Little is known about the mechanism of climate-vegetation coverage coupled changes in the Tibetan Plateau(TP)region,which is the most climatically sensitive and ecologically fragile region with the highest terrain in ...Little is known about the mechanism of climate-vegetation coverage coupled changes in the Tibetan Plateau(TP)region,which is the most climatically sensitive and ecologically fragile region with the highest terrain in the world.This study,using multisource datasets(including satellite data and meteorological observations and reanalysis data)revealed the mutual feedback mechanisms between changes in climate(temperature and precipitation)and vegetation coverage in recent decades in the Hengduan Mountains Area(HMA)of the southeastern TP and their influences on climate in the downstream region,the Sichuan Basin(SCB).There is mutual facilitation between rising air temperature and increasing vegetation coverage in the HMA,which is most significant during winter,and then during spring,but insignificant during summer and autumn.Rising temperature significantly enhances local vegetation coverage,and vegetation greening in turn heats the atmosphere via enhancing net heat flux from the surface to the atmosphere.The atmospheric heating anomaly over the HMA thickens the atmospheric column and increases upper air pressure.The high pressure anomaly disperses downstream via the westerly flow,expands across the SCB,and eventually increases the SCB temperature.This effect lasts from winter to the following spring,which may cause the maximum increasing trend of the SCB temperature and vegetation coverage in spring.These results are helpful for estimating future trends in climate and eco-environmental variations in the HMA and SCB under warming scenarios,as well as seasonal forecasting based on the connection between the HMA eco-environment and SCB climate.展开更多
Understanding the dynamics of surface water area and their drivers is crucial for human survival and ecosystem stability in inland arid and semi-arid areas.This study took Gansu Province,China,a typical area with comp...Understanding the dynamics of surface water area and their drivers is crucial for human survival and ecosystem stability in inland arid and semi-arid areas.This study took Gansu Province,China,a typical area with complex terrain and variable climate,as the research subject.Based on Google Earth Engine,we used Landsat data and the Open-surface Water Detection Method with Enhanced Impurity Control method to monitor the spatiotemporal dynamics of surface water area in Gansu Province from 1985 to 2022,and quantitatively analyzed the main causes of regional differences in surface water area.The findings revealed that surface water area in Gansu Province expanded by 406.88 km2 from 1985 to 2022.Seasonal surface water area exhibited significant fluctuations,while permanent surface water area showed a steady increase.Notably,terrestrial water storage exhibited a trend of first decreasing and then increasing,correlated with the dynamics of surface water area.Climate change and human activities jointly affected surface hydrological processes,with the impact of climate change being slightly higher than that of human activities.Spatially,climate change affected the'source'of surface water to a greater extent,while human activities tended to affect the'destination'of surface water.Challenges of surface water resources faced by inland arid and semi-arid areas like Gansu Province are multifaceted.Therefore,we summarized the surface hydrology patterns typical in inland arid and semi-arid areas and tailored surface water'supply-demand'balance strategies.The study not only sheds light on the dynamics of surface water area in Gansu Province,but also offers valuable insights for ecological protection and surface water resource management in inland arid and semi-arid areas facing water scarcity.展开更多
Based on the daily meteorological observation data of seven meteorological stations in southern Tibet from 1980 to 2021 (April-October), the temporal and spatial variation characteristics and influencing factors of ar...Based on the daily meteorological observation data of seven meteorological stations in southern Tibet from 1980 to 2021 (April-October), the temporal and spatial variation characteristics and influencing factors of aridity index ( AI ) in the growing season of major grain producing areas in Tibet were studied by using climate tendency rate, Mann-Kendal test, Morlet wavelet analysis, GIS hybrid interpolation method, Pearson correlation coefficient, contribution rate analysis and other methods. The results showed that the average AI in the main grain producing areas of Tibet was 1.7, which belonged to the semi-arid area, and the overall trend was decreasing (humidifying) (-0.036/10 a). The linear decreasing trend was different in different regions, and the area around Lhatse County was the most significant (-0.26/10 a). AI had no obvious abrupt change, and had long- and medium-term fluctuation characteristics of 24 years, 6 years. The spatial distribution was uneven, and had the characteristics of ‘shrinking arid area and expanding humid area . The contribution rates of the main climate influencing factors of AI varied in different regions. In general, the contribution rates after quantification was as follows: precipitation (34.9%)>relative humidity (28.4%)>sunshine (19.9%)>maximum temperature (12.4%).展开更多
Gross primary productivity(GPP)of vegetation is an important constituent of the terrestrial carbon sinks and is significantly influenced by drought.Understanding the impact of droughts on different types of vegetation...Gross primary productivity(GPP)of vegetation is an important constituent of the terrestrial carbon sinks and is significantly influenced by drought.Understanding the impact of droughts on different types of vegetation GPP provides insight into the spatiotemporal variation of terrestrial carbon sinks,aiding efforts to mitigate the detrimental effects of climate change.In this study,we utilized the precipitation and temperature data from the Climatic Research Unit,the standardized precipitation evapotranspiration index(SPEI),the standardized precipitation index(SPI),and the simulated vegetation GPP using the eddy covariance-light use efficiency(EC-LUE)model to analyze the spatiotemporal change of GPP and its response to different drought indices in the Mongolian Plateau during 1982-2018.The main findings indicated that vegetation GPP decreased in 50.53% of the plateau,mainly in its northern and northeastern parts,while it increased in the remaining 49.47%area.Specifically,meadow steppe(78.92%)and deciduous forest(79.46%)witnessed a significant decrease in vegetation GPP,while alpine steppe(75.08%),cropland(76.27%),and sandy vegetation(87.88%)recovered well.Warming aridification areas accounted for 71.39% of the affected areas,while 28.53% of the areas underwent severe aridification,mainly located in the south and central regions.Notably,the warming aridification areas of desert steppe(92.68%)and sandy vegetation(90.24%)were significant.Climate warming was found to amplify the sensitivity of coniferous forest,deciduous forest,meadow steppe,and alpine steppe GPP to drought.Additionally,the drought sensitivity of vegetation GPP in the Mongolian Plateau gradually decreased as altitude increased.The cumulative effect of drought on vegetation GPP persisted for 3.00-8.00 months.The findings of this study will improve the understanding of how drought influences vegetation in arid and semi-arid areas.展开更多
