flattening were calculated by rigid-plastic finite element method, finite difference method, influential function method and elastic finite element method respectively. The roll wear was taken into consideration. The model can provide detailed information such as rolling pressure distribution, contact pressure distribution between backup rolls and work rolls, deflection and flattening of work rolls, lateral distribution of strip thickness, and lateral distribution of front and back tensions. The finish rolling on a 1 450 mm hot strip mill was simulated.展开更多
Hot rolled strip requires diverse and flexible control of cooling path in order to take full advantages of strengthening mechanisms such as fine grain strengthening, precipitation strengthening, and transformation str...Hot rolled strip requires diverse and flexible control of cooling path in order to take full advantages of strengthening mechanisms such as fine grain strengthening, precipitation strengthening, and transformation strengthening, adapting to the development of advanced steel materials and the requirement of reduction-manufacturing. Ultra fast cooling can achieve a great range of cooling rate, which provides the means that the hardened austenite obtained in high temperature region can keep at different dynamic transformation temperatures. Meanwhile, through the rational allocation of the UFC (ultra fast cooling) and LFC (laminar flow cooling), more flexible cooling path control and cooling strategy of hot rolled strip are obtained. Temperature distribution and control strategies under different cooling paths based on UFC are investigated. The process control temperature can be limited within 18 ℃, and the mechanical properties of the steels get a great leap forward due to the cooling paths and strategies, which can decrease costs and create great economic benefits for the iron and steel enterprises.展开更多
Because the structure of the classical mathematical model of rolling load is simple, even with the self-adapting technology, it is difficult to accommodate the increasing dimensional accuracy. Motivated by this fact, ...Because the structure of the classical mathematical model of rolling load is simple, even with the self-adapting technology, it is difficult to accommodate the increasing dimensional accuracy. Motivated by this fact, an Innovations Feedback Neural Networks (IFNN) was presented based on the idea of Kalman prediction. The neural networks used the Back Propagation (BP) algorithm and applied it to the prediction of rolling load in hot strip mill. The theoretical results and the off-line simulation show that the prediction capability of IFNN is better than that of normal BP networks, namely, for the prediction of the rolling load in hot strip mill, the prediction precision of IFNN is higher than that of normal BP networks. Finally, a relative complete rolling load prediction system was developed on Windows 2003/XP platform using the OOP programming method and the SQL server2000 database. With this sys- tem, the rolling load of a 1700 strip mill was calculated, and the prediction results obtained correspond well with the field data. It shows that IFNN is valid for rolling load prediction.展开更多
Feedforward control is the core to control function in the cooling process of hot strip. One of the most important tasks in feedforward control is to determine the arrival time of the strip at various locations on the...Feedforward control is the core to control function in the cooling process of hot strip. One of the most important tasks in feedforward control is to determine the arrival time of the strip at various locations on the runout table for effective control. Based on the principles of element tracking and tracking strategies for variable rolling speed and constant rolling speed, a simple diagonal tracking method for an existing hot strip mill was proposed and tested. The test results show that the proposed strategies are effective for improving tracking control.展开更多
A multi-objective optimization model for draft scheduling of hot strip mill was presented, rolling power minimizing, rolling force ratio distribution and good strip shape as the objective functions. A multi-objective ...A multi-objective optimization model for draft scheduling of hot strip mill was presented, rolling power minimizing, rolling force ratio distribution and good strip shape as the objective functions. A multi-objective differential evolution algorithm based on decomposition (MODE/D). The two-objective and three-objective optimization experiments were performed respectively to demonstrate the optimal solutions of trade-off. The simulation results show that MODE/D can obtain a good Pareto-optimal front, which suggests a series of alternative solutions to draft scheduling. The extreme Pareto solutions are found feasible and the centres of the Pareto fronts give a good compromise. The conflict exists between each two ones of three objectives. The final optimal solution is selected from the Pareto-optimal front by the importance of objectives, and it can achieve a better performance in all objective dimensions than the empirical solutions. Finally, the practical application cases confirm the feasibility of the multi-objective approach, and the optimal solutions can gain a better rolling stability than the empirical solutions, and strip flatness decreases from (0± 63) IU to (0±45) IU in industrial production.展开更多
