α-Fe_(2)O_(3)/epoxy resin composite superhydrophobic coating was prepared withα-Fe_(2)O_(3) nanoparticles and epoxy resin by spin coating method.The coating without epoxy resin has higher contact angle(CA)and lower ...α-Fe_(2)O_(3)/epoxy resin composite superhydrophobic coating was prepared withα-Fe_(2)O_(3) nanoparticles and epoxy resin by spin coating method.The coating without epoxy resin has higher contact angle(CA)and lower ice adhesion strength(IAS),but the mechanical properties are poor.Theα-Fe_(2)O_(3)/epoxy resin composite superhydrophobic coating exhibits good mechanical durability.In addition,compared with the bare aluminum substrate,the Ecorr of the composite coating is positive and the Jcorr is lower.The inhibition efficiency of the composite coating is as high as 99.98%in 3.5 wt%NaCl solution.The difference in the microstructure caused by the two preparation methods leads to the changes in mechanical properties and corrosion resistance of composite superhydrophobic coating.展开更多
The formation of ice on the leading edge of aircraft engines is a serious issue,as it can have catastrophic consequences.The Swirl Anti-Icing(SAI)system,driven by ejection,circulates hot fluid within a 360°annula...The formation of ice on the leading edge of aircraft engines is a serious issue,as it can have catastrophic consequences.The Swirl Anti-Icing(SAI)system,driven by ejection,circulates hot fluid within a 360°annular chamber to heat the engine inlet lip surface and prevent icing.This study employs a validated Computational Fluid Dynamics(CFD)approach to study the impact of key geometric parameters of this system on flow and heat transfer characteristics within the anti-icing chamber.Additionally,the entropy generation rate and exergy efficiency are analyzed to assess the energy utilization in the system.The research findings indicate that,within the considered flow range,reducing the nozzle specific areaφfrom 0.03061 to 0.01083 can enhance the ejection coefficient by over 60.7%.This enhancement increases the air circulating rate,thereby intensifying convective heat transfer within the SAI chamber.However,the reduction inφalso leads to a significant increase in the required bleed air pressure and a higher entropy generation rate,indicating lower exergy efficiency.The nozzle angleθnotably affects the distribution of hot and cold spots on the lip surface of the SAI chamber.Increasingθfrom 0°to 20°reduces the maximum temperature difference on the anti-icing chamber surface by 60 K.展开更多
Ice accretion on surfaces of the aircraft and engine is a serious threat to the flight safety.In this paper,a novel hot air anti-icing method is proposed based on the porous foam.Taking the NACA0012 airfoil as an exam...Ice accretion on surfaces of the aircraft and engine is a serious threat to the flight safety.In this paper,a novel hot air anti-icing method is proposed based on the porous foam.Taking the NACA0012 airfoil as an example,the traditional thermal protection structure is proved to exist the deficiency in balancing the heat exchange caused by route loss of the heat.By dividing the hot chamber into multiple regions to fill with various foam metal,flow resistance characteristics and heat transfer characteristics for this protection mode are analyzed in order to derive the maximized benefit in anti-icing process.The calculation results reveal that,under the same condition,the region filled with foamed copper not only improves the temperature uniformity on the anti-icing area,but also achieves a better protection effect for enhancing heat transfer between the tube and the hot gas,averagely above 20℃higher than it without porous foam filling in surface temperature.Additionally,the minimum mass flow rate of the protection hot air is reduced by 16.7%.The gratifying efficiency of the porous filler in fortifying heat transfer confirms the potential of replacing the efficient but complex heat transfer design with simple structure filled with foam metal.展开更多
BACKGROUND Syphilis is an infectious disease caused by Treponema pallidum that can invade the central nervous system,causing encephalitis.Few cases of anti-N-methyl-Daspartate receptor autoimmune encephalitis(AE)secon...BACKGROUND Syphilis is an infectious disease caused by Treponema pallidum that can invade the central nervous system,causing encephalitis.Few cases of anti-N-methyl-Daspartate receptor autoimmune encephalitis(AE)secondary to neurosyphilis have been reported.We report a neurosyphilis patient with anti-γ-aminobutyric acid-B receptor(GABABR)AE.CASE SUMMARY A young man in his 30s who presented with acute epileptic status was admitted to a local hospital.He was diagnosed with neurosyphilis,according to serum and cerebrospinal fluid(CSF)tests for syphilis.After 14 d of antiepileptic treatment and anti-Treponema pallidum therapy with penicillin,epilepsy was controlled but serious cognitive impairment,behavioral,and serious psychiatric symptoms were observed.He was then transferred to our hospital.The Mini-Mental State Examination(MMSE)crude test results showed only 2 points.Cranial