期刊文献+
共找到23,469篇文章
< 1 2 250 >
每页显示 20 50 100
Microstructure and mechanical properties of Nb–Mo–ZrB_2 composites prepared by hot-pressing sintering 被引量:3
1
作者 Yuan Gao Zong-de Liu +1 位作者 Qi Wang Yong-tian 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2018年第7期824-831,共8页
Nb-Mo-ZrB2 composites (V(Nb)/V(Mo) = 1) with 15v01% or 30v01% of ZrB2 were fabricated by hot-pressing sintering at 2000~C The phases, microstxucture, and mechamcal properties were then investigated. The composit... Nb-Mo-ZrB2 composites (V(Nb)/V(Mo) = 1) with 15v01% or 30v01% of ZrB2 were fabricated by hot-pressing sintering at 2000~C The phases, microstxucture, and mechamcal properties were then investigated. The composites contain Nb-Mo solid solution (denoted as (Nb, Mo)ss hereafter), ZrB, MoB, and NbB phases. Compressive strength test results suggest that the strength of Nb-Mo-ZrB2 composites increases with increasing ZrB2 content; Nb-Mo-30vol%ZrB2 had the highest compressive strength (1905.1 MPa). The improvement in the compressive strength of the Nb-Mo-ZrB2 composites is mainly attributed to the secondary phase strengthening oftke stiffer ZrB phase, sol- id-solution strengthening oftke (Nb, Mo)ss matrix as well as fme-grain strengtkening. The fracture toughness decreases with increasing ZrB2 content. Finally, the fracture modes oftke Nb-Mo-ZrB2 composites axe also discussed in detail. 展开更多
关键词 metal-matrix composites microstJ-ucture mechaNcal properties sintering
下载PDF
Preparation and Oxidation Resistance of BN-MgAlON Composites by Hot-pressing Sintering
2
作者 Ran LIU Xin-yuan ZHANG +3 位作者 Xing-juan WANG Ya-na QIE Qing L Fu GAO 《Journal of Iron and Steel Research International》 SCIE EI CAS CSCD 2015年第5期423-430,共8页
BN-MgA1ON composites were prepared by hot-pressing sintering under nitrogen atmosphere with BN-Mg- A1ON composite powders as raw material and Y2 O3 as sintering additive. Based on thermodynamic analysis, the oxi- dati... BN-MgA1ON composites were prepared by hot-pressing sintering under nitrogen atmosphere with BN-Mg- A1ON composite powders as raw material and Y2 O3 as sintering additive. Based on thermodynamic analysis, the oxi- dation resistance of BN-MgAION composites was investigated and the dynamics of oxidation process was also ana- lyzed. The oxidation process and the micro-morphology of the samples before and after oxidation were characterized by X-ray diffraction and scanning electron microscopy. The dynamics of oxidation resistance of the BN-MgA1ON composites was investigated via the analysis of the constant temperature oxidation mass gain curves. The results show that the main components of the material are MgA1ON, Sialon, BN and CaYAI3 07 at 1 650--1750 *C, and the content of CaYA1307 decreases as the sintering temperature increases. The BN-MgA1ON composites prepared at 1750 ℃ is uniform and compact with the balanced distributions of A1, Mg, O, and N. The oxidation process of BN- MgA1ON composites in air mainly consists of MgAION, Sialon and BN oxidation. The section after being oxidized at 1000--1300 ℃ involves three layers, namely, the outer layer, the middle layer and the inner layer. The oxidation process follows the parabola model. The apparent activation energy of the oxidation process is 2.13 × 10 5 J/mol and the frequency factor is 4.66 × 10 6. 展开更多
关键词 boron-rich slag carbothermal reduction NITRIDATION hot-pressing sintering BN-MgAION compositeoxidation resistance
原文传递
APPLICATION OF HOT-PRESS SINTERING TECHNIQUE TO EXPLOSIVE CHARGE LINER OF PETROLEUM PERFORATION BULLET
3
作者 刘奎 左敦稳 王珉 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI 1998年第2期78-83,共6页
A new method for manufacturing explosive charge liner of petroleum perforation bullet, using hot press sintering technique, has been introduced in the paper. The sintering process of making explosive charge liner has... A new method for manufacturing explosive charge liner of petroleum perforation bullet, using hot press sintering technique, has been introduced in the paper. The sintering process of making explosive charge liner has been investigated. The mechanical test and SEM analysis indicate that the property of the liner produced by the process is satisfied. 展开更多