The controlled runout table cooling is essential in determining the final mechanical properties and flatness of steel strip.The heat of a hot steel strip is mainly extracted by cooling water during runout.In order to ...The controlled runout table cooling is essential in determining the final mechanical properties and flatness of steel strip.The heat of a hot steel strip is mainly extracted by cooling water during runout.In order to study the heat transfer by water jet impingement boiling during runout,apilot facility was constructed at the University of British Columbia.On this pilot facility,the water jet impingement tests were carried out under various cooling conditions to investigate the effect of processing parameters,such as cooling water temperature,water jet impingement velocity,initial strip temperature,water flow rate,water nozzle diameter and array of water nozzles,on the heat transfer of heated strip.The results obtained contribute to the optimization of cooling water during runout.展开更多
Three different online heat treatment processes were designed to study the effects on the mechanical properties of a 0.19C-1.6Si-1.6Mn(wt%) hot rolled strip steel.The microstructures were characterized by means of S...Three different online heat treatment processes were designed to study the effects on the mechanical properties of a 0.19C-1.6Si-1.6Mn(wt%) hot rolled strip steel.The microstructures were characterized by means of SEM,TEM,EPMA,and XRD.The mechanical properties were estimated by tensile tests.Results showed that a satisfying combination of strength and ductility could be obtained through the ferrite relaxation and direct quenching and partitioning process.Analysis was also focused on this process.The microstructure contained proeutectoid ferrite grains,martensite packets and blocky or interlath retained austenite,and also contained carbide-free bainite in the case of relatively high quench temperatures.The retained austenite fraction was increased through proeutectoid ferrite and partial bainite transformation,while the tensile strength was also consequently decreased.The most of retained austenite transformed to ferrite under deformation and the elongation was obviously improved.展开更多
The three-dimensional plastic deformations of strip are analyzed using the stream surface strip element method, the elastic deformations of rolls are analyzed using the influence coefficient method, the analyzing and ...The three-dimensional plastic deformations of strip are analyzed using the stream surface strip element method, the elastic deformations of rolls are analyzed using the influence coefficient method, the analyzing and computing model of shape and crown of 4-high mill was established by combining them, and the rolling process of 1660 mm hot strip continuous mills was simulated. The simulated results tally well with the experimental results. The modei and the method for simulation of shape analysis and control of hot strip mills were provided.展开更多
In order to establish precision model, a software to calculate the strip crown of four-high hot rolling mill was developedby using affecting function method according to the strip crown calculation theory. The effect ...In order to establish precision model, a software to calculate the strip crown of four-high hot rolling mill was developedby using affecting function method according to the strip crown calculation theory. The effect of work roll diameter,unit width rolling load, roll bending force, work roll crown, initial strip crown and reduction, etc, on load distributioneffect rate was simulated by using the software. The results show that the load distribution effect rate increaseswith the increase of strip width, work roll diameter, unit width rolling load, roll bending force, work roll crown,initial strip crown and reduction. Based on the simulation results, base value of load distribution effect rate andfitting coefficients of six power polynomial of load distribution effect rate modification coefficient were determinedconsidering all of the above parameters. A simplified mathematical model for calculating load distribution effect ratewas established.展开更多
The recrystallization kinetics and grain size models were developed for the C Mn and niobium containing steels to describe the metallurgical phenomenon such as softening, grain growth, and strain accumulation. Based o...The recrystallization kinetics and grain size models were developed for the C Mn and niobium containing steels to describe the metallurgical phenomenon such as softening, grain growth, and strain accumulation. Based on the recrystallization kinetics equations, the mean flow stress and the rolling load of each pass were predicted and the optimum rolling schedule was proposed for hot strip rolling. The austenite grain refinement is associated with the addition of niobium, the decrease of starting temperature of finish rolling, and the reduction of finished thickness. The mean flow stress curve with a continuous rising characteristic can be usually observed in the finish rolling of niobium containing steel, which is formed as a result of the heavy incomplete softening and strain accumulation. The predic ted rolling loads are in good agreement with the measured ones.展开更多
基金Item Sponsored by National Natural Science Foundation of China (50534020)
文摘Based on the thermal conduction equations, the three-dimensional (3D) temperature field of a work roll was investigated using finite element method (FEM). The variations in the surface temperature of the work roll during hot strip rolling were described, and the thermal stress field of the work roll was also analyzed. The results showed that the highest roll surface temperature is 593 ℃, and the difference between the minimum and maximum values of thermal stress of the work roll surface is 145.7 MPa. Furthermore, the results of this analysis indicate that temperature and thermal stress are useful parameters for the investigation of roll thermal fatigue and also for improving the quality of strip during rolling.