magnetic resonance imaging revealed significant cerebral atrophy and multiple fluidattenuated inversion recovery high signals in the white matter surrounding both lateral ventricles,left amygdala and bilateral thalami.Anti-GABABR antibodies were discovered in CSF(1:3.2)and serum(1:100).The patient was diagnosed with neurosyphilis complicated by anti-GABABR AE,and received methylprednisolone and penicillin.Following treatment,his mental symptoms were alleviated.Cognitive impairment was significantly improved,with a MMSE of 8 points.Serum anti-GABABR antibody titer decreased to 1:32.The patient received methylprednisolone and penicillin after discharge.Three months later,the patient’s condition was stable,but the serum anti-GABABR antibody titer was 1:100.CONCLUSION This patient with neurosyphilis combined with anti-GABABR encephalitis benefited from immunotherapy.展开更多
Pavement snow and icing are worldwide problems, but effective countermeasures are just beginning to be developed in China. The two most common snow and ice removal methods are mechanical clearance and chemical melting...Pavement snow and icing are worldwide problems, but effective countermeasures are just beginning to be developed in China. The two most common snow and ice removal methods are mechanical clearance and chemical melting, and the advantages and disadvantages of each approach are discussed here, including environmental and structural damage caused by corrosive snow melting agents. New developments in chemical melting agents and mechanical equipment are discussed, and an overview of alternative thermal melting systems is presented, including the use of geothermy and non-geothermal heating systems utilizing solar energy, electricity, conductive pavement materials, and infrared/microwave applications. Strategic recommendations are made for continued enhancement of public safety in snow and ice conditions.展开更多
Aluminum is widely used in transmission lines, and the accumulation of ice on aluminum conductor may inflict serious damage such as tower collapse and power failure. In this study, super-hydrophobic surface (SHS) on...Aluminum is widely used in transmission lines, and the accumulation of ice on aluminum conductor may inflict serious damage such as tower collapse and power failure. In this study, super-hydrophobic surface (SHS) on alurninurn conductor with rnicro-nanostructure was fabricated using the preferential etching principle of crystal defects. The surface rnicrostructure and wettability were investigated by scanning electron microscope and contact angle measurement, respectively. The icing progress was observed with a self-made icing experiment platform at different environment temperature. The results showed that, due to jumping and rolling down of coalesced droplets from SHS of aluminum conductor at low temperature, the formation of icing on SHS could be delayed. Dynamic icing experiment indicated that SHS on aluminum conductor could restrain the formation of icing in certain temperature range, but could not exert influence on the accumulation of icing. This study offers new insight into understanding the anti-icing performance of actual aluminum conductor.展开更多
The icing of transmission lines threatens the security of power system. This paper proposes a novel anti-icing method based on reducing voltage of the transmission lines. The line voltage can be reduced by regulating ...The icing of transmission lines threatens the security of power system. This paper proposes a novel anti-icing method based on reducing voltage of the transmission lines. The line voltage can be reduced by regulating the ratio of the transformers which install the both ends of the transmission lines. The line current can be increased and the power loss of the transmission lines can also be increased, which means the heat generated by power loss increases and the icing process of the transmission lines can be restrained. When the icing may occur in the atrocious weather, the anti-icing transformers installed the both ends of transmission line are put into operation. The ratios of transformers are regulated to the appropriate value. The current of transmission line can be increased to the value that is a little greater than the critical current, which can realize the purpose of anti-icing. At the same time, the conditions of normal running in the load side are kept invariably, which can ensure the security of power system. This method can be applicable to a wide range. It's an effective measure to prevent the icing of the transmission lines.展开更多