关键词 hot press sintering petroleum perforation bullet sintering process explosive charge liner
下载PDF
Effect of La_2O_3 on microstructure and high-temperature wear property of hot-press sintering FeAl intermetallic compound 被引量:3
4
作者 马兴伟 金洙吉 +1 位作者 闫石 徐久军 《Journal of Rare Earths》 SCIE EI CAS CSCD 2009年第6期1031-1036,共6页
FeAl intermetallic compound with different contents of rare earth oxide La2O3 addition was prepared by hot pressing the mechanically alloyed powders.Effect of La2O3 on microstructure and high-temperature wear property... FeAl intermetallic compound with different contents of rare earth oxide La2O3 addition was prepared by hot pressing the mechanically alloyed powders.Effect of La2O3 on microstructure and high-temperature wear property of the sintered FeAl samples was investigated in this paper.The results showed that 1 wt.% La2O3 addition could refine the microstructure and increase the density of the FeAl intermetallic compound,and correspondingly improved the high-temperature wear resistance.SEM and EDS analyses of the wo... 展开更多
关键词 FEAL LA2O3 hot-press sintering high-temperature wear resistance local melting combined with oxidation rare earths
下载PDF
Spark Plasma Sintering of Mg-based Alloys:Microstructure,Mechanical Properties,Corrosion Behavior,and Tribological Performance 被引量:1
5
作者 Alessandro M.Ralls Mohammadreza Daroonparvar Pradeep L.Menezes 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2024年第2期405-442,共38页
Within the past ten years,spark plasma sintering(SPS)has become an increasingly popular process for Mg manufacturing.In the SPS process,interparticle diffusion of compressed particles is rapidly achieved due to the co... Within the past ten years,spark plasma sintering(SPS)has become an increasingly popular process for Mg manufacturing.In the SPS process,interparticle diffusion of compressed particles is rapidly achieved due to the concept of Joule heating.Compared to traditional and additive manufacturing(AM)techniques,SPS gives unique control of the structural and microstructural features of Mg components.By doing so,their mechanical,tribological,and corrosion properties can be tailored.Although great advancements in this field have been made,these pieces of knowledge are scattered and have not been contextualized into a single work.The motivation of this work is to address this scientific gap and to provide a groundwork for understanding the basics of SPS manufacturing for Mg.To do so,the existing body of SPS Mg literature was first surveyed,with a focus on their structural formation and degradation mechanisms.It was found that successful Mg SPS fabrication highly depended on the processing temperature,particle size,and particle crystallinity.The addition of metal and ceramic composites also affected their microstructural features due to the Zener pinning effect.In degradative environments,their performance depends on their structural features and whether they have secondary phased composites.In industrial applications,SPS'd Mg was found to have great potential in biomedical,hydrogen storage,battery,automotive,and recycling sectors.The prospects to advance the field include using Mg as a doping agent for crystallite size refinement and using bulk metallic Mg-based glass powders for amorphous SPS components.Despite these findings,the interactions of multi-composites on the processing-structure-property relationships of SPS Mg is not well understood.In total,this work will provide a useful direction in the SPS field and serve as a milestone for future Mg-based SPS manufacturing. 展开更多
关键词 Spark plasma sintering Magnesium alloys NANOCRYSTALLINE TRIBOLOGY Mechanical properties Corrosion
下载PDF
Phase-Field Simulation of Sintering Process:A Review
6
作者 Ming Xue Min Yi 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第8期1165-1204,共40页