基金ItemSponsored by National Natural Science Foundation of China (50104004)
文摘The structure of laminar cooling control system for hot rolling was introduced and the control mode, cooling strategy, segment tracking and model recalculation were analyzed. The parameters of air/water cooling models were optimized by regressing the data gathering in situ, and satisfactory effect was obtained. The coiling temperature can be controlled within ±15℃.
基金Item Sponsored by National Natural Science Foundation of China(50474016)
文摘The mathematical model for online controlling hot rolled steel cooling on run-out table (ROT for abbreviation) was analyzed, and water cooling is found to be the main cooling mode for hot rolled steel. The calculation of the drop in strip temperature by both water cooling and air cooling is summed up to obtain the change of heat transfer coefficient. It is found that the learning coefficient of heat transfer coefficient is the kernel coefficient of coiler temperature control (CTC) model tuning. To decrease the deviation between the calculated steel temperature and the measured one at coiler entrance, a laminar cooling control self-learning strategy is used. Using the data acquired in the field, the results of the self-learning model used in the field were analyzed. The analyzed results show that the self-learning function is effective.
基金the Natural Science Foundation of China(NSFC)(61873024,61773053)the China Central Universities of USTB(FRF-TP-19-049A1Z)the National Key RD Program of China(2017YFB0306403)。
文摘Accurate estimation of the remaining useful life(RUL)and health state for rollers is of great significance to hot rolling production.It can provide decision support for roller management so as to improve the productivity of the hot rolling process.In addition,the RUL prediction for rollers is helpful in transitioning from the current regular maintenance strategy to conditional-based maintenance.Therefore,a new method that can extract coarse-grained and fine-grained features from batch data to predict the RUL of the rollers is proposed in this paper.Firstly,a new deep learning network architecture based on recurrent neural networks that can make full use of the extracted coarsegrained fine-grained features to estimate the heath indicator(HI)is developed,where the HI is able to indicate the health state of the roller.Following that,a state-space model is constructed to describe the HI,and the probabilistic distribution of RUL can be estimated by extrapolating the HI degradation model to a predefined failure threshold.Finally,application to a hot strip mill is given to verify the effectiveness of the proposed methods using data collected from an industrial site,and the relatively low RMSE and MAE values demonstrate its advantages compared with some other popular deep learning methods.
基金Project(50634030) supported by the National Natural Science Foundation of China
文摘In order to meet the severe requirements of market and reduce production costs of high quality steels,advanced run-out table cooling based on ultra fast cooling(UFC) and laminar cooling(LC) was proposed and applied to industrial production.Cooling mechanism of UFC and LC was introduced first,and then the control system and control models were described.By using UFC and LC,low-cost Q345B strips had been produced in a large scale,and industrial trials of producing low-cost dual phase strips were completed successfully.Application results show that the ultra fast cooling is uniform along the strip width and length,and does not affect the flatness of strips.The run-out table cooling system runs stably with a high precision,and makes it possible for the user to develop more high quality steels with low costs.