In this work,the super-hydrophobic(SH)surface was prepared through chemical vapor deposition process by an argon atmospheric pressure plasma jet source with HMDSN(hexamethyldisilazane)as the polymerization precursor.P...In this work,the super-hydrophobic(SH)surface was prepared through chemical vapor deposition process by an argon atmospheric pressure plasma jet source with HMDSN(hexamethyldisilazane)as the polymerization precursor.Plasma synthesized organosilicon(SiOxCyHz)thin films with water contact angle over 160°and sliding angle below 5°,were able to be achieved.FTIR and XPS analysis indicates a large number of hydrocarbon compositions were polymerized in the thin films enduing the latter very-low surface free energy.SEM shows the SH films display micro-nanostructure and with high degree of averaged surface roughness 190 nm evaluated by AFM analysis.From experiments under controlled low-temperature and moisture conditions,the prepared SH surface exhibits good anti-icing effects.Significantly prolonging freezing time was achievable on the SH thin films for both static and sliding water droplets.This investigation demonstrates the anti-icing potentials of SH surface prepared through low-cost simple atmospheric-pressure plasma polymerization process.展开更多
Many flight and icing conditions should be considered in order to design an efficient ice protection system to prevent ice accretion on the aircraft surface. The anti-icing heat load is the basic knowledge for the des...Many flight and icing conditions should be considered in order to design an efficient ice protection system to prevent ice accretion on the aircraft surface. The anti-icing heat load is the basic knowledge for the design of a thermal anti-icing system. In order to help the design of the thermal anti-icing system and save the design time, a fast and efficiency method for prediction the anti-icing heat load is investigated. The computation fluid dynamics (CFD) solver and the Messinger model are applied to obtain the snapshots. Examples for the calculation of the anti-icing heat load using the proper orthogonal decomposition (POD) method are presented and compared with the CFD simulation results. It is shown that the heat loads predicted by POD method are in agreement with the CFD computation results. Moreover, it is obviously to see that the POD method is time-saving and can meet the requirement of real-time prediction.展开更多
An anti-icing surface has been designed and prepared with an aluminum panel by creating an artificial lotus leaf which is highly hydrophobic. The hydrophobicity of a solid surface can be generated by decreasing its su...An anti-icing surface has been designed and prepared with an aluminum panel by creating an artificial lotus leaf which is highly hydrophobic. The hydrophobicity of a solid surface can be generated by decreasing its surface tension and increasing the roughness of the surface. On a highly hydrophobic surface, water has a high contact angle and it can easily rolls off, carrying surface dirt and debris with it. Super-cooled water or freezing rain can also run off this highly hydrophobic surface instead of forming ice on the surface, due to the reduction of the liquid-solid adhesion. This property can also help a surface to get rid of the ice after the water becomes frozen. In this study, a Cassie-Baxter rough surface was modeled, and an aluminum panel was physically and chemically modified based on the modeled structure. Good agreement was found between predicted values and experimental results for the contact and roll-off angles of water. Most importantly, by creating this highly hydrophobic aluminum rough surface, the anti-icing and de-icing properties of the modified surface were drastically improved compared to the control aluminum surface, and the cost will be reduced.展开更多
As a passive anti-icing strategy,properly designed superhydrophobic coatings can demonstrate outstanding performances.However,common preparation strategies for superhydrophobic coatings often lead to environmental pol...As a passive anti-icing strategy,properly designed superhydrophobic coatings can demonstrate outstanding performances.However,common preparation strategies for superhydrophobic coatings often lead to environmental pollution,high energy-consumption,high-cost and other undesirable issues.Besides,the durability of superhydrophobic coating also plagues its commercial application.In this paper,we introduced a facile and environment-friendly technique for fabricating abrasion-resistant superhydrophobic surfaces using thermoplastic polyurethane(TPU)and modified SiO_(2)particles(SH-SiO_(2)).Both materials are non-toxicity,low-cost,and commercial available.Our methodology has the following advantages:use of minimal amounts of formulation,take the most streamlined technical route,and no waste material.These advantages make it attractive for industrial applications,and its usage sustainability can be promised.In this study,the mechanical stability of the superhydrophobic surface was evaluated by linear wear test.It is found that the excellent wear resistance of the superhydrophobic coating benefits from the characteristics of raw materials,the preparation strategy,and the special structure.In anti-icing properties test,the TPU/SH-SiO_(2)coating exhibits the repellency to the cold droplets and the ability to extend the freezing time.The electrochemical corrosion measurement shows that the asprepared superhydrophobic surface has excellent corrosion resistance that can provide effective protection for the bare Q235 substrates.These results indicate that the TPU/SH-SiO_(2)coating possesses good abrasion resistance and has great potential in anti-corrosion and anti-icing applications.展开更多