Sintering,a well-established technique in powder metallurgy,plays a critical role in the processing of high melting point materials.A comprehensive understanding of structural changes during the sintering process is e... Sintering,a well-established technique in powder metallurgy,plays a critical role in the processing of high melting point materials.A comprehensive understanding of structural changes during the sintering process is essential for effective product assessment.The phase-field method stands out for its unique ability to simulate these structural transformations.Despite its widespread application,there is a notable absence of literature reviews focused on its usage in sintering simulations.Therefore,this paper addresses this gap by reviewing the latest advancements in phase-field sintering models,covering approaches based on energy,grand potential,and entropy increase.The characteristics of various models are extensively discussed,with a specific emphasis on energy-based models incorporating considerations such as interface energy anisotropy,tensor-form diffusion mechanisms,and various forms of rigid particle motion during sintering.Furthermore,the paper offers a concise summary of phase-field sintering models that integrate with other physical fields,including stress/strain fields,viscous flow,temperature field,and external electric fields.In conclusion,the paper provides a succinct overview of the entire content and delineates potential avenues for future research. 展开更多
关键词 Phase-field model REVIEW sintering additive manufacturing
下载PDF
Effect of sintering temperature and holding time on structure and properties of Li_(1.5)Ga_(0.5)Ti_(1.5)(PO_4)_(3)electrolyte with fast ionic conductivity
7
作者 Yin-yi LUO Hao-zhang LIANG +6 位作者 Ping ZHANG Lei HAN Qian ZHANG Li-dan LIU Zhi-wei LUO Tian-xiang NING An-xian LU 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2024年第9期2959-2971,共13页
Li_(1.5)Ga_(0.5)Ti_(1.5)PO_(4))_(3)(LGTP)is recognized as a promising solid electrolyte material for lithium ions.In this work,LGTP solid electrolyte materials were prepared under different process conditions to explo... Li_(1.5)Ga_(0.5)Ti_(1.5)PO_(4))_(3)(LGTP)is recognized as a promising solid electrolyte material for lithium ions.In this work,LGTP solid electrolyte materials were prepared under different process conditions to explore the effects of sintering temperature and holding time on relative density,phase composition,microstructure,bulk conductivity,and total conductivity.In the impedance test under frequency of 1-10^(6) Hz,the bulk conductivity of the samples increased with increasing sintering temperature,and the total conductivity first increased and then decreased.SEM results showed that the average grain size in the ceramics was controlled by the sintering temperature,which increased from(0.54±0.01)μm to(1.21±0.01)μm when the temperature changed from 750 to 950°C.The relative density of the ceramics increased and then decreased with increasing temperature as the porosity increased.The holding time had little effect on the grain size growth or sample density,but an extended holding time resulted in crack generation that served to reduce the conductivity of the solid electrolyte. 展开更多
关键词 sintering temperature holding time CONDUCTIVITY cracks solid-state electrolyte
下载PDF
Spark Plasma Sintering of Boron Carbide Using Ti_(3)SiC_(2) as a Sintering Additive
8
作者 Hülya Biçer Mustafa Tuncer +3 位作者 Hasan Göçmez Iurii Bogomol Valerii Kolesnichenko Andrey Ragulya 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS CSCD 2024年第3期645-650,共6页