基金National Key Scientific Technological Project of the Ninth Five-year of China(No.97-316-01-01)
文摘Varying contact-length backup roll and linearly variable crown work roll are provided for improving the mill performance of profile and flatness control. Integrated with theses technologies, relevant profile and flatness control models are developed for hot strip mills on the basis of large amount of finite element calculation. These models include shape setup control model in process control system, bending force feedforward control model, crown feedback control model and flatness feedback control model in basis automation system. Such a profile and flatness control system with full functions is applied in 1 700 mm industrial hot strip mills of Ansteel. Large amount of production data shows that the crown precision with the tolerance of±18 μm is over 90%, the strip percentage which the actual flatness is within ±25 I-unit surpasses 96%, and general roll consume is reduced by 28% by using the profile and fiatness control system. In addition, schedule-free rolling is realized.
基金This work was financially supported by the state foundation for key projects: Fundamental Research on New Generation of Steels (No: G1998061500).
文摘Based on experimental data of positron annihilation technology, electrolyticdissolution technique, electron back-scattered pattern, etc. and by analysis the strengtheningfactors, the strengthening mechanism of ultra-thin hot strip of low carbon steel produced by CSP(Compact Strip Production) technique was investigated. The value of each strengthening mechanism andits contribution percentage to yield strength were achieved. The results show that refinementstrengthening is the predominant strengthening mode; precipitation strengthening and dislocationstrengthening are second to it, their contributions to yield strength are almost equal.
基金the National Major Technology Equipment Research Program during the 9th Five-Year Plan Period (No.97-316-01-1).
文摘The predictive calculation of comprehensive contour of work rolls in the on-line strip shape control model during hot rolling consists of two important parts of wear contour calculation and thermal contour calculation, which have a direct influence on the ac- curacy of shape control. A statistical wear model and a finite difference thermal contour model of work rolls were described. The comprehensive contour is the equivalence treatment of the sum of grinding, wear, and thermal contours. This comprehensive contour calculation model has been applied successfully in the real on-line strip shape control model. Its high precision has been proved through the large amounts of actual roll profile measurements and theoretical analyses. The hit rates (percent of shape index satisfying re- quirement) of crown and head flatness of the strips rolled, by using the shape control model, which includes the comprehensive contour calculation model, have about 16% and 10% increase respectively, compared to those of strips rolled by using manual operation.
基金This work was financially supported by the Excellent Young Teachers Program of the Education Ministry of China (No. 261)
文摘A 2-dimension axisymmetric model was developed by the finite-differencemethod, which can be used to predict the transient temperature field and thermal profile of workrolls in the hot strip rolling process. To demonstrate the accuracy and reliability of the solutiondeveloped, the calculation results were compared with the production data of a 1700 mm hot striprolling mill and good agreement was found between them. The effect of strip width and roll shiftingon the thermal expansion of the work rolls was studied. It is found that the strip width has markedeffect on the efficient thermal crown. Initially, when the rolling strip changes from narrow towide, a bigger efficient thermal crown can be quickly achieved; afterwards, when the rolling stripchanges from wide to narrow, not only the influence of uneven wear can be reduced but also theexcessive efficient thermal crown can be avoided. It is also found that the work roll shifting has adeterminate but not obvious effect on the reduction of the efficient thermal crown, and will makethe strip shape unstable without being used properly.
基金This work was supported by the National High Technical Reasearch and Development Programme of China(No.2001AA339030)Shenyang Ligong University Foundation(No.3200903).
文摘The microstructural banding in steels is often found in hot rolling strips, which plays a very important role in mechanical properties. Much work has been done to investigate how the microstructural banding is formed during hot rolling. In the present study, the microstructure of hot rolling strips was examined in term of optical microscopy and transmission electron microscopy. Electron probe microanalysis was also used to decide the distribution of microchemical bands, by this means, the phases in these strips were found to be ferrite and pearlite. The average distance between the carbon lamellas in pearlite is about 0.06-0.1μm. It is also shown that microstructural banding in hot rolled carbon steel was closely related to the segregation of manganese and silicon into those bands. Based on the transformation kinetic, the simulated results pointed out that the thermodynamic stability of austenite would increase with the increasing of Mn, which led to a decrease of ferrite growth rate. The effect of Mn on the decomposition of austenite is attributed to segregation of Mn atoms along the ferrite/austenite phase boundary which causes a strong solute drag effect. The addition of Mn to steel decreases the activity of austenite, thereby it is beneficial to the formation of non-equilibrium phase, such as degenerate pearlite. The formation of banded structure on the hot rolled process was discussed.
