Alzheimer’s disease(AD)is a complex,progressive neurodegenerative disorder.The subtle and insidious onset of its pathogenesis makes early detection of a formidable challenge in both contemporary neuroscience and clin...Alzheimer’s disease(AD)is a complex,progressive neurodegenerative disorder.The subtle and insidious onset of its pathogenesis makes early detection of a formidable challenge in both contemporary neuroscience and clinical practice.In this study,we introduce an advanced diagnostic methodology rooted in theMed-3D transfermodel and enhanced with an attention mechanism.We aim to improve the precision of AD diagnosis and facilitate its early identification.Initially,we employ a spatial normalization technique to address challenges like clarity degradation and unsaturation,which are commonly observed in imaging datasets.Subsequently,an attention mechanism is incorporated to selectively focus on the salient features within the imaging data.Building upon this foundation,we present the novelMed-3D transfermodel,designed to further elucidate and amplify the intricate features associated withADpathogenesis.Our proposedmodel has demonstrated promising results,achieving a classification accuracy of 92%.To emphasize the robustness and practicality of our approach,we introduce an adaptive‘hot-updating’auxiliary diagnostic system.This system not only enables continuous model training and optimization but also provides a dynamic platform to meet the real-time diagnostic and therapeutic demands of AD.展开更多
基金funded by the National Natural Science Foundation of China(No.62076044)Scientific Research Foundation of Chongqing University of Technology(No.2020ZDZ015).
文摘Alzheimer’s disease(AD)is a complex,progressive neurodegenerative disorder.The subtle and insidious onset of its pathogenesis makes early detection of a formidable challenge in both contemporary neuroscience and clinical practice.In this study,we introduce an advanced diagnostic methodology rooted in theMed-3D transfermodel and enhanced with an attention mechanism.We aim to improve the precision of AD diagnosis and facilitate its early identification.Initially,we employ a spatial normalization technique to address challenges like clarity degradation and unsaturation,which are commonly observed in imaging datasets.Subsequently,an attention mechanism is incorporated to selectively focus on the salient features within the imaging data.Building upon this foundation,we present the novelMed-3D transfermodel,designed to further elucidate and amplify the intricate features associated withADpathogenesis.Our proposedmodel has demonstrated promising results,achieving a classification accuracy of 92%.To emphasize the robustness and practicality of our approach,we introduce an adaptive‘hot-updating’auxiliary diagnostic system.This system not only enables continuous model training and optimization but also provides a dynamic platform to meet the real-time diagnostic and therapeutic demands of AD.