期刊文献+
共找到173,787篇文章
< 1 2 250 >
每页显示 20 50 100
Machine Learning Techniques in Predicting Hot Deformation Behavior of Metallic Materials
1
作者 Petr Opela Josef Walek Jaromír Kopecek 《Computer Modeling in Engineering & Sciences》 SCIE EI 2025年第1期713-732,共20页
In engineering practice,it is often necessary to determine functional relationships between dependent and independent variables.These relationships can be highly nonlinear,and classical regression approaches cannot al... In engineering practice,it is often necessary to determine functional relationships between dependent and independent variables.These relationships can be highly nonlinear,and classical regression approaches cannot always provide sufficiently reliable solutions.Nevertheless,Machine Learning(ML)techniques,which offer advanced regression tools to address complicated engineering issues,have been developed and widely explored.This study investigates the selected ML techniques to evaluate their suitability for application in the hot deformation behavior of metallic materials.The ML-based regression methods of Artificial Neural Networks(ANNs),Support Vector Machine(SVM),Decision Tree Regression(DTR),and Gaussian Process Regression(GPR)are applied to mathematically describe hot flow stress curve datasets acquired experimentally for a medium-carbon steel.Although the GPR method has not been used for such a regression task before,the results showed that its performance is the most favorable and practically unrivaled;neither the ANN method nor the other studied ML techniques provide such precise results of the solved regression analysis. 展开更多
关键词 machine learning Gaussian process regression artificial neural networks support vector machine hot deformation behavior
下载PDF
Prediction of Shear Bond Strength of Asphalt Concrete Pavement Using Machine Learning Models and Grid Search Optimization Technique
2
作者 Quynh-Anh Thi Bui Dam Duc Nguyen +2 位作者 Hiep Van Le Indra Prakash Binh Thai Pham 《Computer Modeling in Engineering & Sciences》 SCIE EI 2025年第1期691-712,共22页
Determination of Shear Bond strength(SBS)at interlayer of double-layer asphalt concrete is crucial in flexible pavement structures.The study used three Machine Learning(ML)models,including K-Nearest Neighbors(KNN),Ext... Determination of Shear Bond strength(SBS)at interlayer of double-layer asphalt concrete is crucial in flexible pavement structures.The study used three Machine Learning(ML)models,including K-Nearest Neighbors(KNN),Extra Trees(ET),and Light Gradient Boosting Machine(LGBM),to predict SBS based on easily determinable input parameters.Also,the Grid Search technique was employed for hyper-parameter tuning of the ML models,and cross-validation and learning curve analysis were used for training the models.The models were built on a database of 240 experimental results and three input variables:temperature,normal pressure,and tack coat rate.Model validation was performed using three statistical criteria:the coefficient of determination(R2),the Root Mean Square Error(RMSE),and the mean absolute error(MAE).Additionally,SHAP analysis was also used to validate the importance of the input variables in the prediction of the SBS.Results show that these models accurately predict SBS,with LGBM providing outstanding performance.SHAP(Shapley Additive explanation)analysis for LGBM indicates that temperature is the most influential factor on SBS.Consequently,the proposed ML models can quickly and accurately predict SBS between two layers of asphalt concrete,serving practical applications in flexible pavement structure design. 展开更多
关键词 Shear bond asphalt pavement grid search OPTIMIZATION machine learning
下载PDF
High-throughput screening of CO_(2) cycloaddition MOF catalyst with an explainable machine learning model
3
作者 Xuefeng Bai Yi Li +3 位作者 Yabo Xie Qiancheng Chen Xin Zhang Jian-Rong Li 《Green Energy & Environment》 SCIE EI CAS 2025年第1期132-138,共7页
The high porosity and tunable chemical functionality of metal-organic frameworks(MOFs)make it a promising catalyst design platform.High-throughput screening of catalytic performance is feasible since the large MOF str... The high porosity and tunable chemical functionality of metal-organic frameworks(MOFs)make it a promising catalyst design platform.High-throughput screening of catalytic performance is feasible since the large MOF structure database is available.In this study,we report a machine learning model for high-throughput screening of MOF catalysts for the CO_(2) cycloaddition reaction.The descriptors for model training were judiciously chosen according to the reaction mechanism,which leads to high accuracy up to 97%for the 75%quantile of the training set as the classification criterion.The feature contribution was further evaluated with SHAP and PDP analysis to provide a certain physical understanding.12,415 hypothetical MOF structures and 100 reported MOFs were evaluated under 100℃ and 1 bar within one day using the model,and 239 potentially efficient catalysts were discovered.Among them,MOF-76(Y)achieved the top performance experimentally among reported MOFs,in good agreement with the prediction. 展开更多
