12 vol%WCp/2024Al composite was fabricated from mixed powders by hot-pressing at various tempera-tures. Investigation of the interfacial reaction between the WC phase and the Al alloy matrix was performed by X-ray dif...12 vol%WCp/2024Al composite was fabricated from mixed powders by hot-pressing at various tempera-tures. Investigation of the interfacial reaction between the WC phase and the Al alloy matrix was performed by X-ray diffraction (XRD), transmission electron microscope (TEM) and energy dispersive spectroscopy (EDS). A multiple layer interface structure, which is composed of Al/ WAl12/AlnC3/WC, is found to form by the interfacial reaction during hot-pressing. Further study shows that the AlaC3 layer forms along with a given crystal orientation of WC phase and might retard the interfacial reaction process.展开更多
In isothermal spheroidizing process,the spheroidization and growth of the carbide formed in hot-deformed high-carbon chromium cast steel at high temperature were investigated.The results showed that the spheroidizing ...In isothermal spheroidizing process,the spheroidization and growth of the carbide formed in hot-deformed high-carbon chromium cast steel at high temperature were investigated.The results showed that the spheroidizing growth of carbide proceeds in such a way that the bigger carbide particles swallow the smaller ones,and the short rhabdoid carbides dissolve and are spheroidized by itself.When the samples were held at 720℃ for more than 3 h,the spheroidization is not obvious.The feature of the process is the size increment and the amount decrement of carbide particles.The empirical equation for growth rate of carbides was obtained.The volume fraction of carbides keeps constant.The growth process agrees well with Ostwald Ripening Law.展开更多
Alumina-(0 similar to 20 vol. pct) iron composites were fabricated by hot-pressing of well-mixed-alumina and iron powders at 1400 degreesC and 30 MPa for 30 min. Hot-pressed bodies with nearly theoretical density were...Alumina-(0 similar to 20 vol. pct) iron composites were fabricated by hot-pressing of well-mixed-alumina and iron powders at 1400 degreesC and 30 MPa for 30 min. Hot-pressed bodies with nearly theoretical density were obtained for addition up to 10 vol. pct Fe, but relative density decreased gradually with further increase in Fe addition. The materials exhibit a homogeneous dispersion of Fe. Fracture strength of the composites exhibits a maximum value of 604 MPa at 15 vol. pct Fe, which is 1.5 times that of alumina alone. Fracture toughness increases with the increase in Fe content, reaching 7.5 MPa.m(1/2) at 20 vol. pct Fe. The theoretical values of fracture toughness was calculated and compared with the experimental one. Toughening mechanisms of the composites are also discussed.展开更多
On the thermodynamics basis of regular solution sub-lattice model and soperelement model, kinetics basis of Cahn's transformation kinetics theory, and according to Scheil's additivity rule and eoperimental res...On the thermodynamics basis of regular solution sub-lattice model and soperelement model, kinetics basis of Cahn's transformation kinetics theory, and according to Scheil's additivity rule and eoperimental results obtained by thermal dilation method,a prediction model of transformations from hot-deformed austenite to ferrite, pearlite and bainite in low alloy steels, which could be applied to continuoas cooling process, is developed. The calculated transformed junctions of each phase based on laboratory controlled rolling and controlled cooling conditions in a low alloy steel are in reasonable agreement with the measured ones.展开更多
Densification, phase transformation and fracture toughness were studied in hot-pressed Si_3N_4 seeded by in-houseproduced large, elongated β-Si_3N_4 seeds. A mixture of Y_2O_3-Al_2O_3 was used as the sintering aid. C...Densification, phase transformation and fracture toughness were studied in hot-pressed Si_3N_4 seeded by in-houseproduced large, elongated β-Si_3N_4 seeds. A mixture of Y_2O_3-Al_2O_3 was used as the sintering aid. Concentration ofseeds were varied from 0 to 6 wt pct and the sintering time at 1700℃ was varied from 1 to 4 h. Maximum fracturetoughness of 9.0 MPam^(1/2) was measured in samples containing 5 wt pct seeds, hot pressed at 1700℃ for 4 h.展开更多
On the basis of superelement model, Cahn’s transformation kinetics theory and Scheil’s additivity rule, the CCT diagrams and transformation kinetics in low carbon steel were predicted considering both undeformed and...On the basis of superelement model, Cahn’s transformation kinetics theory and Scheil’s additivity rule, the CCT diagrams and transformation kinetics in low carbon steel were predicted considering both undeformed and deformed conditions. The influence of deformation on phase equilibria and transformation incubation period was evaluated quantitatively. The recrystallization kinetics and the evolution of dislocation density were calculated during continuous cooling. The results show deformation considerably shortens transformation incubation period, accelerates transformation kinetics and makes CCT curve shift leftwards. The calculated CCT diagrams and the volume fraction of each phase are in good agreement with measurements.展开更多