Superhydrophobic coatings with high non-wetting properties are widely applied in anti-icing applications.However,the micro-nanostructures on the surfaces of superhydrophobic coatings are fragile under external forces,...Superhydrophobic coatings with high non-wetting properties are widely applied in anti-icing applications.However,the micro-nanostructures on the surfaces of superhydrophobic coatings are fragile under external forces,resulting in reduced durability.Therefore,mechanical strength and durability play a crucial role in the utilization of superhydrophobic materials.In this study,we employed a two-step spraying method to fabricate superhydrophobic FEVE-based coatings with exceptional mechanical durability,utilizing fluorinated TiO_(2)nanoparticles and fluorinated Al_(2)O_(3)microwhiskers as the fillers.The composite coating exhibited commendable non-wetting properties,displaying a contact angle of 164.84°and a sliding angle of 4.3°.On this basis,the stability of coatings was significantly improved due to the interlocking effect of Al_(2)O_(3)whiskers.After 500 tape peeling cycles,500 sandpaper abrasion tests,and 50 kg falling sand impact tests,the coatings retained superhydrophobicity,exhibiting excellent durability and application capability.Notably,the ice adhesion strength on the coatings was measured at only 65.4 kPa,while the icing delay time reached 271.8 s at-15℃.In addition,throughout 500 freezing/melting cycles,statistical analysis revealed that the superhydrophobic coatings exhibited a freezing initiation temperature as low as-17.25℃.展开更多
In this paper,inspired by lotus leaf surfaces,we fabricated biomimetic multi-scale micro-nano-structures by Two-Step Capillary Force Lithography(TS-CFL)and UV-assisted Capillary Force Lithography(UV-CFL).The experimen...In this paper,inspired by lotus leaf surfaces,we fabricated biomimetic multi-scale micro-nano-structures by Two-Step Capillary Force Lithography(TS-CFL)and UV-assisted Capillary Force Lithography(UV-CFL).The experimental results indicated that TS-CFL was unfitted to fabricate large-area multi-scale micro-nano-structures.Conversely,UV-CFL can fabricate large-area multi-scale micro-nano-structures.We discussed the hydrophobic and anti-icing properties of the biomimetic surfaces fabricated by these two technologies.We found that small structures are significant for improving the hydrophobic anti-icing properties of single-structured or structureless surfaces.We believe that these results can complement the experimental details of both technologies and enable the development of more interesting micro-nano-structures biomimetic surfaces by both technologies in the future.展开更多
The efficiency of the aircraft Ice Protection Systems(IPSs)needs to be verified through icing wind tunnel tests.However,the scaling method for testing the IPSs has not been systematically established yet,and further r...The efficiency of the aircraft Ice Protection Systems(IPSs)needs to be verified through icing wind tunnel tests.However,the scaling method for testing the IPSs has not been systematically established yet,and further research is needed.In the present study,a scaling method specifically designed for thermal IPSs was derived from the governing equation of thin water film.Five scaling parameters were adopted to address the heat and mass transfer involved in the thermal anti-icing process.For method validation,icing wind tunnel tests were conducted using a jet engine nacelle model equipped with a bleed air IPS.The non-dimensional surface temperature and runback ice closely matched for both the reference and scaled conditions.The validation confirms that the scaling method is capable of achieving the similarity of surface temperature and the runback ice coverage.The anti-icing scaling method can serve as an important supplement to the existing icing similarity theory.展开更多
基金Supported by the National Natural Science Foundation of China(No.51801058)the Special Program for Guiding Local Science and Technology Development by the Central Government of Hubei Province(No.2019ZYYD006)the Education and Teaching Research Project of Hubei Polytechnic University(No.2021B01)。
文摘α-Fe_(2)O_(3)/epoxy resin composite superhydrophobic coating was prepared withα-Fe_(2)O_(3) nanoparticles and epoxy resin by spin coating method.The coating without epoxy resin has higher contact angle(CA)and lower ice adhesion strength(IAS),but the mechanical properties are poor.Theα-Fe_(2)O_(3)/epoxy resin composite superhydrophobic coating exhibits good mechanical durability.In addition,compared with the bare aluminum substrate,the Ecorr of the composite coating is positive and the Jcorr is lower.The inhibition efficiency of the composite coating is as high as 99.98%in 3.5 wt%NaCl solution.The difference in the microstructure caused by the two preparation methods leads to the changes in mechanical properties and corrosion resistance of composite superhydrophobic coating.