关键词 Metal-organic frameworks High-throughput screening machine learning Explainable model CO_(2)cycloaddition
下载PDF
Congruent Feature Selection Method to Improve the Efficacy of Machine Learning-Based Classification in Medical Image Processing
4
作者 Mohd Anjum Naoufel Kraiem +2 位作者 Hong Min Ashit Kumar Dutta Yousef Ibrahim Daradkeh 《Computer Modeling in Engineering & Sciences》 SCIE EI 2025年第1期357-384,共28页
Machine learning(ML)is increasingly applied for medical image processing with appropriate learning paradigms.These applications include analyzing images of various organs,such as the brain,lung,eye,etc.,to identify sp... Machine learning(ML)is increasingly applied for medical image processing with appropriate learning paradigms.These applications include analyzing images of various organs,such as the brain,lung,eye,etc.,to identify specific flaws/diseases for diagnosis.The primary concern of ML applications is the precise selection of flexible image features for pattern detection and region classification.Most of the extracted image features are irrelevant and lead to an increase in computation time.Therefore,this article uses an analytical learning paradigm to design a Congruent Feature Selection Method to select the most relevant image features.This process trains the learning paradigm using similarity and correlation-based features over different textural intensities and pixel distributions.The similarity between the pixels over the various distribution patterns with high indexes is recommended for disease diagnosis.Later,the correlation based on intensity and distribution is analyzed to improve the feature selection congruency.Therefore,the more congruent pixels are sorted in the descending order of the selection,which identifies better regions than the distribution.Now,the learning paradigm is trained using intensity and region-based similarity to maximize the chances of selection.Therefore,the probability of feature selection,regardless of the textures and medical image patterns,is improved.This process enhances the performance of ML applications for different medical image processing.The proposed method improves the accuracy,precision,and training rate by 13.19%,10.69%,and 11.06%,respectively,compared to other models for the selected dataset.The mean error and selection time is also reduced by 12.56%and 13.56%,respectively,compared to the same models and dataset. 展开更多
关键词 Computer vision feature selection machine learning region detection texture analysis image classification medical images
下载PDF
Machine learning applications in healthcare clinical practice and research
5
作者 Nikolaos-Achilleas Arkoudis Stavros P Papadakos 《World Journal of Clinical Cases》 SCIE 2025年第1期16-21,共6页
Machine learning(ML)is a type of artificial intelligence that assists computers in the acquisition of knowledge through data analysis,thus creating machines that can complete tasks otherwise requiring human intelligen... Machine learning(ML)is a type of artificial intelligence that assists computers in the acquisition of knowledge through data analysis,thus creating machines that can complete tasks otherwise requiring human intelligence.Among its various applications,it has proven groundbreaking in healthcare as well,both in clinical practice and research.In this editorial,we succinctly introduce ML applications and present a study,featured in the latest issue of the World Journal of Clinical Cases.The authors of this study conducted an analysis using both multiple linear regression(MLR)and ML methods to investigate the significant factors that may impact the estimated glomerular filtration rate in healthy women with and without non-alcoholic fatty liver disease(NAFLD).Their results implicated age as the most important determining factor in both groups,followed by lactic dehydrogenase,uric acid,forced expiratory volume in one second,and albumin.In addition,for the NAFLD-group,the 5th and 6th most important impact factors were thyroid-stimulating hormone and systolic blood pressure,as compared to plasma calcium and body fat for the NAFLD+group.However,the study's distinctive contribution lies in its adoption of ML methodologies,showcasing their superiority over traditional statistical approaches(herein MLR),thereby highlighting the potential of ML to represent an invaluable advanced adjunct tool in clinical practice and research. 展开更多
关键词 machine Learning Artificial INTELLIGENCE CLINICAL Practice RESEARCH Glomerular filtration rate Non-alcoholic fatty liver disease MEDICINE
下载PDF
Machine learning and deep learning to improve prevention of anastomotic leak after rectal cancer surgery
6
作者 Francesco Celotto Quoc R Bao +2 位作者 Giulia Capelli Gaya Spolverato Andrew A Gumbs 《World Journal of Gastrointestinal Surgery》 2025年第1期25-31,共7页