The structure change of α2/γ interface in a Ti-45Al-10Nb alloy induced by hot deformation was investigated by conventional and high-resolution transmission eIectron microscopy. Two types of hot deformation induced s...The structure change of α2/γ interface in a Ti-45Al-10Nb alloy induced by hot deformation was investigated by conventional and high-resolution transmission eIectron microscopy. Two types of hot deformation induced special α2/γ intedeces, coherent intedeces with high density of ledges and semi-coherent α2/γ intedeces were found to be due to the absorption of mobile dislocations into the α2/γ inteface. For the misoriented semi-coherent α2/γ interfaces, the densities of dislocation ledges increase with the misoriented angle between (111)γ and (0001)α2 planes, and 1/3[111] Frank partial dislocations were involved in the dislocation ledges. Formation mechanism of these deformation-induced α2/γ interfaces was discussed to be related to the role of α2/γ interface5 adjusting the deformation as a dislocation sink absorbing the slipping dislocations in the γ phase展开更多
It is still a challenge to simultaneously enhance coercivity(H_(cj))and remanence(J_(r))of hot-deformed Nd-Fe-B magnet due to the coercivity-remanence trade-off dilemma.Here,we achieved this balance between H_(cj)and ...It is still a challenge to simultaneously enhance coercivity(H_(cj))and remanence(J_(r))of hot-deformed Nd-Fe-B magnet due to the coercivity-remanence trade-off dilemma.Here,we achieved this balance between H_(cj)and Jr by flake Cu powder assisted DyF_(3)interflake addition.The Hcj increases from 1218 to 1496 kA/m and Jr increases from 1.32 to 1.34 T compared with the original magnet.Results show that the width of coarse grain layers reduces because of the introduction of flake Cu,which increases the contact areas of the adjacent grains at ribbon interfaces and suppresses the excessive growth of grains.The stronger degree of texture and higher density compared with the original magnet should take the responsibility for the increase of J_(r).Additionally,the aggregation regions of rare earth rich(RE-rich)phase reduce and the betterment of the microstructure is another reason for the enhancement of Jr in the flake Cu aided DyF_(3)hot-deformed magnet.This strategy of using flake powder additives provides a promising method for optimizing microstructure and enhancing magnetic properties of hot-deformed Nd-Fe-B magnets.展开更多
A Cu-10wt%Fe composite was prepared through hot-pressed sintering,and the material was subsequently solution treated.The hot-pressed sintered and solution treated materials were rolled and aged.The precipitation behav...A Cu-10wt%Fe composite was prepared through hot-pressed sintering,and the material was subsequently solution treated.The hot-pressed sintered and solution treated materials were rolled and aged.The precipitation behavior and performance changes were systematically studied by using scanning electron microscopy and transmission electron microscopy.In contrast to the hot-pressed sintered specimen,the solution treatment significantly affects the thermal stability and properties of the Cu-10wt%Fe composite.The Cu-10wt%Fe composite was prepared after solid solution,cold rolling and aging at 773 K for 1 h,and it obtained excellent tensile strength of 494 MPa,uniform elongation of 16.3%,electrical conductivity of 51.1%IACS and softening temperature of 838 K.Mechanisms for the distinct difference in thermal stability and properties between hot-pressed sintered and solution treated specimens were analyzed.These findings provide a theoretical basis for designing high-performance Cu-based in-situ composites by post treatment.展开更多
Hexagonal boron nitride(h-BN)ceramics have become exceptional materials for heat-resistant components in hypersonic vehicles,owing to their superior thermal stability and excellent dielectric properties.However,their ...Hexagonal boron nitride(h-BN)ceramics have become exceptional materials for heat-resistant components in hypersonic vehicles,owing to their superior thermal stability and excellent dielectric properties.However,their densification during sintering still poses challenges for researchers,and their mechanical properties are rather unsatisfactory.In this study,SrAl_(2)Si_(2)O_(8)(SAS),with low melting point and high strength,was introduced into the h-BN ceramics to facilitate the sintering and reinforce the strength and toughness.Then,BN-SAS ceramic composites were fabricated via hot press sintering using h-BN,SrCO_(3),Al_(2)O_(3),and SiO_(2) as raw materials,and effects of sintering pressure on their microstructure,mechanical property,and thermal property were investigated.The thermal shock resistance of BN-SAS ceramic composites was evaluated.Results show that phases of as-preparedBN-SAS ceramic composites are h-BN and h-SrAl_(2)Si_(2)O_(8).With the increase of sintering pressure,the composites’densities increase,and the mechanical properties shew a rising trend followed by a slight decline.At a sintering pressure of 20 MPa,their bending strength and fracture toughness are(138±4)MPa and(1.84±0.05)MPa·m^(1/2),respectively.Composites sintered at 10 MPa exhibit a low coefficient of thermal expansion,with an average of 2.96×10^(-6) K^(-1) in the temperature range from 200 to 1200℃.The BN-SAS ceramic composites prepared at 20 MPa display higher thermal conductivity from 12.42 to 28.42 W·m^(-1)·K^(-1) within the temperature range from room temperature to 1000℃.Notably,BN-SAS composites exhibit remarkable thermal shock resistance,with residual bending strength peaking and subsequently declining sharply under a thermal shock temperature difference ranging from 600 to 1400℃.The maximum residual bending strength is recorded at a temperature difference of 800℃,with a residual strength retention rate of 101%.As the thermal shock temperature difference increase,the degree of oxidation on the ceramic surface and cracks due to thermal stress are also increased gradually.展开更多