基金Shenyang Key Laboratory of Aircraft Icing and Ice Protection,Grant Number XFX20220303Education Department of Hunan Province,China,Grant Number 23A0504National Natural Science Foundation of China,Grant Number 52275108.
文摘The formation of ice on the leading edge of aircraft engines is a serious issue,as it can have catastrophic consequences.The Swirl Anti-Icing(SAI)system,driven by ejection,circulates hot fluid within a 360°annular chamber to heat the engine inlet lip surface and prevent icing.This study employs a validated Computational Fluid Dynamics(CFD)approach to study the impact of key geometric parameters of this system on flow and heat transfer characteristics within the anti-icing chamber.Additionally,the entropy generation rate and exergy efficiency are analyzed to assess the energy utilization in the system.The research findings indicate that,within the considered flow range,reducing the nozzle specific areaφfrom 0.03061 to 0.01083 can enhance the ejection coefficient by over 60.7%.This enhancement increases the air circulating rate,thereby intensifying convective heat transfer within the SAI chamber.However,the reduction inφalso leads to a significant increase in the required bleed air pressure and a higher entropy generation rate,indicating lower exergy efficiency.The nozzle angleθnotably affects the distribution of hot and cold spots on the lip surface of the SAI chamber.Increasingθfrom 0°to 20°reduces the maximum temperature difference on the anti-icing chamber surface by 60 K.
文摘Ice accretion on surfaces of the aircraft and engine is a serious threat to the flight safety.In this paper,a novel hot air anti-icing method is proposed based on the porous foam.Taking the NACA0012 airfoil as an example,the traditional thermal protection structure is proved to exist the deficiency in balancing the heat exchange caused by route loss of the heat.By dividing the hot chamber into multiple regions to fill with various foam metal,flow resistance characteristics and heat transfer characteristics for this protection mode are analyzed in order to derive the maximized benefit in anti-icing process.The calculation results reveal that,under the same condition,the region filled with foamed copper not only improves the temperature uniformity on the anti-icing area,but also achieves a better protection effect for enhancing heat transfer between the tube and the hot gas,averagely above 20℃higher than it without porous foam filling in surface temperature.Additionally,the minimum mass flow rate of the protection hot air is reduced by 16.7%.The gratifying efficiency of the porous filler in fortifying heat transfer confirms the potential of replacing the efficient but complex heat transfer design with simple structure filled with foam metal.