Boron carbide has unique properties for wide application possibilities;however,poor sinterability limits its applications.One approach to overcome this limitation is the addition of secondary phases into boron carbide... Boron carbide has unique properties for wide application possibilities;however,poor sinterability limits its applications.One approach to overcome this limitation is the addition of secondary phases into boron carbide.Boron carbide based composite ceramics are produced by the direct addition of secondary phases into the structure or via reactive sintering using a sintering additive.The present study investigated the effect of Ti_(3)SiC_(2) addition to boron carbide by reactive spark plasma sintering in the range of 1700-1900℃.Ti_(3)SiC_(2) phase decomposed at high temperatures and reacted with B4C to form secondary phases of TiB2 and SiC.The results demonstrated that the increase of Ti_(3)SiC_(2) addition(up to 15 vol%)effectively promoted the densification of B4C and yielded higher hardness.However,as the amount of Ti_(3)SiC_(2) increased further,the formation of microstructural inhomogeneity and agglomeration of secondary phases caused a decrease in hardness. 展开更多
关键词 reactive sintering SPS boron carbide MAX phase
下载PDF
Boosting thermoelectric efficiency of Ag_(2)Se through cold sintering process with Ag nano-precipitate formation
9
作者 Dejwikom Theprattanakorn Thanayut Kaewmaraya Supree Pinitsoontorn 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2024年第12期2760-2769,共10页
Silver selenide(Ag_(2)Se)stands out as a promising thermoelectric(TE)material,particularly for applications near room temper-atures.This research presents a novel approach for the fabrication of bulk Ag_(2)Se samples ... Silver selenide(Ag_(2)Se)stands out as a promising thermoelectric(TE)material,particularly for applications near room temper-atures.This research presents a novel approach for the fabrication of bulk Ag_(2)Se samples at a relatively low temperature(170℃)using the cold sintering process(CSP)with AgNO_(3)solution as a transient liquid agent.The effect of AgNO_(3)addition during CSP on the micro-structure and TE properties was investigated.The results from phase,composition and microstructure analyses showed that the introduc-tion of AgNO_(3)solution induced the formation of Ag nano-precipitates within the Ag_(2)Se matrix.Although the nano-precipitates do not af-fect the phase and crystal structure of orthorhombicβ-Ag_(2)Se,they suppressed crystal growth,leading to reduced crystallite sizes.The samples containing Ag nano-precipitates also exhibited high porosity and low bulk density.Consequently,these effects contributed to sig-nificantly enhanced electrical conductivity and a slight decrease in the Seebeck coefficient when small Ag concentrations were incorpor-ated.This resulted in an improved average power factor from~1540μW·m^(−1)·K^(−2)for pure Ag_(2)Se to~1670μW·m^(−1)·K^(−2)for Ag_(2)Se with additional Ag precipitates.However,excessive Ag addition had a detrimental effect on the power factor.Furthermore,thermal conductiv-ity was effectively suppressed in Ag_(2)Se fabricated using AgNO_(3)-assisted CSP,attributed to enhanced phonon scattering at crystal inter-faces,pores,and Ag nano-precipitates.The highest figure-of-merit(zT)of 0.92 at 300 K was achieved for the Ag_(2)Se with 0.5wt%Ag dur-ing CSP fabrication,equivalent to>20%improvement compared to the controlled Ag_(2)Se without extra Ag solution.Thus,the process outlined in this study presents an effective strategy to tailor the microstructure of bulk Ag_(2)Se and enhance its TE performance at room temperature. 展开更多
关键词 THERMOELECTRIC silver selenide CHALCOGENIDE cold sintering process nano-precipitate
下载PDF
Effect of Sintering Temperature on the Microstructure and Mechanical Properties of Nanocrystalline Cemented Carbide
10
作者 陈先富 刘颖 +1 位作者 YE Jinwen WANG Lu 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS CSCD 2024年第3期664-672,共9页
WC-Co nanocrystalline nitrogen-containing cemented carbides were prepared by vacuum sintering and low pressure sintering.The sintering processes of Cr_(2)(C,N)doped nano WC-Co powders were studied by using thermogravi... WC-Co nanocrystalline nitrogen-containing cemented carbides were prepared by vacuum sintering and low pressure sintering.The sintering processes of Cr_(2)(C,N)doped nano WC-Co powders were studied by using thermogravimetric analysis(TGA)and differential scanning calorimetry(DSC).The effect of sintering temperature on the microstructure and mechanical properties of nanocrystalline cemented carbide was studied by scanning electron microscope(SEM),high resolution transmission electron microscope(HRTEM)and mechanical property test.The results showed that the nano WC grains began to grow in the solid phase sintering stage.A high-performance nano-nitrogen-containing cemented carbide with uniform microstructure and good interfacial bonding can be obtained by increasing the sintering temperature to 1380℃.It has a transverse rupture strength(TRS)of 5057 MPa and a hardness of 1956 HV30. 展开更多