Arsenic materials have attracted great attention due to their unique properties.However,research concerning iron-arsenic(Fe-As) alloys is very scarce due to the volatility of As at low temperature and the high melting...Arsenic materials have attracted great attention due to their unique properties.However,research concerning iron-arsenic(Fe-As) alloys is very scarce due to the volatility of As at low temperature and the high melting point of Fe.Herein,a new Fe-As alloy was obtained by mechanical alloying(MA) followed by vacuum hot-pressed sintering(VHPS).Moreover,a systematic study was carried out on the microstructural evolution,phase composition,leaching toxicity of As,and physical and mechanical properties of Fe-As alloys with varying weight fractions of As(20%,25%,30%,35%,45%,55%,65%,and 75%).The results showed that pre-alloyed metallic powders(PAMPs) have a fine grain size and specific supersaturated solid solution after MA,which could effectively improve the mechanical properties of Fe-As alloys by VHPS.A high density(> 7.350 g·cm^(-3)),low toxicity,and excellent mechanical properties could be obtained for FeAs alloys sintered via VHPS by adding an appropriate amount of As,which is more valuable than commercial Fe-As products.The Fe-25% As alloy with low toxicity and a relatively high density(7.635 g·cm^(-3)) provides an ultra-high compressive strength(1989.19 MPa),while the Fe-65% As alloy owns the maximum Vickers hardness(HVo.5 899.41).After leaching by the toxicity characteristic leaching procedure(TCLP),these alloys could still maintain good mechanical performance,and the strengthening mechanisms of Fe-As alloys before and after leaching were clarified.Changes in the grain size,micro structure,and phase distribution induced significant differences in the compressive strength and hardness.展开更多
HyperCoal was prepared from low-rank coal via high-temperature solvent extraction with N-methylpyrrolidone as an extraction solvent and a liquid-to-solid ratio of 50 mL/g in a high-temperature and high-pressure reacto...HyperCoal was prepared from low-rank coal via high-temperature solvent extraction with N-methylpyrrolidone as an extraction solvent and a liquid-to-solid ratio of 50 mL/g in a high-temperature and high-pressure reactor. When HyperCoal was used as a binder and pulverized coal was used as the raw material, the compressive strength of the hot-pressed briquettes(each with a diameter of 20 mm and mass of 5 g) under different conditions was studied using a hot-pressing mold and a high-temperature furnace. The compressive strength of the hot-pressed briquettes was substantially improved and reached 436 N when the holding time period was 15 min, the hot-pressing temperature was 673 K, and the HyperCoal content, was 15 wt%. Changes in the carbonaceous structure, as reflected by the intensity ratio between the Raman G-and D-bands(IG/ID), strongly affected the compressive strength of hot-pressed briquettes prepared at different hot-pressing temperatures. Compared with cold-pressed briquettes, hot-pressed briquettes have many advantages, including high compressive strength, low ash content, high moisture resistance, and good thermal stability; thus, we expect that hot-pressed briquettes will have broad application prospects.展开更多
A new pressing method was proposed for hot-pressing process. Experimental results indicated that the porosity in Al2O3/TiC/ Ni/Mo (hereafter called AI2O3/TiC composite) composite compacts decreases by 6% after adoptin...A new pressing method was proposed for hot-pressing process. Experimental results indicated that the porosity in Al2O3/TiC/ Ni/Mo (hereafter called AI2O3/TiC composite) composite compacts decreases by 6% after adopting this new technique, compared to traditional hot-pressing technique under the same sintering temperature. The flexural strength and Vicker hardness increase from 883 MPa to 980 MPa and from 16 GPa to 21.1 GPa, respectively. A theoretical model was given to analyze the densification mechanism of the composite in the process of repetitious-hot-pressing.展开更多
FeAl intermetallic compound with different contents of rare earth oxide La2O3 addition was prepared by hot pressing the mechanically alloyed powders.Effect of La2O3 on microstructure and high-temperature wear property...FeAl intermetallic compound with different contents of rare earth oxide La2O3 addition was prepared by hot pressing the mechanically alloyed powders.Effect of La2O3 on microstructure and high-temperature wear property of the sintered FeAl samples was investigated in this paper.The results showed that 1 wt.% La2O3 addition could refine the microstructure and increase the density of the FeAl intermetallic compound,and correspondingly improved the high-temperature wear resistance.SEM and EDS analyses of the wo...展开更多