文摘BACKGROUND Syphilis is an infectious disease caused by Treponema pallidum that can invade the central nervous system,causing encephalitis.Few cases of anti-N-methyl-Daspartate receptor autoimmune encephalitis(AE)secondary to neurosyphilis have been reported.We report a neurosyphilis patient with anti-γ-aminobutyric acid-B receptor(GABABR)AE.CASE SUMMARY A young man in his 30s who presented with acute epileptic status was admitted to a local hospital.He was diagnosed with neurosyphilis,according to serum and cerebrospinal fluid(CSF)tests for syphilis.After 14 d of antiepileptic treatment and anti-Treponema pallidum therapy with penicillin,epilepsy was controlled but serious cognitive impairment,behavioral,and serious psychiatric symptoms were observed.He was then transferred to our hospital.The Mini-Mental State Examination(MMSE)crude test results showed only 2 points.Cranial magnetic resonance imaging revealed significant cerebral atrophy and multiple fluidattenuated inversion recovery high signals in the white matter surrounding both lateral ventricles,left amygdala and bilateral thalami.Anti-GABABR antibodies were discovered in CSF(1:3.2)and serum(1:100).The patient was diagnosed with neurosyphilis complicated by anti-GABABR AE,and received methylprednisolone and penicillin.Following treatment,his mental symptoms were alleviated.Cognitive impairment was significantly improved,with a MMSE of 8 points.Serum anti-GABABR antibody titer decreased to 1:32.The patient received methylprednisolone and penicillin after discharge.Three months later,the patient’s condition was stable,but the serum anti-GABABR antibody titer was 1:100.CONCLUSION This patient with neurosyphilis combined with anti-GABABR encephalitis benefited from immunotherapy.
基金supported by the National Natural Science Fund of China(No.41121061)the National Key Basic Research and Development Program(No.2012CB026102)the Fund of the "Hundred People Plan" of CAS(to WenBing Yu)
文摘Pavement snow and icing are worldwide problems, but effective countermeasures are just beginning to be developed in China. The two most common snow and ice removal methods are mechanical clearance and chemical melting, and the advantages and disadvantages of each approach are discussed here, including environmental and structural damage caused by corrosive snow melting agents. New developments in chemical melting agents and mechanical equipment are discussed, and an overview of alternative thermal melting systems is presented, including the use of geothermy and non-geothermal heating systems utilizing solar energy, electricity, conductive pavement materials, and infrared/microwave applications. Strategic recommendations are made for continued enhancement of public safety in snow and ice conditions.
基金supported by the National Natural Science Foundation of China (No.51272208)
文摘Aluminum is widely used in transmission lines, and the accumulation of ice on aluminum conductor may inflict serious damage such as tower collapse and power failure. In this study, super-hydrophobic surface (SHS) on alurninurn conductor with rnicro-nanostructure was fabricated using the preferential etching principle of crystal defects. The surface rnicrostructure and wettability were investigated by scanning electron microscope and contact angle measurement, respectively. The icing progress was observed with a self-made icing experiment platform at different environment temperature. The results showed that, due to jumping and rolling down of coalesced droplets from SHS of aluminum conductor at low temperature, the formation of icing on SHS could be delayed. Dynamic icing experiment indicated that SHS on aluminum conductor could restrain the formation of icing in certain temperature range, but could not exert influence on the accumulation of icing. This study offers new insight into understanding the anti-icing performance of actual aluminum conductor.
文摘The icing of transmission lines threatens the security of power system. This paper proposes a novel anti-icing method based on reducing voltage of the transmission lines. The line voltage can be reduced by regulating the ratio of the transformers which install the both ends of the transmission lines. The line current can be increased and the power loss of the transmission lines can also be increased, which means the heat generated by power loss increases and the icing process of the transmission lines can be restrained. When the icing may occur in the atrocious weather, the anti-icing transformers installed the both ends of transmission line are put into operation. The ratios of transformers are regulated to the appropriate value. The current of transmission line can be increased to the value that is a little greater than the critical current, which can realize the purpose of anti-icing. At the same time, the conditions of normal running in the load side are kept invariably, which can ensure the security of power system. This method can be applicable to a wide range. It's an effective measure to prevent the icing of the transmission lines.