Litterfall is the largest source of nutrients to for-est soils of tropical rainforests.However,variability in lit-terfall production,nutrient remobilization,and changes in leaf nutrient concentration with climate seas...Litterfall is the largest source of nutrients to for-est soils of tropical rainforests.However,variability in lit-terfall production,nutrient remobilization,and changes in leaf nutrient concentration with climate seasonality remain largely unknown for the central Amazon.This study meas-ured litterfall production,leaf nutrient remobilization,and leaf area index on a forest plateau in the central Amazon.Litterfall was measured at monthly intervals during 2014,while nitrogen,phosphorus,potassium,calcium and mag-nesium concentrations of leaf litter and canopy leaves were measured in the dry and rainy seasons,and remobilization rates determined.Leaf area index was also recorded in the dry and rainy seasons.Monthly litterfall varied from 33.2(in the rainy season)to 87.6 g m^(-2) in the dry season,while leaf area index increased slightly in the rainy season.Climatic seasonality had no effect on concentrations of nitrogen,calcium,and magnesium,whereas phosphorous and potassium responded to rainfall seasonality oppositely.While phosphorous increased,potassium decreased during the dry season.Over seasons,nitrogen,potassium,and phosphorous decreased in leaf litter;calcium increased in leaf litter,while magnesium remained unaffected with leaf aging.Regardless,the five nutrients had similar remobilization rates over the year.The absence of climate seasonality on nutrient remobilization suggests that the current length of the dry season does not alter nutrient remobilization rates but this may change as dry periods become more prolonged in the future due to climate change.展开更多
Northeast China as one of important agricultural production bases is an area under reclamation and returning cultivated land to forests or pastures. Therefore, it is of great practical significance in guaranteeing the...Northeast China as one of important agricultural production bases is an area under reclamation and returning cultivated land to forests or pastures. Therefore, it is of great practical significance in guaranteeing the sustainable development and national food security to study the spatial and temporal variation of cultivated land in Northeast China under future climate scenarios. In this study, based on data of land use, natural environment and social-economy, dynamics of land system(DLS) model was used to to simulate the spatial distribution and changing trends of cultivated land in the typical areas of reclamation and returning cultivated land to forest or pastures in Northeast China during 2010-2030 under land use planning scenario and representative concentration pathways(RCPs) scenarios quantitatively.The results showed that the area of cultivated land had an overall decreasing trend under the land use planning scenario, but the area of upland field increased slightly from 2000 to 2010 and then declined greatly, while the area of paddy field continuously declined from 2000 to 2030. Under the Asia-Pacific Integrated model(AIM)scenario, the total area of cultivated land had a tendency to increase considerably,with the upland field expanding more obviously and the paddy field declining slightly.In addition, the cultivated land showed a greater decreasing trend under the model for energy supply strategy alternatives and their general environmental impact(MESSAGE) scenario compared to the land use planning scenario. Moreover, analysis on the conversion between different land use types indicated that the reclamation and returning cultivated land to forests or pastures was likely to continue under future scenarios, but the frequency of occurrence could decrease as the time goes by. The conclusions can provide significant decision-making information for the rational agricultural planning and cultivated land protection in Northeast China to adapt to the climate change.展开更多
Using a logistic model,this paper empirically investigated farmers’perception of climate change and its determinants based on a field survey of 1 350 rural households across five major grain producing provinces in Ch...Using a logistic model,this paper empirically investigated farmers’perception of climate change and its determinants based on a field survey of 1 350 rural households across five major grain producing provinces in China.The results show:i)There is an apparent difference in perception levels for long-term temperature and precipitation changes.Specifically,57.4%of farmers perceived the long-term temperature change correctly,but only 29.7%of farmers perceived the long-term precipitation change correctly;ii)The factors influencing the farmers’perceptions are almost completely different between precipitation and temperature,the former are mostly agriculture related,while latter are mostly non-agriculture related,except for farm size;and iii)Farmers are not expected to pay more attention to long-term precipitation changes over the crop growing seasons,because less than 30%of farmers can correctly perceive long-term precipitation change.Therefore,to improve the accuracy of farmers’perceptions of climate change,the government is recommended to:i)enhance education and training programs;ii)speed up land transfer and expand household land farm size;iii)develop farmer cooperative organizations;iv)invest more in agricultural infrastructure,specifically in major grain producing regions;and v)improve the agricultural environment and increase farming income.展开更多
The division of arid areas is important in water and land resources management, planning and for a long-term agricultural, economic and social planning. Northwest China (NW) dominates the main arid areas in China. T...The division of arid areas is important in water and land resources management, planning and for a long-term agricultural, economic and social planning. Northwest China (NW) dominates the main arid areas in China. There is thus a need to adopt adequate concepts relative to the scope of arid areas of NW China and identify its climate types and characteristics. In this study, we analyzed climatic data over the last 30 years (1981-2010) from 191 stations in three provinces and three autonomous regions of NW China. The factor-cluster analysis technique (FC), an objective and automated method was employed to classify the dry/wet climate zones. The traditional methods with predefined thresholds were adopted for providing a comparison with FC. The results showed that the wet/dry climate zones by FC were mainly distributed along mountains, rivers and desert borders. Climate-division boundaries relied heavily on the major terrain features surrounding the grouped stations. It also showed that the climate was dry in the plain sandy areas but relatively wet in the high mountain areas. FC method can reflect the climate characteristics more fully in NW China with varied and complicated topography, and outperform the tradi- tional climate classifications. Arid areas of NW China were defined as four climate types, including five resultant classes in FC classifications. The Qinling and Da Hinggan Mountains were two important boundaries, besides main administrative boundaries. The results also indicated that there are some differences between two traditional clas- sifications. The precipitation moved and fluctuated to an extent, which confirmed that climate change played an important role in the dry/wet climate zoning, and the boundaries of dry/wet climate zones might change and migrate with time. This paper is expected to provide a more in-depth understanding on the climate characteristics in arid areas of NW China, and then contribute to formulate reasonable water and land management planning and agri- cultural production programs.展开更多