A hot-press tackified preform was used to improve the uniformity of the laminates thickness and the mechanical properties of the obtained laminates were studied using vacuum assisted resin transfer molding(VARTM). T...A hot-press tackified preform was used to improve the uniformity of the laminates thickness and the mechanical properties of the obtained laminates were studied using vacuum assisted resin transfer molding(VARTM). Two modified preforms were prepared under 0.1 and 0.6 MPa in an autoclave and then were used to fabricate the laminates via VARTM. Permeability and thickness distribution of the laminates were obtained by using a special device. Moreover, the tensile and compressive strengths of the obtained laminates were studied and compared with the unmodified ones. Results show that the tackified laminates present a maximum and minimum thickness under 0.1 and 0.6 MPa, respectively. The thicknesses and in-plane permeability of the tackified laminates, with better thickness uniformity, are significantly decreased compared with that of the unmodified cases, while the tensile and compressive strengths of the tackified laminates are improved obviously. Results show that the mechanical property of the tackified laminates prepared by hotpressing at 0.1 MPa is better than that processed at 0.6 MPa.展开更多
The Nd-Fe-B magnets are pre-sintered and then processed with hot-pressing,and the resulting magnets are called the hot-pressed pretreated(HPP)magnets.The coercivity of the HPP magnets increases as the annealed tempera...The Nd-Fe-B magnets are pre-sintered and then processed with hot-pressing,and the resulting magnets are called the hot-pressed pretreated(HPP)magnets.The coercivity of the HPP magnets increases as the annealed temperature increases.When the annealing temperature is 900℃,the coercivity of the magnet is only 17.6 kOe(1 Oe=79.5775 A·m^-1),but when the annealing temperature rises up to 1060℃,the coercivity of the magnet reaches 23.53 kOe,which is remarkably increased by 33.7%.The microstructure analysis indicates that the grain surface of the HPP magnet becomes smoother as the annealed temperature increases.The microstructure factorαis changed according to the intrinsic coercivity model formula.Theαof the magnet at 900℃is only 0.578,but it is 0.825 at 1060℃.Microstructural optimization is due mainly to the increase of coercivity of the HPP magnet.展开更多
Densification behavior of nanocrystalline Mg2Si (n-Mg2Si) with grain size about 30-50 nm was investigated by hot-pressing at 400℃. The results indicated that the densification process of n-Mg2Si exhibited three lin...Densification behavior of nanocrystalline Mg2Si (n-Mg2Si) with grain size about 30-50 nm was investigated by hot-pressing at 400℃. The results indicated that the densification process of n-Mg2Si exhibited three linear segments: p〈0.3 GPa, 0.3 GPa〈p〈1.2 GPa, and p〉1.2 GPa determined by Heckel formula, among which the third fast increasing segment in high pressure range p〉1.2 GPa has seldom been reported in conventional coarse-grained polycrystalline materials. Nevertheless, in the whole pressure range (0.125-1.500 GPa) investigated the densification behavior of n-Mg2Si can be well described by a Kawakita formula p/C=(1/a)p+ 1/(ab) with constant α=0.452 being in good agreement with the initial porosity of the compact.展开更多
A new process of reactive hot-press sintering with boron carbide(B4C) and aluminum powders was proposed to overcome difficulties in the sintering of dense B4C ceramic materials.The B4C powder with different content of...A new process of reactive hot-press sintering with boron carbide(B4C) and aluminum powders was proposed to overcome difficulties in the sintering of dense B4C ceramic materials.The B4C powder with different content of pure metallic aluminum particle were milled,hot-pressed and sintered at 1600 ℃ for 1 hour.The mechanism of sintering at relative low temperature was analyzed.The phase constitution of the composites was determined.Effects of Al content on the hardness and fracture toughness of the composites were discussed.The results show that thermite reaction procedure in B2O3+Al was the mechanism of sintering at relative low temperature,B4C,Al2O3 and metallic aluminum are the major constituents of the composites.The microhardness of the composites decreases with the increasing of Al content,but the fracture toughness increase obviously.The composite with 5wt% Al content has the best microhardness and fracture toughness in all the composites.展开更多
Grain boundary diffusion process(GBDP)was first proposed for sintered Nd-Fe-B magnets to achieve the high utilization efficiency of heavy rare earth elements.Recent success of fabricating high performance nanocomposit...Grain boundary diffusion process(GBDP)was first proposed for sintered Nd-Fe-B magnets to achieve the high utilization efficiency of heavy rare earth elements.Recent success of fabricating high performance nanocomposite magnets by GBDP indicates that this method also exerts huge applicable potential on hot-deformed Nd-Fe-B magnets.In this review,the development and magnetic property enhancement mechanisms of different diffusion methods proposed on hot-deformed magnets were thoroughly elucidated.Moreover,the improve room for further property enhancement and the accompanying problems of GBDP on hot-deformed magnets are also discussed in this article.展开更多