基金ItemSponsored by National Natural Science Foundation of China (50275130) Provincial Natural Science Foundation ofHebei Province of China (E200400223)
文摘A three-dimensional model for strip hot rolling was developed, in which the plastic deformation of strip, the thermal crown of rolls, roll deflection and flattening were calculated by rigid-plastic finite element method, finite difference method, influential function method and elastic finite element method respectively. The roll wear was taken into consideration. The model can provide detailed information such as rolling pressure distribution, contact pressure distribution between backup rolls and work rolls, deflection and flattening of work rolls, lateral distribution of strip thickness, and lateral distribution of front and back tensions. The finish rolling on a 1 450 mm hot strip mill was simulated.
基金Project(2006BAE03A08)supported by the National Key Technology R&D Program of China
文摘Hot rolled strip requires diverse and flexible control of cooling path in order to take full advantages of strengthening mechanisms such as fine grain strengthening, precipitation strengthening, and transformation strengthening, adapting to the development of advanced steel materials and the requirement of reduction-manufacturing. Ultra fast cooling can achieve a great range of cooling rate, which provides the means that the hardened austenite obtained in high temperature region can keep at different dynamic transformation temperatures. Meanwhile, through the rational allocation of the UFC (ultra fast cooling) and LFC (laminar flow cooling), more flexible cooling path control and cooling strategy of hot rolled strip are obtained. Temperature distribution and control strategies under different cooling paths based on UFC are investigated. The process control temperature can be limited within 18 ℃, and the mechanical properties of the steels get a great leap forward due to the cooling paths and strategies, which can decrease costs and create great economic benefits for the iron and steel enterprises.
基金Item Sponsored by National Natural Science Foundation of China (60573172)Doctoral Startup Foundation of Liaoning Province of China (20031069)
文摘Because the structure of the classical mathematical model of rolling load is simple, even with the self-adapting technology, it is difficult to accommodate the increasing dimensional accuracy. Motivated by this fact, an Innovations Feedback Neural Networks (IFNN) was presented based on the idea of Kalman prediction. The neural networks used the Back Propagation (BP) algorithm and applied it to the prediction of rolling load in hot strip mill. The theoretical results and the off-line simulation show that the prediction capability of IFNN is better than that of normal BP networks, namely, for the prediction of the rolling load in hot strip mill, the prediction precision of IFNN is higher than that of normal BP networks. Finally, a relative complete rolling load prediction system was developed on Windows 2003/XP platform using the OOP programming method and the SQL server2000 database. With this sys- tem, the rolling load of a 1700 strip mill was calculated, and the prediction results obtained correspond well with the field data. It shows that IFNN is valid for rolling load prediction.
文摘Feedforward control is the core to control function in the cooling process of hot strip. One of the most important tasks in feedforward control is to determine the arrival time of the strip at various locations on the runout table for effective control. Based on the principles of element tracking and tracking strategies for variable rolling speed and constant rolling speed, a simple diagonal tracking method for an existing hot strip mill was proposed and tested. The test results show that the proposed strategies are effective for improving tracking control.
基金Projects(50974039,50634030)supported by the National Natural Science Foundation of China
文摘A multi-objective optimization model for draft scheduling of hot strip mill was presented, rolling power minimizing, rolling force ratio distribution and good strip shape as the objective functions. A multi-objective differential evolution algorithm based on decomposition (MODE/D). The two-objective and three-objective optimization experiments were performed respectively to demonstrate the optimal solutions of trade-off. The simulation results show that MODE/D can obtain a good Pareto-optimal front, which suggests a series of alternative solutions to draft scheduling. The extreme Pareto solutions are found feasible and the centres of the Pareto fronts give a good compromise. The conflict exists between each two ones of three objectives. The final optimal solution is selected from the Pareto-optimal front by the importance of objectives, and it can achieve a better performance in all objective dimensions than the empirical solutions. Finally, the practical application cases confirm the feasibility of the multi-objective approach, and the optimal solutions can gain a better rolling stability than the empirical solutions, and strip flatness decreases from (0± 63) IU to (0±45) IU in industrial production.