关键词 nano nitrogen cemented carbide sintering temperature MICROSTRUCTURE mechanical properties
下载PDF
Fabrication of YAG:Ce^(3+) and YAG:Ce^(3+),Sc^(3+) Phosphors by Spark Plasma Sintering Technique
11
作者 周卫新 娄朝刚 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS CSCD 2024年第2期255-260,共6页
In this study,a single-doped phosphors yttrium aluminum garnet(Y_(3)Al_(5)O_(12),YAG):Ce^(3+),single-doped YAG:Sc^(3+),and double-doped phosphors YAG:Ce^(3+),Sc^(3+) were prepared by spark plasma sintering(SPS)(lower ... In this study,a single-doped phosphors yttrium aluminum garnet(Y_(3)Al_(5)O_(12),YAG):Ce^(3+),single-doped YAG:Sc^(3+),and double-doped phosphors YAG:Ce^(3+),Sc^(3+) were prepared by spark plasma sintering(SPS)(lower than 1 200℃).The characteristics of synthesized phosphors were determined using scanning electron microscopy(SEM),X-ray diffraction(XRD),and fluorescence spectroscopy.During SPS,the lattice structure of YAG was maintained by the added Ce^(3+) and Sc^(3+).The emission wavelength of YAG:Ce^(3+) prepared from SPS(425-700 nm) was wider compared to that of YAG:Ce^(3+) prepared from high-temperature solid-state reaction(HSSR)(500-700 nm).The incorporation of low-dose Sc^(3+) in YAG:Ce^(3+) moved the emission peak towards the short wavelength. 展开更多
关键词 high-temperature solid-state reaction spark plasma sintering yttrium aluminum garnet PHOSPHORS
下载PDF
Spark plasma sintering of tungsten-based WTaVCr refractory high entropy alloys for nuclear fusion applications
12
作者 Yongchul Yoo Xiang Zhang +4 位作者 Fei Wang Xin Chen Xing-Zhong Li Michael Nastasi Bai Cui 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CSCD 2024年第1期146-154,共9页
W-based WTaVCr refractory high entropy alloys (RHEA) may be novel and promising candidate materials for plasma facing components in the first wall and diverter in fusion reactors. This alloy has been developed by a po... W-based WTaVCr refractory high entropy alloys (RHEA) may be novel and promising candidate materials for plasma facing components in the first wall and diverter in fusion reactors. This alloy has been developed by a powder metallurgy process combining mechanical alloying and spark plasma sintering (SPS). The SPSed samples contained two phases, in which the matrix is RHEA with a body-centered cubic structure, while the oxide phase was most likely Ta2VO6through a combined analysis of X-ray diffraction (XRD),energy-dispersive spectroscopy (EDS), and selected area electron diffraction (SAED). The higher oxygen affinity of Ta and V may explain the preferential formation of their oxide phases based on thermodynamic calculations. Electron backscatter diffraction (EBSD) revealed an average grain size of 6.2μm. WTaVCr RHEA showed a peak compressive strength of 2997 MPa at room temperature and much higher micro-and nano-hardness than W and other W-based RHEAs in the literature. Their high Rockwell hardness can be retained to at least 1000°C. 展开更多
关键词 refractory high entropy alloy plasma-facing material fusion reactor spark plasma sintering
下载PDF
Reactive Hot-press Sintering of Al-B_4C Composites at Relative Low Temperature
13
作者 康鹏超 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2009年第S1期72-74,共3页