Effects of low-melting Pr-Cu alloy addition on the microstructure and magnetic properties of the hot-deformation Nd-Fe-B magnets were investigated.A small amount of Pr-Cu addition enhances the coercivity of the hot-de...Effects of low-melting Pr-Cu alloy addition on the microstructure and magnetic properties of the hot-deformation Nd-Fe-B magnets were investigated.A small amount of Pr-Cu addition enhances the coercivity of the hot-deformation Nd-Fe-B magnets obviously.The coercivity of the hotdeformation Nd-Fe-B magnets with 4.0 wt%Pr_(85)Cu_(15)addition increases to 1271 kA·m^(-1),75.69%higher than that of Pr-Cu-free magnet(723 kA·m^(-1)),and then decreases with5 wt%Pr_(85)Cu_(15)addition.It is observed that there a uniform RE-rich phase is formed wrapping the Nd2Fe14B main phase in the sample with 4.0%Pr_(85)Cu_(15)addition by scanning electron microscopy(SEM),which promotes the coercivity.The angular dependence of coercivity for the hot-deformation Nd-Fe-B magnets indicates that the coercivity mechanism is nucleation combined with domain wall pinning.The domain wall pinning is weakened,while the nucleation is enhanced after Pr-Cu addition.Theremanence,intrinsic coercivity,and maximum magnetic energy product of the original Nd-Fe-B magnet are 1.45 T,723 kA·m^(-1),and 419.8 kJ·m^(-3),respectively,and those of the sample with 4.0%Pr_(85)Cu_(15)alloy addition are 1.30 T,1271 kA·m^(-1),and 330.0 kJ·m^(-3),respectively.展开更多
基金financially supported by the Program for Changjiang Scholars and Innovative Research Teams in University(PCSIRT)(No.IRT0713)
文摘12 vol%WCp/2024Al composite was fabricated from mixed powders by hot-pressing at various tempera-tures. Investigation of the interfacial reaction between the WC phase and the Al alloy matrix was performed by X-ray diffraction (XRD), transmission electron microscope (TEM) and energy dispersive spectroscopy (EDS). A multiple layer interface structure, which is composed of Al/ WAl12/AlnC3/WC, is found to form by the interfacial reaction during hot-pressing. Further study shows that the AlaC3 layer forms along with a given crystal orientation of WC phase and might retard the interfacial reaction process.
基金Item Sponsored by Guiding Programme of Science and Technology Research of Hebei of China(94122123)
文摘In isothermal spheroidizing process,the spheroidization and growth of the carbide formed in hot-deformed high-carbon chromium cast steel at high temperature were investigated.The results showed that the spheroidizing growth of carbide proceeds in such a way that the bigger carbide particles swallow the smaller ones,and the short rhabdoid carbides dissolve and are spheroidized by itself.When the samples were held at 720℃ for more than 3 h,the spheroidization is not obvious.The feature of the process is the size increment and the amount decrement of carbide particles.The empirical equation for growth rate of carbides was obtained.The volume fraction of carbides keeps constant.The growth process agrees well with Ostwald Ripening Law.
文摘Alumina-(0 similar to 20 vol. pct) iron composites were fabricated by hot-pressing of well-mixed-alumina and iron powders at 1400 degreesC and 30 MPa for 30 min. Hot-pressed bodies with nearly theoretical density were obtained for addition up to 10 vol. pct Fe, but relative density decreased gradually with further increase in Fe addition. The materials exhibit a homogeneous dispersion of Fe. Fracture strength of the composites exhibits a maximum value of 604 MPa at 15 vol. pct Fe, which is 1.5 times that of alumina alone. Fracture toughness increases with the increase in Fe content, reaching 7.5 MPa.m(1/2) at 20 vol. pct Fe. The theoretical values of fracture toughness was calculated and compared with the experimental one. Toughening mechanisms of the composites are also discussed.
文摘On the thermodynamics basis of regular solution sub-lattice model and soperelement model, kinetics basis of Cahn's transformation kinetics theory, and according to Scheil's additivity rule and eoperimental results obtained by thermal dilation method,a prediction model of transformations from hot-deformed austenite to ferrite, pearlite and bainite in low alloy steels, which could be applied to continuoas cooling process, is developed. The calculated transformed junctions of each phase based on laboratory controlled rolling and controlled cooling conditions in a low alloy steel are in reasonable agreement with the measured ones.
文摘Densification, phase transformation and fracture toughness were studied in hot-pressed Si_3N_4 seeded by in-houseproduced large, elongated β-Si_3N_4 seeds. A mixture of Y_2O_3-Al_2O_3 was used as the sintering aid. Concentration ofseeds were varied from 0 to 6 wt pct and the sintering time at 1700℃ was varied from 1 to 4 h. Maximum fracturetoughness of 9.0 MPam^(1/2) was measured in samples containing 5 wt pct seeds, hot pressed at 1700℃ for 4 h.
基金National Key Basic Research and Development Programme of China(No.G199806150).
文摘On the basis of superelement model, Cahn’s transformation kinetics theory and Scheil’s additivity rule, the CCT diagrams and transformation kinetics in low carbon steel were predicted considering both undeformed and deformed conditions. The influence of deformation on phase equilibria and transformation incubation period was evaluated quantitatively. The recrystallization kinetics and the evolution of dislocation density were calculated during continuous cooling. The results show deformation considerably shortens transformation incubation period, accelerates transformation kinetics and makes CCT curve shift leftwards. The calculated CCT diagrams and the volume fraction of each phase are in good agreement with measurements.