文摘The controlled runout table cooling is essential in determining the final mechanical properties and flatness of steel strip.The heat of a hot steel strip is mainly extracted by cooling water during runout.In order to study the heat transfer by water jet impingement boiling during runout,apilot facility was constructed at the University of British Columbia.On this pilot facility,the water jet impingement tests were carried out under various cooling conditions to investigate the effect of processing parameters,such as cooling water temperature,water jet impingement velocity,initial strip temperature,water flow rate,water nozzle diameter and array of water nozzles,on the heat transfer of heated strip.The results obtained contribute to the optimization of cooling water during runout.
基金Funded by the National Basic Research Program of China(No.51504063)the Natural Science Foundation of Liaoning Province of China(No.2014020027)the Fundamental Research Funds for the Central Universities(No.N130407001)
文摘Three different online heat treatment processes were designed to study the effects on the mechanical properties of a 0.19C-1.6Si-1.6Mn(wt%) hot rolled strip steel.The microstructures were characterized by means of SEM,TEM,EPMA,and XRD.The mechanical properties were estimated by tensile tests.Results showed that a satisfying combination of strength and ductility could be obtained through the ferrite relaxation and direct quenching and partitioning process.Analysis was also focused on this process.The microstructure contained proeutectoid ferrite grains,martensite packets and blocky or interlath retained austenite,and also contained carbide-free bainite in the case of relatively high quench temperatures.The retained austenite fraction was increased through proeutectoid ferrite and partial bainite transformation,while the tensile strength was also consequently decreased.The most of retained austenite transformed to ferrite under deformation and the elongation was obviously improved.
基金This work was supported by the National Natural Science Foundation of China,No.50175095(Theory system and mechanism model of shape control of high precision plate and strip mills) 50374058(Stream surface strip element method and its application in shape control of hot rolling plate and strip).
文摘The three-dimensional plastic deformations of strip are analyzed using the stream surface strip element method, the elastic deformations of rolls are analyzed using the influence coefficient method, the analyzing and computing model of shape and crown of 4-high mill was established by combining them, and the rolling process of 1660 mm hot strip continuous mills was simulated. The simulated results tally well with the experimental results. The modei and the method for simulation of shape analysis and control of hot strip mills were provided.
基金This study was financially supported by the National Natural Science Foundation of China under the contract No.59995440the State Key Development Programming on Foundamental Research under the contract No.G2000067208-4the Natural Science Foundation of Liaoning Province under the contract No.2001101021.
文摘In order to establish precision model, a software to calculate the strip crown of four-high hot rolling mill was developedby using affecting function method according to the strip crown calculation theory. The effect of work roll diameter,unit width rolling load, roll bending force, work roll crown, initial strip crown and reduction, etc, on load distributioneffect rate was simulated by using the software. The results show that the load distribution effect rate increaseswith the increase of strip width, work roll diameter, unit width rolling load, roll bending force, work roll crown,initial strip crown and reduction. Based on the simulation results, base value of load distribution effect rate andfitting coefficients of six power polynomial of load distribution effect rate modification coefficient were determinedconsidering all of the above parameters. A simplified mathematical model for calculating load distribution effect ratewas established.
基金Item Sponsored by National Natural Science Foundation of China (50504007 ,50474086 ,50334010)
文摘The recrystallization kinetics and grain size models were developed for the C Mn and niobium containing steels to describe the metallurgical phenomenon such as softening, grain growth, and strain accumulation. Based on the recrystallization kinetics equations, the mean flow stress and the rolling load of each pass were predicted and the optimum rolling schedule was proposed for hot strip rolling. The austenite grain refinement is associated with the addition of niobium, the decrease of starting temperature of finish rolling, and the reduction of finished thickness. The mean flow stress curve with a continuous rising characteristic can be usually observed in the finish rolling of niobium containing steel, which is formed as a result of the heavy incomplete softening and strain accumulation. The predic ted rolling loads are in good agreement with the measured ones.