A new process of reactive hot-press sintering with boron carbide(B4C) and aluminum powders was proposed to overcome difficulties in the sintering of dense B4C ceramic materials.The B4C powder with different content of... A new process of reactive hot-press sintering with boron carbide(B4C) and aluminum powders was proposed to overcome difficulties in the sintering of dense B4C ceramic materials.The B4C powder with different content of pure metallic aluminum particle were milled,hot-pressed and sintered at 1600 ℃ for 1 hour.The mechanism of sintering at relative low temperature was analyzed.The phase constitution of the composites was determined.Effects of Al content on the hardness and fracture toughness of the composites were discussed.The results show that thermite reaction procedure in B2O3+Al was the mechanism of sintering at relative low temperature,B4C,Al2O3 and metallic aluminum are the major constituents of the composites.The microhardness of the composites decreases with the increasing of Al content,but the fracture toughness increase obviously.The composite with 5wt% Al content has the best microhardness and fracture toughness in all the composites. 展开更多
关键词 aluminum matrix composites boron carbide reactive hot-press sintering phase constitution fracture toughness
下载PDF
Effects of Diamond on the Mechanical Properties and Thermal Conductivity of Si_(3)N_(4)Composites Fabricated Using Spark Plasma Sintering
14
作者 GAO Ying LIU Di +6 位作者 WANG Aiyang ZHANG Song HE Qianglong REN Shifeng FANG Jie WANG Zihan WANG Weimin 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS CSCD 2024年第5期1319-1324,共6页
Micrometer-sized diamonds were incorporated into silicon nitride(Si_(3)N_(4))matrix to manufacture high-performance Si_(3)N_(4)-based composites using spark plasma sintering at 1500℃under 50 MPa.The effects of the di... Micrometer-sized diamonds were incorporated into silicon nitride(Si_(3)N_(4))matrix to manufacture high-performance Si_(3)N_(4)-based composites using spark plasma sintering at 1500℃under 50 MPa.The effects of the diamond content on the phase composition,microstructure,mechanical properties and thermal conductivity of the composites were investigated.The results showed that the addition of diamond could effectively improve the hardness of the material.The thermal conductivity of Si_(3)N_(4)increased to 52.97 W/m·k at the maximum with the addition of 15 wt%diamond,which was 27.5%higher than that of the monolithic Si_(3)N_(4).At this point,the fracture toughness was 7.54 MPa·m^(1/2).Due to the addition of diamond,the composite material generated a new substance,MgSiN2,which effectively combined Si_(3)N_(4)with diamond.MgSiN2 might improve the hardness and thermal conductivity of the materials. 展开更多
关键词 spark plasma sintering Si_(3)N_(4) DIAMOND thermal conductivity mechanical properties
下载PDF
Computational Analysis of Selective Laser Sintering of Inconel 625
15
作者 Bin Xiao Byoung Hee You Tongdan Jin 《Frontiers in Heat and Mass Transfer》 EI 2024年第2期417-432,共16页
A two-dimensional multi-physics finite element model is developed to simulate the Selective Laser Sintering(SLS)process using Inconel 625 powders.The validity of the developed model is first assessed by comparing its ... A two-dimensional multi-physics finite element model is developed to simulate the Selective Laser Sintering(SLS)process using Inconel 625 powders.The validity of the developed model is first assessed by comparing its results with experimental data.Various factors such as phase transition,recoil pressure,surface tension,and theMarangoni force are considered.The study’s findings underscore that the morphology and thermal-fluid dynamics of the molten pool in the SLS process are predominantly shaped by the influence of the Marangoni force and recoil pressure acting on its surface.The recoil pressure at the front of the laser spot rises exponentially with temperature,making the liquid metal move downward,and creating a depression at the pool’s head.It also causes particles to splash from the pool’s rear edge.The study explores the influence of the backward Marangoni force,where hightemperature liquid flows from the front to the rear of the molten pool,creating a vortex and moving the pool in the rear.Process parameters like laser intensity,scan speed,and spot size were analyzed.The findings indicate that higher laser power lower scanning speed and laser beam spot size lead to increased width and depth of the molten pool. 展开更多