文摘The structure change of α2/γ interface in a Ti-45Al-10Nb alloy induced by hot deformation was investigated by conventional and high-resolution transmission eIectron microscopy. Two types of hot deformation induced special α2/γ intedeces, coherent intedeces with high density of ledges and semi-coherent α2/γ intedeces were found to be due to the absorption of mobile dislocations into the α2/γ inteface. For the misoriented semi-coherent α2/γ interfaces, the densities of dislocation ledges increase with the misoriented angle between (111)γ and (0001)α2 planes, and 1/3[111] Frank partial dislocations were involved in the dislocation ledges. Formation mechanism of these deformation-induced α2/γ interfaces was discussed to be related to the role of α2/γ interface5 adjusting the deformation as a dislocation sink absorbing the slipping dislocations in the γ phase
基金Project supported by the National Key Research and Development Program of China(2022YFB3505201,2022YFB3505400)the National Natural Science Foundation of China(52261034)the Natural Science Foundation of Jiangxi Province(20224BAB204015)。
文摘It is still a challenge to simultaneously enhance coercivity(H_(cj))and remanence(J_(r))of hot-deformed Nd-Fe-B magnet due to the coercivity-remanence trade-off dilemma.Here,we achieved this balance between H_(cj)and Jr by flake Cu powder assisted DyF_(3)interflake addition.The Hcj increases from 1218 to 1496 kA/m and Jr increases from 1.32 to 1.34 T compared with the original magnet.Results show that the width of coarse grain layers reduces because of the introduction of flake Cu,which increases the contact areas of the adjacent grains at ribbon interfaces and suppresses the excessive growth of grains.The stronger degree of texture and higher density compared with the original magnet should take the responsibility for the increase of J_(r).Additionally,the aggregation regions of rare earth rich(RE-rich)phase reduce and the betterment of the microstructure is another reason for the enhancement of Jr in the flake Cu aided DyF_(3)hot-deformed magnet.This strategy of using flake powder additives provides a promising method for optimizing microstructure and enhancing magnetic properties of hot-deformed Nd-Fe-B magnets.
基金This work was supported by the National Natural Science Foundation of China(Grant No.52101181).
文摘A Cu-10wt%Fe composite was prepared through hot-pressed sintering,and the material was subsequently solution treated.The hot-pressed sintered and solution treated materials were rolled and aged.The precipitation behavior and performance changes were systematically studied by using scanning electron microscopy and transmission electron microscopy.In contrast to the hot-pressed sintered specimen,the solution treatment significantly affects the thermal stability and properties of the Cu-10wt%Fe composite.The Cu-10wt%Fe composite was prepared after solid solution,cold rolling and aging at 773 K for 1 h,and it obtained excellent tensile strength of 494 MPa,uniform elongation of 16.3%,electrical conductivity of 51.1%IACS and softening temperature of 838 K.Mechanisms for the distinct difference in thermal stability and properties between hot-pressed sintered and solution treated specimens were analyzed.These findings provide a theoretical basis for designing high-performance Cu-based in-situ composites by post treatment.
基金National Natural Science Foundation of China (52072088, 52072089)Natural Science Foundation of Heilongjiang Province (LH2023E061)+1 种基金Scientific and Technological Innovation Leading Talent of Harbin Manufacturing (2022CXRCCG001)Fundamental Research Funds for the Central Universities (3072023CFJ1003)。
文摘Hexagonal boron nitride(h-BN)ceramics have become exceptional materials for heat-resistant components in hypersonic vehicles,owing to their superior thermal stability and excellent dielectric properties.However,their densification during sintering still poses challenges for researchers,and their mechanical properties are rather unsatisfactory.In this study,SrAl_(2)Si_(2)O_(8)(SAS),with low melting point and high strength,was introduced into the h-BN ceramics to facilitate the sintering and reinforce the strength and toughness.Then,BN-SAS ceramic composites were fabricated via hot press sintering using h-BN,SrCO_(3),Al_(2)O_(3),and SiO_(2) as raw materials,and effects of sintering pressure on their microstructure,mechanical property,and thermal property were investigated.The thermal shock resistance of BN-SAS ceramic composites was evaluated.Results show that phases of as-preparedBN-SAS ceramic composites are h-BN and h-SrAl_(2)Si_(2)O_(8).With the increase of sintering pressure,the composites’densities increase,and the mechanical properties shew a rising trend followed by a slight decline.At a sintering pressure of 20 MPa,their bending strength and fracture toughness are(138±4)MPa and(1.84±0.05)MPa·m^(1/2),respectively.Composites sintered at 10 MPa exhibit a low coefficient of thermal expansion,with an average of 2.96×10^(-6) K^(-1) in the temperature range from 200 to 1200℃.The BN-SAS ceramic composites prepared at 20 MPa display higher thermal conductivity from 12.42 to 28.42 W·m^(-1)·K^(-1) within the temperature range from room temperature to 1000℃.Notably,BN-SAS composites exhibit remarkable thermal shock resistance,with residual bending strength peaking and subsequently declining sharply under a thermal shock temperature difference ranging from 600 to 1400℃.The maximum residual bending strength is recorded at a temperature difference of 800℃,with a residual strength retention rate of 101%.As the thermal shock temperature difference increase,the degree of oxidation on the ceramic surface and cracks due to thermal stress are also increased gradually.