Global climate change poses a new challenge for species and can even push some species toward an extinction vortex. The most affected organisms are those with narrow tolerance to the climatic factors but many large ma...Global climate change poses a new challenge for species and can even push some species toward an extinction vortex. The most affected organisms are those with narrow tolerance to the climatic factors but many large mammals such as ungulates with a wider ecological niche are also being affected indirectly. Our research mainly used wild sheep in central Iran as a model species to explore how the suitable habitats will change under different climatic scenarios and to determine if current borders of protected areas will adequately protect habitat requirements. To create habitat models we used animal-vehicle collision points as an input for species presence data. We ran habitat models using Max Ent modeling approach under different climatic scenarios of the past, present and future(under the climatic scenarios for minimum(RCP2.6) and maximum(RCP8.5) CO2 concentration trajectories). We tried to estimate the overlap and the width of the ecological niche using relevant metrics. In order to analyze the effectiveness of the protected areas, suitable maps were concerted to binary maps using True Skill Statistic(TSS) threshold and measured the similarity of the binary maps for each scenario using Kappa index. In order to assess the competence of the present protected areas boundary in covering the distribution of species, two different scenarios were employed, which are ensemble scenario 1: an ensemble of the binary maps of the species distribution in Mid-Holocene, present, and RCP2.6;and ensemble scenario 2: an ensemble of binary suitability maps in Mid-Holocene, present, and RCP8.5. Then, the borders of modeled habitats with the boundaries of 23 existing protected areas in two central provinces in Iran were compared. The predicted species distribution under scenario 1(RCP2.6) was mostly similar to its current distribution(Kappa = 0.53) while the output model under scenario 2(RCP8.5) indicated a decline in the species distribution range. Under the first ensemble scenario, current borders of the protected areas in Hamedan province showed better efficiency to cover the model species distribution range. Analyzing Max Ent spatial models under the second climatic scenario suggested that protected areas in both Markazi and Hamedan provinces will not cover "high suitability" areas in the future. Modeling the efficiency of the current protected areas under predicted future climatic scenarios can help the related authorities to plan conservation activities more efficiently.展开更多
This paper reviews assessment of climate change impacts on economy, society and ecological environment in the coastal areas of South China based on published literatures; it also proposes suitable adaptation strategie...This paper reviews assessment of climate change impacts on economy, society and ecological environment in the coastal areas of South China based on published literatures; it also proposes suitable adaptation strategies and counter- measures. Review shows that climate change has resulted in sea level rise in the coastal areas of South China, increasing the occurrence and intensity of storm surges, aggravating the influence of saltwater intrusion, coastal erosion, urban drainage and flood control, threatening the coastal facility and infrastructures, inundating lowland areas, offsetting mudflat silting, and degrading mangroves and corm reef ecosystem. Therefore, in order to reduce the adverse effects of climate change and to support the sustainable development in the coastal areas of South China, it is critical to improve the monitoring and early warning system, enhance prevention criteria, fortify coastal protection engineering, strengthen saltwater prevention, and reinforce the ecological restoration and protection.展开更多
This study presents the changes in lake areas in the Valley of Lakes, the Govi region, southern Mongolia. The recent changes in lake areas show decreases depending on vulnerability of lake basins and response of Govi ...This study presents the changes in lake areas in the Valley of Lakes, the Govi region, southern Mongolia. The recent changes in lake areas show decreases depending on vulnerability of lake basins and response of Govi landscape to the present climatic warming. During the recent 44 - 45 years (from 1970 to 2014 or 2015), modern lakes have encountered the present rapid increase in temperature, water evaporation and drying up that induced the reduction in lake areas in the Valley of Lakes. The finding of the reduction in lake areas is consistent with the trends on increasing in temperature since 1995 and fluctuating precipitation since 1975. Investigations with detailed chronology of lake sediment are needed from the lakes to review a more complete evolution of lake basins during the Late Quaternary paleoclimatic history in Mongolia and Central Asia.展开更多
The problem of global warming has been identif ied as the f irst in the list of the top ten environmental prob-lems in the world.As climate change will seriously affect the social and natural world that people live in...The problem of global warming has been identif ied as the f irst in the list of the top ten environmental prob-lems in the world.As climate change will seriously affect the social and natural world that people live in,so it may lay serious repercussions on economic progress,social improvement,and sustainable development.International bodies everywhere and many of the countries' governments are responding urgently to this call.In recent years,climate change has affected different regions in China in different ways.In its national agenda,the Chinese government should address the problem of climate change and its negative impact on socio-economic development.In this endeavor the nation should introduce policies which will help its people and economy to adapt to these effects and changes.Priorityf ields of adaptation to climate change are the sensitive areas or departments which are more vulnerable to the negative influences of climate change.The negative impacts of climate change in some parts of China are considered to be very serious indeed as they affect the whole economy and community.As a result,priority should be given to these more affected regions for the limited state f inancing.This paper def ines adaptation and discusses the basic principles and programs in the identif ication of national priority areas where adaptation should be exercised.Based on the past studies,four priority areas in China are identif ied,namely,disaster prevention and mitigation,water resources,agriculture,and ecosystem.An analysis on the identifi cation procedures,and the reasons and tasks involved are given for each.展开更多
The tea tree [Camellia sinensis (L) Kuntze] is one of the world’s economic crops. It is an especially important crop for southern China. Environmental factors related to the tea yield and quality in some high mountai...The tea tree [Camellia sinensis (L) Kuntze] is one of the world’s economic crops. It is an especially important crop for southern China. Environmental factors related to the tea yield and quality in some high mountain areas of China are identified in this paper. These factors are: geology, topography, climate, hydrology, soil and vegetation. Climatological factors are the most important. Using data collected from meteorological stations which are situated at the summit and the base of high mountains, this paper discusses ecological climatic problems in growing tea in China. The ecological climatic characteristics of the famous tea areas mainly included are as follows: more . amounts of clouds and fog, less percentage of sunshine, abundant rainfall and high relative humidity in the air, temperatures that rise and fall slowly, daily and annual temperature ranges that are smaller, more days that are suitable for tea growing and low wind speeds in the lee-sides and valleys of mountains. All of these展开更多