关键词 Selective laser sintering(SLS) molten pool recoil pressure marangoni effect
下载PDF
Feasibility Analysis of the Sintering Flue Gas Oxidation Method for Denitrification Technology Route
16
作者 Weiling Chu Linling Wu +1 位作者 Jing Yuan Qianfeng Zhang 《Journal of Materials Science and Chemical Engineering》 2024年第6期12-23,共12页
With the vigorous development of China’s iron and steel industry and the introduction of ultra-low emission policies, the emission of pollutants such as SO2 and NOx has received unprecedented attention. At present, t... With the vigorous development of China’s iron and steel industry and the introduction of ultra-low emission policies, the emission of pollutants such as SO2 and NOx has received unprecedented attention. At present, the commonly used denitrification methods include selective catalytic reduction (SCR), active coke, etc. As a newly developed denitrification technology, oxidation denitrification is not widely used, and the technical level is mixed, and there might be problems such as yellow smoke, secondary pollution and ozone escape in the practical application. In this paper, problems existing in the denitrification process of sintering flue gas oxidation are analyzed, and a 320 m2 sintering machine is taken as an example. Comparing the denitrification technology of sintering industry, it could be seen that the denitrification technology route of oxidation method has low pollution, low cost and high comprehensive environmental benefits, and has greatly potential development. 展开更多
关键词 sintering Air Pollution Denitration by Oxidation
下载PDF
Repetitious-Hot-Pressing Technique in Hot-Pressing Process 被引量:1
17
作者 Shixue SONG, Xing AI, Wei GAO and Jun ZHAO1)School of Mechanical Engineering, Shandong University, Jinan 250061, China2)School of Science, Jinan University, Jinan 250022, China 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2003年第5期486-488,共3页
A new pressing method was proposed for hot-pressing process. Experimental results indicated that the porosity in Al2O3/TiC/ Ni/Mo (hereafter called AI2O3/TiC composite) composite compacts decreases by 6% after adoptin... A new pressing method was proposed for hot-pressing process. Experimental results indicated that the porosity in Al2O3/TiC/ Ni/Mo (hereafter called AI2O3/TiC composite) composite compacts decreases by 6% after adopting this new technique, compared to traditional hot-pressing technique under the same sintering temperature. The flexural strength and Vicker hardness increase from 883 MPa to 980 MPa and from 16 GPa to 21.1 GPa, respectively. A theoretical model was given to analyze the densification mechanism of the composite in the process of repetitious-hot-pressing. 展开更多
关键词 hot-pressing sintering Repetitious-hot-pressing sintering COMPOSITE
下载PDF
Finite-Element Simulation and Experimental Research of the Hot-Press Sintering of Nano-Sized Ceramic Powders
18
作者 Guoqing CHEN Kaifeng ZHANG Guofeng WANG Yandong YU 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2003年第z1期40-42,共3页
Numerical simulation of hot-press sintering of nano-sized ceramic powders was introduced by the commercial finite element code MSC.MARC. The powder plastic model and the thermo-mechanical coupled quadrilateral element... Numerical simulation of hot-press sintering of nano-sized ceramic powders was introduced by the commercial finite element code MSC.MARC. The powder plastic model and the thermo-mechanical coupled quadrilateral element were developed and adopted in the simulation. The mechanical and thermal properties of the nano-sized alumina based powders were determined.In addition, the experimental research and numerical simulation of the sintering process of different initial densities were carried out. The stress state in sintering of green compacts with different initial densities was analyzed by the densification theory.The reason for the density fluctuations of as-sintered ceramic bulks was found out. 展开更多