基金financially supported by the National Natural Science Foundation of China (No.52104406)the Natural Science Foundation of Hunan Province (No.2022JJ20074)+1 种基金the Foundation for Innovative Research Groups of the National Natural Science Foundation of China (No.52121004)the National Natural Science Foundation of China for Distinguished Young Scholars (No.51825403)。
文摘Arsenic materials have attracted great attention due to their unique properties.However,research concerning iron-arsenic(Fe-As) alloys is very scarce due to the volatility of As at low temperature and the high melting point of Fe.Herein,a new Fe-As alloy was obtained by mechanical alloying(MA) followed by vacuum hot-pressed sintering(VHPS).Moreover,a systematic study was carried out on the microstructural evolution,phase composition,leaching toxicity of As,and physical and mechanical properties of Fe-As alloys with varying weight fractions of As(20%,25%,30%,35%,45%,55%,65%,and 75%).The results showed that pre-alloyed metallic powders(PAMPs) have a fine grain size and specific supersaturated solid solution after MA,which could effectively improve the mechanical properties of Fe-As alloys by VHPS.A high density(> 7.350 g·cm^(-3)),low toxicity,and excellent mechanical properties could be obtained for FeAs alloys sintered via VHPS by adding an appropriate amount of As,which is more valuable than commercial Fe-As products.The Fe-25% As alloy with low toxicity and a relatively high density(7.635 g·cm^(-3)) provides an ultra-high compressive strength(1989.19 MPa),while the Fe-65% As alloy owns the maximum Vickers hardness(HVo.5 899.41).After leaching by the toxicity characteristic leaching procedure(TCLP),these alloys could still maintain good mechanical performance,and the strengthening mechanisms of Fe-As alloys before and after leaching were clarified.Changes in the grain size,micro structure,and phase distribution induced significant differences in the compressive strength and hardness.
基金financially supported by the NationalNatural Science Foundation of China (No. 51574023)the National Key Research and Development Program ofChina (No. 2016YFB0600701)
文摘HyperCoal was prepared from low-rank coal via high-temperature solvent extraction with N-methylpyrrolidone as an extraction solvent and a liquid-to-solid ratio of 50 mL/g in a high-temperature and high-pressure reactor. When HyperCoal was used as a binder and pulverized coal was used as the raw material, the compressive strength of the hot-pressed briquettes(each with a diameter of 20 mm and mass of 5 g) under different conditions was studied using a hot-pressing mold and a high-temperature furnace. The compressive strength of the hot-pressed briquettes was substantially improved and reached 436 N when the holding time period was 15 min, the hot-pressing temperature was 673 K, and the HyperCoal content, was 15 wt%. Changes in the carbonaceous structure, as reflected by the intensity ratio between the Raman G-and D-bands(IG/ID), strongly affected the compressive strength of hot-pressed briquettes prepared at different hot-pressing temperatures. Compared with cold-pressed briquettes, hot-pressed briquettes have many advantages, including high compressive strength, low ash content, high moisture resistance, and good thermal stability; thus, we expect that hot-pressed briquettes will have broad application prospects.
基金supported by the National Natural Science Foundation of China(No.50105011)
文摘A new pressing method was proposed for hot-pressing process. Experimental results indicated that the porosity in Al2O3/TiC/ Ni/Mo (hereafter called AI2O3/TiC composite) composite compacts decreases by 6% after adopting this new technique, compared to traditional hot-pressing technique under the same sintering temperature. The flexural strength and Vicker hardness increase from 883 MPa to 980 MPa and from 16 GPa to 21.1 GPa, respectively. A theoretical model was given to analyze the densification mechanism of the composite in the process of repetitious-hot-pressing.
基金supported by the National Natural Science Foundation of China (50575034)
文摘FeAl intermetallic compound with different contents of rare earth oxide La2O3 addition was prepared by hot pressing the mechanically alloyed powders.Effect of La2O3 on microstructure and high-temperature wear property of the sintered FeAl samples was investigated in this paper.The results showed that 1 wt.% La2O3 addition could refine the microstructure and increase the density of the FeAl intermetallic compound,and correspondingly improved the high-temperature wear resistance.SEM and EDS analyses of the wo...
基金Funded by the National Engineering and Research Center for Commercial Aircraft Manufacturing(No.SAMC 13-JS-15-034)
文摘A hot-press tackified preform was used to improve the uniformity of the laminates thickness and the mechanical properties of the obtained laminates were studied using vacuum assisted resin transfer molding(VARTM). Two modified preforms were prepared under 0.1 and 0.6 MPa in an autoclave and then were used to fabricate the laminates via VARTM. Permeability and thickness distribution of the laminates were obtained by using a special device. Moreover, the tensile and compressive strengths of the obtained laminates were studied and compared with the unmodified ones. Results show that the tackified laminates present a maximum and minimum thickness under 0.1 and 0.6 MPa, respectively. The thicknesses and in-plane permeability of the tackified laminates, with better thickness uniformity, are significantly decreased compared with that of the unmodified cases, while the tensile and compressive strengths of the tackified laminates are improved obviously. Results show that the mechanical property of the tackified laminates prepared by hotpressing at 0.1 MPa is better than that processed at 0.6 MPa.