The major impacts of climate change play a substantial role in triggering human migration, especially in the coastal areas. The individual or combined effects of climate change are likely to trigger mass human movemen...The major impacts of climate change play a substantial role in triggering human migration, especially in the coastal areas. The individual or combined effects of climate change are likely to trigger mass human movement both within and across international borders. People rarely move for a single reason;the motivation to migrate is complex of many factors. The main goal of this article is to identify the factors related to the decision to migrate taken by refugees in the coastal area. To assess this objective we employ exploratory factor analysis and structural equation modeling (SEM) and find that different factors influence refugees’ migration decision differently. From the findings, it is seen that loss of shelter, extreme events, decreasing soil fertility and food shortage, variability in temperature patterns and exhaustion of natural resources are the most important environmental factors that affect the decision to migrate of climate refugees. Low income, increasing price, decreasing purchasing power are the most important economic factors that influence migration decision. No social factors have significant effect on migration decision while safety as a political factor has a moderate influence on refugees’ decision to migrate. Finally, this article provides some recommendations for recognition of and protection for migrants forced to move to safer places due to certain direct impacts of climate change, notwithstanding the existence of multi-causality.展开更多
The paper aims to study the impacts and countermeasures of climate change on animal husbandry in Qinghai plateau and its surrounding area,and evaluate the effect of countermeasures.Results showed that:First,the annua...The paper aims to study the impacts and countermeasures of climate change on animal husbandry in Qinghai plateau and its surrounding area,and evaluate the effect of countermeasures.Results showed that:First,the annual mean temperature,annual mean maximum temperature and annual mean minimum temperature showed an increasing trend in Qinghai plateau during the time from 1961 to 2008; the annual precipitation had not obvious change,but the obvious feature of seasonal change; wind speed and sunshine hours showed a decreasing trend during the time from 1961 to 2008.Secondly,under the current climate condition,grassland productivity showed a decreasing trend,and the grassland theoretical capacity affected by grassland productivity decreased too; warm winter was in favor of livestock overwintering safely,which resulted in a high level of the survival rate of young stock; temperature increasing and precipitation decreasing were beneficial to the fatness of livestock,but the meat yield of livestock was affected by some negative factors such as grassland degradation; livestock diseases had a close relationship with weather condition,and adverse weather condition may arose many diseases of livestock.Thirdly,in view of the current problems of livestock production,we took a series of countermeasures including grass industry construction,livestock improvement,developing new modes of animal husbandry,control and prevention of stockbreeding diseases and insect pests and recovery of meteorological disasters,which played a important role in promoting grassland productivity,solving the problem of the imbalances between livestock and forage,protecting the ecological environment and improving livestock performance.展开更多
In order to provide an objective and scientific theoretical basis for rational distribution of wheat growth in Yunnan Province,according to the relationship between Yunnan weather conditions and wheat growth adaptabil...In order to provide an objective and scientific theoretical basis for rational distribution of wheat growth in Yunnan Province,according to the relationship between Yunnan weather conditions and wheat growth adaptability,a study on eco-climate type regionalization of wheat growing areas in Yunnan was conducted using principal component analysis and GIS technology. The results show that Yunnan Province could be divided into four types,namely southern warm and humid wheat growing area,central semi-arid wheat growing area,central semi-humid wheat growing area and north-central cold wheat growing area.展开更多
[Objective] This study aimed to explore the impact of climate change on wheat cropping by using province-specific historical data during 1996-2007. [Method] We established a panel data econometric model with lagged wh...[Objective] This study aimed to explore the impact of climate change on wheat cropping by using province-specific historical data during 1996-2007. [Method] We established a panel data econometric model with lagged wheat cropping area and province-specific fixed-effects model to control the unobserved factors. [Result] The results showed that the temperature positively affects wheat cropping area, while precipitation does not have such impact. [Conclusion] The study provided empirical evidence for analysis of the determinants of wheat cropping area in China.展开更多
[Objective] The aim was to quantitatively predict the variation trend of maize yield in Yellow River irrigation area of Ningxia under future climate change scenarios.[Method] Based on the data of daily temperature,pre...[Objective] The aim was to quantitatively predict the variation trend of maize yield in Yellow River irrigation area of Ningxia under future climate change scenarios.[Method] Based on the data of daily temperature,precipitation and radiation in 25 km × 25 km grid in Ningxia from 2010 to 2100 obtained by regional climate model,maize yield in Yellow River irrigation area of Ningxia in the 21st century was studied by means of corrected CERES-Maize model.[Result] With climate warming,maize yield in Yellow River irrigation area of Ningxia in 2020s and 2050s showed increase trend compared with base years(average in 1961-1990)when current adaptive maize variety and optimum production management measures were adopted,while maize yield went down in 2080s with the further increase of temperature.The grain number per spike and spike grain weight as the yield components of maize also showed the same trend with maize yield.In 2020s and 2050s,the increase of maize yield under B2 scenario was higher than that under A2 scenario,while the decrease of maize yield under B2 scenario was lower than that under A2 scenario in 2080s.[Conclusion] With the increase of temperature,maize yield in Yellow River irrigation area of Ningxia went up firstly and then went down.展开更多
Based on the meteorological data from 33 stations of Three Gorges Reservoir from 1960 to 2008,climate yield of rice,corn and winter wheat and the changes of climatic potential productivity after water storage in Three...Based on the meteorological data from 33 stations of Three Gorges Reservoir from 1960 to 2008,climate yield of rice,corn and winter wheat and the changes of climatic potential productivity after water storage in Three Gorges Reservoir were calculated by the dynamic statistic model of crop growth.The results showed that the temperature in Three Gorges Reservoir was fluctuant decreased before late 1980s,and warmed rapidly after the late 1980s.The precipitation had little change before the late 1990s and had a slight decrease after the late 1990s.Sunshine hours were more in 1960s and 1970s,and then it changed little after 1980s.After water storage,the temperature increased in Three Gorges Reservoir as a whole.The precipitation decreased in the south of Three Gorges Reservoir,while it increased in the northwest of Three Gorges Reservoir.The sunshine hours were reduced except that in the vicinity of Dianjiang.After water storage,climatic potential productivity of rice decreased in the northwest and the northeast,while it increased in the south of Three Gorges Reservoir.The climatic potential productivity of corn decreased in the northeast and the southwest,but increased in the rest of Three Gorges Reservoir.The climatic potential productivity of winter wheat increased almost in total.展开更多
基金the National Natural Science Foundation of China(Grant Nos.42205059 and 42005075)the Strategic Priority Research Program of the Chinese Academy of Sciences(Grant Nos.XDA23090303 and XDB40010302)+1 种基金the State Key Laboratory of Cryospheric Science(Grant No.SKLCS-ZZ-2024 and SKLCS-ZZ-2023)the Key Laboratory of Mountain Hazards and Earth Surface Processes.