关键词 sintering FINITE ELEMENT method Green compacts STRESS
下载PDF
Hot-press sintering of MA Fe-based nanocrystalline/amorphous soft magnetic powder 被引量:1
19
作者 卢斌 易丹青 +4 位作者 严彪 殷俊林 刘会群 吴标理 陈小丽 《中国有色金属学会会刊:英文版》 CSCD 2004年第4期686-691,共6页
Microstructures and magnetic properties of Fe84Nb7B9,Fe80Ti8B 12 and Fe32Ni36(Nb/V)7Si8B17 powders and their bulk alloys prepared by mechanical alloying(MA) method and hot-press sintering were studied. The results... Microstructures and magnetic properties of Fe84Nb7B9,Fe80Ti8B 12 and Fe32Ni36(Nb/V)7Si8B17 powders and their bulk alloys prepared by mechanical alloying(MA) method and hot-press sintering were studied. The results show that: 1) After MA for 20 h,nanocrystalline bcc singl e phase supersaturated solid solution forms in Fe84-Nb7B9 and Fe8 0Ti8B12 alloys,amorphous structure forms in Fe32Ni36Nb7 Si8B17 alloy,duplex microstructure composed of nanocrystalline γ- (FeNi) supersaturated solid solution and trace content of Fe2B phase forms in Fe32Ni36-V7Si8B17 alloy. 2) The decomposition process of supersaturated solid solution phases in Fe84Nb7B9 and Fe80Ti8B 12 alloys happens at 710780 ℃,crystallization reaction in Fe (32)Ni36Nb7Si8B17 alloy happens at 530 ℃(the temperature of peak value) and residual amorphous crystallized further happens at 760 ℃ (the temperature of peak value),phase decomposition process of supersaturated solid solution at 780 ℃ (the temperature of peak value) and crystallization reaction at 431 ℃ (the temperature of peak value) happens in Fe32Ni36V7S i8B17 alloy. 3) under 900 ℃,30 MPa,(0.5 h) hot-press sintering conditions,bulk alloys with high relative density(94.7%95.8%) can be ob tained. Except that the grain size of Fe84Nb7B9 bulk alloy is large,s uperfine grains (grain size 50200 nm) are obtained in other alloys. Exc ept that single phase microstructure is obtained in Fe80Ti8B12 bul k alloy,multi-phase microstructures are obtained in other alloys. 4) The magne tic properties of Fe80Ti8B12bulk alloy(Bs=1.74 T,Hc= 4.35 kA/m) are significantly superior to those of other bulk alloys,which is r elated to the different phases of nanocrystalline or amorphous powder formed dur ing hot-press sintering process and grain size. 展开更多
关键词 粉末冶金 软磁材料 纳米晶 机械合金化 热压烧结 磁性能
下载PDF
Effect of basicity on sintering behavior of low-titanium vanadium-titanium magnetite 被引量:10
20
作者 杨松陶 周密 +2 位作者 姜涛 王艳军 薛向欣 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2015年第6期2087-2094,共8页
Basicity has an important effect on the sinter quality, especially for low-titanium vanadium-titanium sinter. The effect of basieity on sintering behavior of low-titanium vanadium-titanium mixture, and the transferenc... Basicity has an important effect on the sinter quality, especially for low-titanium vanadium-titanium sinter. The effect of basieity on sintering behavior of low-titanium vanadium-titanium mixture, and the transference and distribution of element in sintering process were researched by sinter pot test, mineralogical analysis, scanning electron microscopy (SEM) and energy dispersive spectroscopy (EDS) analysis. The results show that CaO preferentially reacts with TiO2, generating pervoskite, so that the total liquid phase content of the sinter is low. There is an increase in the perovskite concentration of the sinter with the basicity ranging from 1.9:1 to 2.7:1. With increasing the basicity, the calcium ferrite content increases slightly and then rises rapidly, while the silicate content decreases and the metallurgical property of the sinter is improved. As for the distribution of these elements in the sinter, Ti occurs mainly in perovskite, V occurs mainly in silicate, and Fe occurs mainly in magnetite and hematite. The most abundant occurrence of Ca and Si occurs in silicate and perovskite. With increasing the basicity, the contents of A1 and Mg increase in calcium ferrite, while they decrease in other minerals. 展开更多
关键词 low-titanium vanadium-titanium magnetite sinter BASICITY MINERALOGY TiO2 CAO
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部