基金partly supported by the State Key Laboratory of Advanced Electromagnetic Engineering and Technology(No.AEET 2018KF003)National Natural Science Foundation of China(Nos.51637002,11405144)+3 种基金the Fundamental Research Funds for the Central Universities(Nos.2018CDXYTW0031,20720150022)the Construction Committee of Chongqing(No.2018-1-3-6)the International Science&Technology Cooperation Program of China(No.2015DFR70390)the Natural Science Foundation of Hunan Province(No.2018JJ3587)
文摘In this work,the super-hydrophobic(SH)surface was prepared through chemical vapor deposition process by an argon atmospheric pressure plasma jet source with HMDSN(hexamethyldisilazane)as the polymerization precursor.Plasma synthesized organosilicon(SiOxCyHz)thin films with water contact angle over 160°and sliding angle below 5°,were able to be achieved.FTIR and XPS analysis indicates a large number of hydrocarbon compositions were polymerized in the thin films enduing the latter very-low surface free energy.SEM shows the SH films display micro-nanostructure and with high degree of averaged surface roughness 190 nm evaluated by AFM analysis.From experiments under controlled low-temperature and moisture conditions,the prepared SH surface exhibits good anti-icing effects.Significantly prolonging freezing time was achievable on the SH thin films for both static and sliding water droplets.This investigation demonstrates the anti-icing potentials of SH surface prepared through low-cost simple atmospheric-pressure plasma polymerization process.
文摘Many flight and icing conditions should be considered in order to design an efficient ice protection system to prevent ice accretion on the aircraft surface. The anti-icing heat load is the basic knowledge for the design of a thermal anti-icing system. In order to help the design of the thermal anti-icing system and save the design time, a fast and efficiency method for prediction the anti-icing heat load is investigated. The computation fluid dynamics (CFD) solver and the Messinger model are applied to obtain the snapshots. Examples for the calculation of the anti-icing heat load using the proper orthogonal decomposition (POD) method are presented and compared with the CFD simulation results. It is shown that the heat loads predicted by POD method are in agreement with the CFD computation results. Moreover, it is obviously to see that the POD method is time-saving and can meet the requirement of real-time prediction.
文摘An anti-icing surface has been designed and prepared with an aluminum panel by creating an artificial lotus leaf which is highly hydrophobic. The hydrophobicity of a solid surface can be generated by decreasing its surface tension and increasing the roughness of the surface. On a highly hydrophobic surface, water has a high contact angle and it can easily rolls off, carrying surface dirt and debris with it. Super-cooled water or freezing rain can also run off this highly hydrophobic surface instead of forming ice on the surface, due to the reduction of the liquid-solid adhesion. This property can also help a surface to get rid of the ice after the water becomes frozen. In this study, a Cassie-Baxter rough surface was modeled, and an aluminum panel was physically and chemically modified based on the modeled structure. Good agreement was found between predicted values and experimental results for the contact and roll-off angles of water. Most importantly, by creating this highly hydrophobic aluminum rough surface, the anti-icing and de-icing properties of the modified surface were drastically improved compared to the control aluminum surface, and the cost will be reduced.
基金Financial support from the National Natural Science Foundation of China(No.21676216)Special project of Shaanxi Provincial Education Department,China(20JC034)+1 种基金Basic research program of Natural Science in Shaanxi Province,China(2019JLP-03)Innovation project of college students in Shaanxi Province,China(S202010697054)are gratefully acknowledged.
文摘As a passive anti-icing strategy,properly designed superhydrophobic coatings can demonstrate outstanding performances.However,common preparation strategies for superhydrophobic coatings often lead to environmental pollution,high energy-consumption,high-cost and other undesirable issues.Besides,the durability of superhydrophobic coating also plagues its commercial application.In this paper,we introduced a facile and environment-friendly technique for fabricating abrasion-resistant superhydrophobic surfaces using thermoplastic polyurethane(TPU)and modified SiO_(2)particles(SH-SiO_(2)).Both materials are non-toxicity,low-cost,and commercial available.Our methodology has the following advantages:use of minimal amounts of formulation,take the most streamlined technical route,and no waste material.These advantages make it attractive for industrial applications,and its usage sustainability can be promised.In this study,the mechanical stability of the superhydrophobic surface was evaluated by linear wear test.It is found that the excellent wear resistance of the superhydrophobic coating benefits from the characteristics of raw materials,the preparation strategy,and the special structure.In anti-icing properties test,the TPU/SH-SiO_(2)coating exhibits the repellency to the cold droplets and the ability to extend the freezing time.The electrochemical corrosion measurement shows that the asprepared superhydrophobic surface has excellent corrosion resistance that can provide effective protection for the bare Q235 substrates.These results indicate that the TPU/SH-SiO_(2)coating possesses good abrasion resistance and has great potential in anti-corrosion and anti-icing applications.