文摘Little is known about the mechanism of climate-vegetation coverage coupled changes in the Tibetan Plateau(TP)region,which is the most climatically sensitive and ecologically fragile region with the highest terrain in the world.This study,using multisource datasets(including satellite data and meteorological observations and reanalysis data)revealed the mutual feedback mechanisms between changes in climate(temperature and precipitation)and vegetation coverage in recent decades in the Hengduan Mountains Area(HMA)of the southeastern TP and their influences on climate in the downstream region,the Sichuan Basin(SCB).There is mutual facilitation between rising air temperature and increasing vegetation coverage in the HMA,which is most significant during winter,and then during spring,but insignificant during summer and autumn.Rising temperature significantly enhances local vegetation coverage,and vegetation greening in turn heats the atmosphere via enhancing net heat flux from the surface to the atmosphere.The atmospheric heating anomaly over the HMA thickens the atmospheric column and increases upper air pressure.The high pressure anomaly disperses downstream via the westerly flow,expands across the SCB,and eventually increases the SCB temperature.This effect lasts from winter to the following spring,which may cause the maximum increasing trend of the SCB temperature and vegetation coverage in spring.These results are helpful for estimating future trends in climate and eco-environmental variations in the HMA and SCB under warming scenarios,as well as seasonal forecasting based on the connection between the HMA eco-environment and SCB climate.
基金This research was supported by the Third Xinjiang Scientific Expedition Program(2021xjkk010102)the National Natural Science Foundation of China(41261047,41761043)+1 种基金the Science and Technology Plan of Gansu Province,China(20YF3FA042)the Youth Teacher Scientific Capability Promoting Project of Northwest Normal University,Gansu Province,China(NWNU-LKQN-17-7).
文摘Understanding the dynamics of surface water area and their drivers is crucial for human survival and ecosystem stability in inland arid and semi-arid areas.This study took Gansu Province,China,a typical area with complex terrain and variable climate,as the research subject.Based on Google Earth Engine,we used Landsat data and the Open-surface Water Detection Method with Enhanced Impurity Control method to monitor the spatiotemporal dynamics of surface water area in Gansu Province from 1985 to 2022,and quantitatively analyzed the main causes of regional differences in surface water area.The findings revealed that surface water area in Gansu Province expanded by 406.88 km2 from 1985 to 2022.Seasonal surface water area exhibited significant fluctuations,while permanent surface water area showed a steady increase.Notably,terrestrial water storage exhibited a trend of first decreasing and then increasing,correlated with the dynamics of surface water area.Climate change and human activities jointly affected surface hydrological processes,with the impact of climate change being slightly higher than that of human activities.Spatially,climate change affected the'source'of surface water to a greater extent,while human activities tended to affect the'destination'of surface water.Challenges of surface water resources faced by inland arid and semi-arid areas like Gansu Province are multifaceted.Therefore,we summarized the surface hydrology patterns typical in inland arid and semi-arid areas and tailored surface water'supply-demand'balance strategies.The study not only sheds light on the dynamics of surface water area in Gansu Province,but also offers valuable insights for ecological protection and surface water resource management in inland arid and semi-arid areas facing water scarcity.
基金Supported by Natural Science Foundation of Tibet Autonomous Region(XZ202001ZR0082G)National Key Research and Development Program of China(2020YFA0608203)Key Research and Development of Science and Technology Program of Tibet Autonomous Region(CGZH2024000002)。
文摘Based on the daily meteorological observation data of seven meteorological stations in southern Tibet from 1980 to 2021 (April-October), the temporal and spatial variation characteristics and influencing factors of aridity index ( AI ) in the growing season of major grain producing areas in Tibet were studied by using climate tendency rate, Mann-Kendal test, Morlet wavelet analysis, GIS hybrid interpolation method, Pearson correlation coefficient, contribution rate analysis and other methods. The results showed that the average AI in the main grain producing areas of Tibet was 1.7, which belonged to the semi-arid area, and the overall trend was decreasing (humidifying) (-0.036/10 a). The linear decreasing trend was different in different regions, and the area around Lhatse County was the most significant (-0.26/10 a). AI had no obvious abrupt change, and had long- and medium-term fluctuation characteristics of 24 years, 6 years. The spatial distribution was uneven, and had the characteristics of ‘shrinking arid area and expanding humid area . The contribution rates of the main climate influencing factors of AI varied in different regions. In general, the contribution rates after quantification was as follows: precipitation (34.9%)>relative humidity (28.4%)>sunshine (19.9%)>maximum temperature (12.4%).
基金jointly supported by the National Natural Science Foundation of China(42361024,42101030,42261079,and 41961058)the Talent Project of Science and Technology in Inner Mongolia of China(NJYT22027 and NJYT23019)the Fundamental Research Funds for the Inner Mongolia Normal University,China(2022JBBJ014 and 2022JBQN093)。
文摘Gross primary productivity(GPP)of vegetation is an important constituent of the terrestrial carbon sinks and is significantly influenced by drought.Understanding the impact of droughts on different types of vegetation GPP provides insight into the spatiotemporal variation of terrestrial carbon sinks,aiding efforts to mitigate the detrimental effects of climate change.In this study,we utilized the precipitation and temperature data from the Climatic Research Unit,the standardized precipitation evapotranspiration index(SPEI),the standardized precipitation index(SPI),and the simulated vegetation GPP using the eddy covariance-light use efficiency(EC-LUE)model to analyze the spatiotemporal change of GPP and its response to different drought indices in the Mongolian Plateau during 1982-2018.The main findings indicated that vegetation GPP decreased in 50.53% of the plateau,mainly in its northern and northeastern parts,while it increased in the remaining 49.47%area.Specifically,meadow steppe(78.92%)and deciduous forest(79.46%)witnessed a significant decrease in vegetation GPP,while alpine steppe(75.08%),cropland(76.27%),and sandy vegetation(87.88%)recovered well.Warming aridification areas accounted for 71.39% of the affected areas,while 28.53% of the areas underwent severe aridification,mainly located in the south and central regions.Notably,the warming aridification areas of desert steppe(92.68%)and sandy vegetation(90.24%)were significant.Climate warming was found to amplify the sensitivity of coniferous forest,deciduous forest,meadow steppe,and alpine steppe GPP to drought.Additionally,the drought sensitivity of vegetation GPP in the Mongolian Plateau gradually decreased as altitude increased.The cumulative effect of drought on vegetation GPP persisted for 3.00-8.00 months.The findings of this study will improve the understanding of how drought influences vegetation in arid and semi-arid areas.