基金Project supported by the Major Project of“Science and Technology Innovation 2025”in Ningbo City,China(Grant Nos.2018B10086 and 2018B10017).
文摘The Nd-Fe-B magnets are pre-sintered and then processed with hot-pressing,and the resulting magnets are called the hot-pressed pretreated(HPP)magnets.The coercivity of the HPP magnets increases as the annealed temperature increases.When the annealing temperature is 900℃,the coercivity of the magnet is only 17.6 kOe(1 Oe=79.5775 A·m^-1),but when the annealing temperature rises up to 1060℃,the coercivity of the magnet reaches 23.53 kOe,which is remarkably increased by 33.7%.The microstructure analysis indicates that the grain surface of the HPP magnet becomes smoother as the annealed temperature increases.The microstructure factorαis changed according to the intrinsic coercivity model formula.Theαof the magnet at 900℃is only 0.578,but it is 0.825 at 1060℃.Microstructural optimization is due mainly to the increase of coercivity of the HPP magnet.
基金the National Natural Science Foundation of China under grant No. 50371081.
文摘Densification behavior of nanocrystalline Mg2Si (n-Mg2Si) with grain size about 30-50 nm was investigated by hot-pressing at 400℃. The results indicated that the densification process of n-Mg2Si exhibited three linear segments: p〈0.3 GPa, 0.3 GPa〈p〈1.2 GPa, and p〉1.2 GPa determined by Heckel formula, among which the third fast increasing segment in high pressure range p〉1.2 GPa has seldom been reported in conventional coarse-grained polycrystalline materials. Nevertheless, in the whole pressure range (0.125-1.500 GPa) investigated the densification behavior of n-Mg2Si can be well described by a Kawakita formula p/C=(1/a)p+ 1/(ab) with constant α=0.452 being in good agreement with the initial porosity of the compact.
基金Funded by the Foundation of Postdoctoral Funds of China (No.20060390787)
文摘A new process of reactive hot-press sintering with boron carbide(B4C) and aluminum powders was proposed to overcome difficulties in the sintering of dense B4C ceramic materials.The B4C powder with different content of pure metallic aluminum particle were milled,hot-pressed and sintered at 1600 ℃ for 1 hour.The mechanism of sintering at relative low temperature was analyzed.The phase constitution of the composites was determined.Effects of Al content on the hardness and fracture toughness of the composites were discussed.The results show that thermite reaction procedure in B2O3+Al was the mechanism of sintering at relative low temperature,B4C,Al2O3 and metallic aluminum are the major constituents of the composites.The microhardness of the composites decreases with the increasing of Al content,but the fracture toughness increase obviously.The composite with 5wt% Al content has the best microhardness and fracture toughness in all the composites.
基金Project supported by the Pioneer and Leading Goose R&D Program of Zhejiang(2020C01190)the Science and Technology Innovation 2025Major Project of Ningbo(2020Z064)+1 种基金the Zhejiang Province Postdoctoral Science Foundation(ZJ2021080)the Inner Mongolia Major Technology Project(2021ZD0035)。
文摘Grain boundary diffusion process(GBDP)was first proposed for sintered Nd-Fe-B magnets to achieve the high utilization efficiency of heavy rare earth elements.Recent success of fabricating high performance nanocomposite magnets by GBDP indicates that this method also exerts huge applicable potential on hot-deformed Nd-Fe-B magnets.In this review,the development and magnetic property enhancement mechanisms of different diffusion methods proposed on hot-deformed magnets were thoroughly elucidated.Moreover,the improve room for further property enhancement and the accompanying problems of GBDP on hot-deformed magnets are also discussed in this article.
基金financially supported by the National Natural Science Foundation of China(No.51331003)the Major State Basis Research Development Program of China(No.2014CB643701)。
文摘Effects of low-melting Pr-Cu alloy addition on the microstructure and magnetic properties of the hot-deformation Nd-Fe-B magnets were investigated.A small amount of Pr-Cu addition enhances the coercivity of the hot-deformation Nd-Fe-B magnets obviously.The coercivity of the hotdeformation Nd-Fe-B magnets with 4.0 wt%Pr_(85)Cu_(15)addition increases to 1271 kA·m^(-1),75.69%higher than that of Pr-Cu-free magnet(723 kA·m^(-1)),and then decreases with5 wt%Pr_(85)Cu_(15)addition.It is observed that there a uniform RE-rich phase is formed wrapping the Nd2Fe14B main phase in the sample with 4.0%Pr_(85)Cu_(15)addition by scanning electron microscopy(SEM),which promotes the coercivity.The angular dependence of coercivity for the hot-deformation Nd-Fe-B magnets indicates that the coercivity mechanism is nucleation combined with domain wall pinning.The domain wall pinning is weakened,while the nucleation is enhanced after Pr-Cu addition.Theremanence,intrinsic coercivity,and maximum magnetic energy product of the original Nd-Fe-B magnet are 1.45 T,723 kA·m^(-1),and 419.8 kJ·m^(-3),respectively,and those of the sample with 4.0%Pr_(85)Cu_(15)alloy addition are 1.30 T,1271 kA·m^(-1),and 330.0 kJ·m^(-3),respectively.