基金financial support from the National Natural Science Foundation of China(No.52075246,U2341264)Natural Science Foundation of Jiangsu Province(No.BK20211568)+4 种基金International Cooperation Project of Jiangsu Province(No.BZ2023045)National Science and Technology Major Project of China(No.J2019-III-0010-0054)Fundamental Research Funds for the Central Universities(No.NE2022005)Liaoning Provincial Key Laboratory of Aircraft Ice Protection(No.XFX20220301)Basic Research Project of Suzhou(No.SJC2022032)。
文摘Superhydrophobic coatings with high non-wetting properties are widely applied in anti-icing applications.However,the micro-nanostructures on the surfaces of superhydrophobic coatings are fragile under external forces,resulting in reduced durability.Therefore,mechanical strength and durability play a crucial role in the utilization of superhydrophobic materials.In this study,we employed a two-step spraying method to fabricate superhydrophobic FEVE-based coatings with exceptional mechanical durability,utilizing fluorinated TiO_(2)nanoparticles and fluorinated Al_(2)O_(3)microwhiskers as the fillers.The composite coating exhibited commendable non-wetting properties,displaying a contact angle of 164.84°and a sliding angle of 4.3°.On this basis,the stability of coatings was significantly improved due to the interlocking effect of Al_(2)O_(3)whiskers.After 500 tape peeling cycles,500 sandpaper abrasion tests,and 50 kg falling sand impact tests,the coatings retained superhydrophobicity,exhibiting excellent durability and application capability.Notably,the ice adhesion strength on the coatings was measured at only 65.4 kPa,while the icing delay time reached 271.8 s at-15℃.In addition,throughout 500 freezing/melting cycles,statistical analysis revealed that the superhydrophobic coatings exhibited a freezing initiation temperature as low as-17.25℃.
基金supported by National Natural Science Foundation of China(Nos.61705096,12274189 and 62075092)Natural Science Foundation of Shandong Province(ZR2021MF121)Yantai City-University Integration Development Project(2021XDRHXMXK26,2021XKZY03).
文摘In this paper,inspired by lotus leaf surfaces,we fabricated biomimetic multi-scale micro-nano-structures by Two-Step Capillary Force Lithography(TS-CFL)and UV-assisted Capillary Force Lithography(UV-CFL).The experimental results indicated that TS-CFL was unfitted to fabricate large-area multi-scale micro-nano-structures.Conversely,UV-CFL can fabricate large-area multi-scale micro-nano-structures.We discussed the hydrophobic and anti-icing properties of the biomimetic surfaces fabricated by these two technologies.We found that small structures are significant for improving the hydrophobic anti-icing properties of single-structured or structureless surfaces.We believe that these results can complement the experimental details of both technologies and enable the development of more interesting micro-nano-structures biomimetic surfaces by both technologies in the future.
基金supported by the National Major Science and Technology Projects of China(J2019-Ⅲ-0010-0054).
文摘The efficiency of the aircraft Ice Protection Systems(IPSs)needs to be verified through icing wind tunnel tests.However,the scaling method for testing the IPSs has not been systematically established yet,and further research is needed.In the present study,a scaling method specifically designed for thermal IPSs was derived from the governing equation of thin water film.Five scaling parameters were adopted to address the heat and mass transfer involved in the thermal anti-icing process.For method validation,icing wind tunnel tests were conducted using a jet engine nacelle model equipped with a bleed air IPS.The non-dimensional surface temperature and runback ice closely matched for both the reference and scaled conditions.The validation confirms that the scaling method is capable of achieving the similarity of surface temperature and the runback ice coverage.The anti-icing scaling method can serve as an important supplement to the existing icing similarity theory.