基金supported by the Ministerio da Ciencia,Tecnologia e Inovacoes (MCTI-INPA),Conselho Nacional de Desenvolvimento Cientifico e Tecnologico (CNPq,grant number:303913/2021-5)Fundagao de Amparo a Pesquisa do Estado do Amazonas (FAPEAM)Coordenagao de Aperfeicoamento de Pessoal de Nivel Superior (CAPES code 0001).
文摘Litterfall is the largest source of nutrients to for-est soils of tropical rainforests.However,variability in lit-terfall production,nutrient remobilization,and changes in leaf nutrient concentration with climate seasonality remain largely unknown for the central Amazon.This study meas-ured litterfall production,leaf nutrient remobilization,and leaf area index on a forest plateau in the central Amazon.Litterfall was measured at monthly intervals during 2014,while nitrogen,phosphorus,potassium,calcium and mag-nesium concentrations of leaf litter and canopy leaves were measured in the dry and rainy seasons,and remobilization rates determined.Leaf area index was also recorded in the dry and rainy seasons.Monthly litterfall varied from 33.2(in the rainy season)to 87.6 g m^(-2) in the dry season,while leaf area index increased slightly in the rainy season.Climatic seasonality had no effect on concentrations of nitrogen,calcium,and magnesium,whereas phosphorous and potassium responded to rainfall seasonality oppositely.While phosphorous increased,potassium decreased during the dry season.Over seasons,nitrogen,potassium,and phosphorous decreased in leaf litter;calcium increased in leaf litter,while magnesium remained unaffected with leaf aging.Regardless,the five nutrients had similar remobilization rates over the year.The absence of climate seasonality on nutrient remobilization suggests that the current length of the dry season does not alter nutrient remobilization rates but this may change as dry periods become more prolonged in the future due to climate change.
基金Supported by the Major Research Project of National Natural Science Foundation Committee(91325302)China Postdoctoral Foundation(2014M560110)Hebei Social Science Foundation(HB15GL087)~~
文摘Northeast China as one of important agricultural production bases is an area under reclamation and returning cultivated land to forests or pastures. Therefore, it is of great practical significance in guaranteeing the sustainable development and national food security to study the spatial and temporal variation of cultivated land in Northeast China under future climate scenarios. In this study, based on data of land use, natural environment and social-economy, dynamics of land system(DLS) model was used to to simulate the spatial distribution and changing trends of cultivated land in the typical areas of reclamation and returning cultivated land to forest or pastures in Northeast China during 2010-2030 under land use planning scenario and representative concentration pathways(RCPs) scenarios quantitatively.The results showed that the area of cultivated land had an overall decreasing trend under the land use planning scenario, but the area of upland field increased slightly from 2000 to 2010 and then declined greatly, while the area of paddy field continuously declined from 2000 to 2030. Under the Asia-Pacific Integrated model(AIM)scenario, the total area of cultivated land had a tendency to increase considerably,with the upland field expanding more obviously and the paddy field declining slightly.In addition, the cultivated land showed a greater decreasing trend under the model for energy supply strategy alternatives and their general environmental impact(MESSAGE) scenario compared to the land use planning scenario. Moreover, analysis on the conversion between different land use types indicated that the reclamation and returning cultivated land to forests or pastures was likely to continue under future scenarios, but the frequency of occurrence could decrease as the time goes by. The conclusions can provide significant decision-making information for the rational agricultural planning and cultivated land protection in Northeast China to adapt to the climate change.
基金supported by the National Social Science Fund of China (14BGL093)the International Development Research Center (107093-001)+4 种基金the Specialized Research Fund for the Jointed Doctoral Program of Higher Education of China (20124105110006)the National Natural Science Foundation of China (71403082)the 2017 Annual Scientific and Technological Innovation of Henan Province Talent (Humanities and Social Sciences) Support Program, China (2017-cxrc-002)the Young Backbone Teachers Scheme of Henan Colleges and Universities, China (2015GGJS-085)the Henan Province Philosophy and Social Science Planning Project, China (2017BJJ033)
文摘Using a logistic model,this paper empirically investigated farmers’perception of climate change and its determinants based on a field survey of 1 350 rural households across five major grain producing provinces in China.The results show:i)There is an apparent difference in perception levels for long-term temperature and precipitation changes.Specifically,57.4%of farmers perceived the long-term temperature change correctly,but only 29.7%of farmers perceived the long-term precipitation change correctly;ii)The factors influencing the farmers’perceptions are almost completely different between precipitation and temperature,the former are mostly agriculture related,while latter are mostly non-agriculture related,except for farm size;and iii)Farmers are not expected to pay more attention to long-term precipitation changes over the crop growing seasons,because less than 30%of farmers can correctly perceive long-term precipitation change.Therefore,to improve the accuracy of farmers’perceptions of climate change,the government is recommended to:i)enhance education and training programs;ii)speed up land transfer and expand household land farm size;iii)develop farmer cooperative organizations;iv)invest more in agricultural infrastructure,specifically in major grain producing regions;and v)improve the agricultural environment and increase farming income.
基金supported by the Special Foundation of National Science & Technology Supporting Plan (2011BAD29B09)the National Natural Science Foundation of China (31172039)+2 种基金the ‘111’ Project from the Ministry of Edu- cation and the State Administration of Foreign Experts Affairs (B12007)the Supporting Project of Young Technology Nova of Shaanxi Province (2010KJXX-04)the Supporting Plan of Young Elites and basic operational cost of research from Northwest A&F University
文摘The division of arid areas is important in water and land resources management, planning and for a long-term agricultural, economic and social planning. Northwest China (NW) dominates the main arid areas in China. There is thus a need to adopt adequate concepts relative to the scope of arid areas of NW China and identify its climate types and characteristics. In this study, we analyzed climatic data over the last 30 years (1981-2010) from 191 stations in three provinces and three autonomous regions of NW China. The factor-cluster analysis technique (FC), an objective and automated method was employed to classify the dry/wet climate zones. The traditional methods with predefined thresholds were adopted for providing a comparison with FC. The results showed that the wet/dry climate zones by FC were mainly distributed along mountains, rivers and desert borders. Climate-division boundaries relied heavily on the major terrain features surrounding the grouped stations. It also showed that the climate was dry in the plain sandy areas but relatively wet in the high mountain areas. FC method can reflect the climate characteristics more fully in NW China with varied and complicated topography, and outperform the tradi- tional climate classifications. Arid areas of NW China were defined as four climate types, including five resultant classes in FC classifications. The Qinling and Da Hinggan Mountains were two important boundaries, besides main administrative boundaries. The results also indicated that there are some differences between two traditional clas- sifications. The precipitation moved and fluctuated to an extent, which confirmed that climate change played an important role in the dry/wet climate zoning, and the boundaries of dry/wet climate zones might change and migrate with time. This paper is expected to provide a more in-depth understanding on the climate characteristics in arid areas of NW China, and then contribute to formulate reasonable water and land management planning and agri- cultural production programs.