Anastomotic leakage(AL)is a significant complication following rectal cancer surgery,adversely affecting both quality of life and oncological outcomes.Recent advancements in artificial intelligence(AI),particularly ma... Anastomotic leakage(AL)is a significant complication following rectal cancer surgery,adversely affecting both quality of life and oncological outcomes.Recent advancements in artificial intelligence(AI),particularly machine learning and deep learning,offer promising avenues for predicting and preventing AL.These technologies can analyze extensive clinical datasets to identify preoperative and perioperative risk factors such as malnutrition,body composition,and radiological features.AI-based models have demonstrated superior predictive power compared to traditional statistical methods,potentially guiding clinical decisionmaking and improving patient outcomes.Additionally,AI can provide surgeons with intraoperative feedback on blood supply and anatomical dissection planes,minimizing the risk of intraoperative complications and reducing the likelihood of AL development. 展开更多
关键词 Anastomotic leak Rectal cancer SURGERY machine learning Deep Learning
下载PDF
A Machine Learning-Based Observational Constraint Correction Method for Seasonal Precipitation Prediction
7
作者 Bofei ZHANG Haipeng YU +5 位作者 Zeyong HU Ping YUE Zunye TANG Hongyu LUO Guantian WANG Shanling CHENG 《Advances in Atmospheric Sciences》 2025年第1期36-52,共17页
Seasonal precipitation has always been a key focus of climate prediction.As a dynamic-statistical combined method,the existing observational constraint correction establishes a regression relationship between the nume... Seasonal precipitation has always been a key focus of climate prediction.As a dynamic-statistical combined method,the existing observational constraint correction establishes a regression relationship between the numerical model outputs and historical observations,which can partly predict seasonal precipitation.However,solving a nonlinear problem through linear regression is significantly biased.This study implements a nonlinear optimization of an existing observational constrained correction model using a Light Gradient Boosting Machine(LightGBM)machine learning algorithm based on output from the Beijing National Climate Center Climate System Model(BCC-CSM)and station observations to improve the prediction of summer precipitation in China.The model was trained using a rolling approach,and LightGBM outperformed Linear Regression(LR),Extreme Gradient Boosting(XGBoost),and Categorical Boosting(CatBoost).Using parameter tuning to optimize the machine learning model and predict future summer precipitation using eight different predictors in BCC-CSM,the mean Anomaly Correlation Coefficient(ACC)score in the 2019–22 summer precipitation predictions was 0.17,and the mean Prediction Score(PS)reached 74.The PS score was improved by 7.87%and 6.63%compared with the BCC-CSM and the linear observational constraint approach,respectively.The observational constraint correction prediction strategy with LightGBM significantly and stably improved the prediction of summer precipitation in China compared to the previous linear observational constraint solution,providing a reference for flood control and drought relief during the flood season(summer)in China. 展开更多
关键词 observational constraint LightGBM seasonal prediction summer precipitation machine learning
下载PDF
Machine learning model using immune indicators to predict outcomes in early liver cancer
8
作者 Yi Zhang Ke Shi +1 位作者 Ying Feng Xian-Bo Wang 《World Journal of Gastroenterology》 2025年第5期43-56,共14页
BACKGROUND Patients with early-stage hepatocellular carcinoma(HCC)generally have good survival rates following surgical resection.However,a subset of these patients experience recurrence within five years post-surgery... BACKGROUND Patients with early-stage hepatocellular carcinoma(HCC)generally have good survival rates following surgical resection.However,a subset of these patients experience recurrence within five years post-surgery.AIM To develop predictive models utilizing machine learning(ML)methods to detect early-stage patients at a high risk of mortality.METHODS Eight hundred and eight patients with HCC at Beijing Ditan Hospital were randomly allocated to training and validation cohorts in a 2:1 ratio.Prognostic models were generated using random survival forests and artificial neural networks(ANNs).These ML models were compared with other classic HCC scoring systems.A decision-tree model was established to validate the contri-bution of immune-inflammatory indicators to the long-term outlook of patients with early-stage HCC.RESULTS Immune-inflammatory markers,albumin-bilirubin scores,alpha-fetoprotein,tumor size,and International Normalized Ratio were closely associated with the 5-year survival rates.Among various predictive models,the ANN model gene-rated using these indicators