文摘Global climate change poses a new challenge for species and can even push some species toward an extinction vortex. The most affected organisms are those with narrow tolerance to the climatic factors but many large mammals such as ungulates with a wider ecological niche are also being affected indirectly. Our research mainly used wild sheep in central Iran as a model species to explore how the suitable habitats will change under different climatic scenarios and to determine if current borders of protected areas will adequately protect habitat requirements. To create habitat models we used animal-vehicle collision points as an input for species presence data. We ran habitat models using Max Ent modeling approach under different climatic scenarios of the past, present and future(under the climatic scenarios for minimum(RCP2.6) and maximum(RCP8.5) CO2 concentration trajectories). We tried to estimate the overlap and the width of the ecological niche using relevant metrics. In order to analyze the effectiveness of the protected areas, suitable maps were concerted to binary maps using True Skill Statistic(TSS) threshold and measured the similarity of the binary maps for each scenario using Kappa index. In order to assess the competence of the present protected areas boundary in covering the distribution of species, two different scenarios were employed, which are ensemble scenario 1: an ensemble of the binary maps of the species distribution in Mid-Holocene, present, and RCP2.6;and ensemble scenario 2: an ensemble of binary suitability maps in Mid-Holocene, present, and RCP8.5. Then, the borders of modeled habitats with the boundaries of 23 existing protected areas in two central provinces in Iran were compared. The predicted species distribution under scenario 1(RCP2.6) was mostly similar to its current distribution(Kappa = 0.53) while the output model under scenario 2(RCP8.5) indicated a decline in the species distribution range. Under the first ensemble scenario, current borders of the protected areas in Hamedan province showed better efficiency to cover the model species distribution range. Analyzing Max Ent spatial models under the second climatic scenario suggested that protected areas in both Markazi and Hamedan provinces will not cover "high suitability" areas in the future. Modeling the efficiency of the current protected areas under predicted future climatic scenarios can help the related authorities to plan conservation activities more efficiently.
基金supported by the Special Climate Change Research Program of China Meteorological Administration(No.CCSF-09-11,CCSF2011-25,and CCSF201307)the Science and Technology Planning Project of Guangdong Province(No.2011A030200021)
文摘This paper reviews assessment of climate change impacts on economy, society and ecological environment in the coastal areas of South China based on published literatures; it also proposes suitable adaptation strategies and counter- measures. Review shows that climate change has resulted in sea level rise in the coastal areas of South China, increasing the occurrence and intensity of storm surges, aggravating the influence of saltwater intrusion, coastal erosion, urban drainage and flood control, threatening the coastal facility and infrastructures, inundating lowland areas, offsetting mudflat silting, and degrading mangroves and corm reef ecosystem. Therefore, in order to reduce the adverse effects of climate change and to support the sustainable development in the coastal areas of South China, it is critical to improve the monitoring and early warning system, enhance prevention criteria, fortify coastal protection engineering, strengthen saltwater prevention, and reinforce the ecological restoration and protection.
文摘This study presents the changes in lake areas in the Valley of Lakes, the Govi region, southern Mongolia. The recent changes in lake areas show decreases depending on vulnerability of lake basins and response of Govi landscape to the present climatic warming. During the recent 44 - 45 years (from 1970 to 2014 or 2015), modern lakes have encountered the present rapid increase in temperature, water evaporation and drying up that induced the reduction in lake areas in the Valley of Lakes. The finding of the reduction in lake areas is consistent with the trends on increasing in temperature since 1995 and fluctuating precipitation since 1975. Investigations with detailed chronology of lake sediment are needed from the lakes to review a more complete evolution of lake basins during the Late Quaternary paleoclimatic history in Mongolia and Central Asia.
基金supported by National Key Project of ScientificTechnical Supporting Programs Funded by Ministry of Science & Technology of China during the 11th Five-Year Plan Period (Grant No. 2007BAC03A12-05-01).
文摘The problem of global warming has been identif ied as the f irst in the list of the top ten environmental prob-lems in the world.As climate change will seriously affect the social and natural world that people live in,so it may lay serious repercussions on economic progress,social improvement,and sustainable development.International bodies everywhere and many of the countries' governments are responding urgently to this call.In recent years,climate change has affected different regions in China in different ways.In its national agenda,the Chinese government should address the problem of climate change and its negative impact on socio-economic development.In this endeavor the nation should introduce policies which will help its people and economy to adapt to these effects and changes.Priorityf ields of adaptation to climate change are the sensitive areas or departments which are more vulnerable to the negative influences of climate change.The negative impacts of climate change in some parts of China are considered to be very serious indeed as they affect the whole economy and community.As a result,priority should be given to these more affected regions for the limited state f inancing.This paper def ines adaptation and discusses the basic principles and programs in the identif ication of national priority areas where adaptation should be exercised.Based on the past studies,four priority areas in China are identif ied,namely,disaster prevention and mitigation,water resources,agriculture,and ecosystem.An analysis on the identifi cation procedures,and the reasons and tasks involved are given for each.