through ML algorithms exhibited superior perfor-mance,with a 5-year area under the curve(AUC)of 0.85(95%CI:0.82-0.88).In the validation cohort,the 5-year AUC was 0.82(95%CI:0.74-0.85).According to the ANN model,patients were classified into high-risk and low-risk groups,with an overall survival hazard ratio of 7.98(95%CI:5.85-10.93,P<0.0001)between the two cohorts.INTRODUCTION Hepatocellular carcinoma(HCC)is one of the six most prevalent cancers[1]and the third leading cause of cancer-related mortality[2].China has some of the highest incidence and mortality rates for liver cancer,accounting for half of global cases[3,4].The Barcelona Clinic Liver Cancer(BCLC)Staging System is the most widely used framework for diagnosing and treating HCC[5].The optimal candidates for surgical treatment are those with early-stage HCC,classified as BCLC stage 0 or A.Patients with early-stage liver cancer typically have a better prognosis after surgical resection,achieving a 5-year survival rate of 60%-70%[6].However,the high postoperative recurrence rates of HCC remain a major obstacle to long-term efficacy.To improve the prognosis of patients with early-stage HCC,it is necessary to develop models that can identify those with poor prognoses,enabling stratified and personalized treatment and follow-up strategies.Chronic inflammation is linked to the development and advancement of tumors[7].Recently,peripheral blood immune indicators,such as neutrophil-to-lymphocyte ratio(NLR),platelet-to-lymphocyte ratio(PLR),and lymphocyte-to-monocyte ratio(LMR),have garnered extensive attention and have been used to predict survival in various tumors and inflammation-related diseases[8-10].However,the relationship between these combinations of immune markers and the outcomes in patients with early-stage HCC require further investigation.Machine learning(ML)algorithms are capable of handling large and complex datasets,generating more accurate and personalized predictions through unique training algorithms that better manage nonlinear statistical relationships than traditional analytical methods.Commonly used ML models include artificial neural networks(ANNs)and random survival forests(RSFs),which have shown satisfactory accuracy in prognostic predictions across various cancers and other diseases[11-13].ANNs have performed well in identifying the progression from liver cirrhosis to HCC and predicting overall survival(OS)in patients with HCC[14,15].However,no studies have confirmed the ability of ML models to predict post-surgical survival in patients with early-stage HCC.Through ML,a better understanding of the risk factors for early-stage HCC prognosis can be achieved.This aids in surgical decision-making,identifying patients at a high risk of mortality,and selecting subsequent treatment strategies.In this study,we aimed to establish a 5-year prognostic model for patients with early-stage HCC after surgical resection,based on ML and systemic immune-inflammatory indicators.This model seeks to improve the early monitoring of high-risk patients and provide personalized treatment plans. 展开更多
关键词 Hepatocellular carcinoma Inflammation machine learning Prognosis Artificial neural networks Immune biomarkers
下载PDF
Machine learning-based aftershock seismicity of the 2015 Gorkha earthquake controlled by flat-ramp geometry and a tear fault
9
作者 Yeyang Kuang Jiangtao Li 《Earthquake Science》 2025年第1期17-32,共16页
The Main Himalayan Thrust(MHT),where the 2015 MW7.8 Gorkha earthquake occurred,features the most seismicity of any structure in Nepal.The structural complexity of the MHT makes it difficult to obtain a definitive inte... The Main Himalayan Thrust(MHT),where the 2015 MW7.8 Gorkha earthquake occurred,features the most seismicity of any structure in Nepal.The structural complexity of the MHT makes it difficult to obtain a definitive interpretation of deep seismogenic structures.The application of new methods and data in this region is necessary to enhance local seismic hazard analyses.In this study,we used a well-designed machine learning-based earthquake location workflow(LOC-FLOW),which incorporates machine learning phase picking,phase association,absolute location,and double-difference relative location,to process seismic data collected by the Hi-CLIMB and NAMASTE seismic networks.We built a high-precision earthquake catalog of both the quiet-period and aftershock seismicity in this region.The seismicity distribution suggests that the quietperiod seismicity(388 events)was controlled by a mid-crustal ramp and the aftershock seismicity(12,669 events)was controlled by several geological structures of the MHT.The higher-level detail of the catalogs derived from this machine learning method reveal clearer structural characteristics,showing how the flat-ramp geometry and a possible duplex structure affect the depth distribution of the seismic events,and how a tear fault changes this distribution along strike. 展开更多