文摘The tea tree [Camellia sinensis (L) Kuntze] is one of the world’s economic crops. It is an especially important crop for southern China. Environmental factors related to the tea yield and quality in some high mountain areas of China are identified in this paper. These factors are: geology, topography, climate, hydrology, soil and vegetation. Climatological factors are the most important. Using data collected from meteorological stations which are situated at the summit and the base of high mountains, this paper discusses ecological climatic problems in growing tea in China. The ecological climatic characteristics of the famous tea areas mainly included are as follows: more . amounts of clouds and fog, less percentage of sunshine, abundant rainfall and high relative humidity in the air, temperatures that rise and fall slowly, daily and annual temperature ranges that are smaller, more days that are suitable for tea growing and low wind speeds in the lee-sides and valleys of mountains. All of these
文摘The major impacts of climate change play a substantial role in triggering human migration, especially in the coastal areas. The individual or combined effects of climate change are likely to trigger mass human movement both within and across international borders. People rarely move for a single reason;the motivation to migrate is complex of many factors. The main goal of this article is to identify the factors related to the decision to migrate taken by refugees in the coastal area. To assess this objective we employ exploratory factor analysis and structural equation modeling (SEM) and find that different factors influence refugees’ migration decision differently. From the findings, it is seen that loss of shelter, extreme events, decreasing soil fertility and food shortage, variability in temperature patterns and exhaustion of natural resources are the most important environmental factors that affect the decision to migrate of climate refugees. Low income, increasing price, decreasing purchasing power are the most important economic factors that influence migration decision. No social factors have significant effect on migration decision while safety as a political factor has a moderate influence on refugees’ decision to migrate. Finally, this article provides some recommendations for recognition of and protection for migrants forced to move to safer places due to certain direct impacts of climate change, notwithstanding the existence of multi-causality.
文摘The paper aims to study the impacts and countermeasures of climate change on animal husbandry in Qinghai plateau and its surrounding area,and evaluate the effect of countermeasures.Results showed that:First,the annual mean temperature,annual mean maximum temperature and annual mean minimum temperature showed an increasing trend in Qinghai plateau during the time from 1961 to 2008; the annual precipitation had not obvious change,but the obvious feature of seasonal change; wind speed and sunshine hours showed a decreasing trend during the time from 1961 to 2008.Secondly,under the current climate condition,grassland productivity showed a decreasing trend,and the grassland theoretical capacity affected by grassland productivity decreased too; warm winter was in favor of livestock overwintering safely,which resulted in a high level of the survival rate of young stock; temperature increasing and precipitation decreasing were beneficial to the fatness of livestock,but the meat yield of livestock was affected by some negative factors such as grassland degradation; livestock diseases had a close relationship with weather condition,and adverse weather condition may arose many diseases of livestock.Thirdly,in view of the current problems of livestock production,we took a series of countermeasures including grass industry construction,livestock improvement,developing new modes of animal husbandry,control and prevention of stockbreeding diseases and insect pests and recovery of meteorological disasters,which played a important role in promoting grassland productivity,solving the problem of the imbalances between livestock and forage,protecting the ecological environment and improving livestock performance.
基金Supported by the National Special Founds for the Construction of Modern Agricultural Industrial Technology System (MATS)(CARS-3-2-45)Founds for Selection and Promotion of New High-quality Beer-feed Barley in Yunnan
文摘In order to provide an objective and scientific theoretical basis for rational distribution of wheat growth in Yunnan Province,according to the relationship between Yunnan weather conditions and wheat growth adaptability,a study on eco-climate type regionalization of wheat growing areas in Yunnan was conducted using principal component analysis and GIS technology. The results show that Yunnan Province could be divided into four types,namely southern warm and humid wheat growing area,central semi-arid wheat growing area,central semi-humid wheat growing area and north-central cold wheat growing area.
基金Supported by the National Natural Science Foundation of China (41101165)~~
文摘[Objective] This study aimed to explore the impact of climate change on wheat cropping by using province-specific historical data during 1996-2007. [Method] We established a panel data econometric model with lagged wheat cropping area and province-specific fixed-effects model to control the unobserved factors. [Result] The results showed that the temperature positively affects wheat cropping area, while precipitation does not have such impact. [Conclusion] The study provided empirical evidence for analysis of the determinants of wheat cropping area in China.
基金Supported by Project of Ministry of Science and Technology of China"Response of Ningxia Climate to Global Climate Change and Its Mechanism"(2004DIB3J121)Climate Change Project of China Meteorological Administration(CCSF2007-27)Climate Change Bilateral Cooperation Project of China and Britain(2001-BA611B-04-06-01)~~
文摘[Objective] The aim was to quantitatively predict the variation trend of maize yield in Yellow River irrigation area of Ningxia under future climate change scenarios.[Method] Based on the data of daily temperature,precipitation and radiation in 25 km × 25 km grid in Ningxia from 2010 to 2100 obtained by regional climate model,maize yield in Yellow River irrigation area of Ningxia in the 21st century was studied by means of corrected CERES-Maize model.[Result] With climate warming,maize yield in Yellow River irrigation area of Ningxia in 2020s and 2050s showed increase trend compared with base years(average in 1961-1990)when current adaptive maize variety and optimum production management measures were adopted,while maize yield went down in 2080s with the further increase of temperature.The grain number per spike and spike grain weight as the yield components of maize also showed the same trend with maize yield.In 2020s and 2050s,the increase of maize yield under B2 scenario was higher than that under A2 scenario,while the decrease of maize yield under B2 scenario was lower than that under A2 scenario in 2080s.[Conclusion] With the increase of temperature,maize yield in Yellow River irrigation area of Ningxia went up firstly and then went down.
基金Supported by Operation and Improvement Program of Climate Monitoring,Warning and Assessment Services in Three Gorges Reservoir AreaNational Key Technology R&D Program (2007BAC29B06)+1 种基金Major State Basic Research Development 973 Program (2006CB400503)National Natural Science Foundation of China (40705031)
文摘Based on the meteorological data from 33 stations of Three Gorges Reservoir from 1960 to 2008,climate yield of rice,corn and winter wheat and the changes of climatic potential productivity after water storage in Three Gorges Reservoir were calculated by the dynamic statistic model of crop growth.The results showed that the temperature in Three Gorges Reservoir was fluctuant decreased before late 1980s,and warmed rapidly after the late 1980s.The precipitation had little change before the late 1990s and had a slight decrease after the late 1990s.Sunshine hours were more in 1960s and 1970s,and then it changed little after 1980s.After water storage,the temperature increased in Three Gorges Reservoir as a whole.The precipitation decreased in the south of Three Gorges Reservoir,while it increased in the northwest of Three Gorges Reservoir.The sunshine hours were reduced except that in the vicinity of Dianjiang.After water storage,climatic potential productivity of rice decreased in the northwest and the northeast,while it increased in the south of Three Gorges Reservoir.The climatic potential productivity of corn decreased in the northeast and the southwest,but increased in the rest of Three Gorges Reservoir.The climatic potential productivity of winter wheat increased almost in total.