关键词 aftershock seismicity 2015 Gorkha earthquake machine learning flat-ramp geometry tear fault
下载PDF
Machine learning based damage state identification:A novel perspective on fragility analysis for nuclear power plants considering structural uncertainties
10
作者 Zheng Zhi Wang Yong +1 位作者 Pan Xiaolan Ji Duofa 《Earthquake Engineering and Engineering Vibration》 2025年第1期201-222,共22页
Seismic fragility analysis(SFA)is known as an effective probabilistic-based approach used to evaluate seismic fragility.There are various sources of uncertainties associated with this approach.A nuclear power plant(NP... Seismic fragility analysis(SFA)is known as an effective probabilistic-based approach used to evaluate seismic fragility.There are various sources of uncertainties associated with this approach.A nuclear power plant(NPP)system is an extremely important infrastructure and contains many structural uncertainties due to construction issues or structural deterioration during service.Simulation of structural uncertainties effects is a costly and time-consuming endeavor.A novel approach to SFA for the NPP considering structural uncertainties based on the damage state is proposed and examined.The results suggest that considering the structural uncertainties is essential in assessing the fragility of the NPP structure,and the impact of structural uncertainties tends to increase with the state of damage.Subsequently,machine learning(ML)is found to be superior in high-precision damage state identification of the NPP for reducing the time of nonlinear time-history analysis(NLTHA)and could be applied in the damage state-based SFA.Also,the impact of various sources of uncertainties is investigated through sensitivity analysis.The Sobol and Shapley additive explanations(SHAP)method can be complementary to each other and able to solve the problem of quantifying seismic and structural uncertainties simultaneously and the interaction effect of each parameter. 展开更多
关键词 seismic fragility analysis damage state structural uncertainties machine learning sensitivity analysis
下载PDF
Machine learning prediction of hepatic encephalopathy for long-term survival after transjugular intrahepatic portosystemic shunt in acute variceal bleeding
11
作者 De-Jia Liu Li-Xuan Jia +9 位作者 Feng-Xia Zeng Wei-Xiong Zeng Geng-Geng Qin Qi-Feng Peng Qing Tan Hui Zeng Zhong-Yue Ou Li-Zi Kun Jian-Bo Zhao Wei-Guo Chen 《World Journal of Gastroenterology》 2025年第4期59-71,共13页
BACKGROUND Transjugular intrahepatic portosystemic shunt(TIPS)is an effective intervention for managing complications of portal hypertension,particularly acute variceal bleeding(AVB).While effective in reducing portal... BACKGROUND Transjugular intrahepatic portosystemic shunt(TIPS)is an effective intervention for managing complications of portal hypertension,particularly acute variceal bleeding(AVB).While effective in reducing portal pressure and preventing rebleeding,TIPS is associated with a considerable risk of overt hepatic encephalopathy(OHE),a complication that significantly elevates mortality rates.AIM To develop a machine learning(ML)model to predict OHE occurrence post-TIPS in patients with AVB using a 5-year dataset.METHODS This retrospective single-center study included 218 patients with AVB who underwent TIPS.The dataset was divided into training(70%)and testing(30%)sets.Critical features were identified using embedded methods and recursive feature elimination.Three ML algorithms-random forest,extreme gradient boosting,and logistic regression-were validated via 10-fold cross-validation.SHapley Additive exPlanations analysis was employed to interpret the model’s predictions.Survival analysis was conducted using Kaplan-Meier curves and stepwise Cox regression analysis to compare overall survival(OS)between patients with and without OHE.RESULTS The median OS of the study cohort was 47.83±22.95 months.Among the models evaluated,logistic regression demonstrated the highest performance with an area under the curve(AUC)of 0.825.Key predictors identified were Child-Pugh score,age,and portal vein thrombosis.Kaplan-Meier analysis revealed that patients without OHE had a significantly longer OS(P=0.005).The 5-year survival rate was 78.4%,with an OHE incidence of 15.1%.Both actual OHE status and predicted OHE value were significant predictors in each Cox model,with model-predicted OHE achieving an AUC of 88.1 in survival prediction.CONCLUSION The ML model accurately predicts post-TIPS OHE and outperforms traditional models,supporting its use in improving outcomes in patients with AVB. 展开更多
关键词 Transjugular intrahepatic portosystemic shunt Acute variceal bleeding Overt hepatic encephalopathy machine learning Logistic regression
下载PDF
Novel genes involved in vascular dysfunction of the middle temporal gyrus in Alzheimer's disease:transcriptomics combined with machine learning analysis
12
作者 Meiling Wang Aojie He +5 位作者 Yubing Kang Zhaojun Wang Yahui He Kahleong Lim Chengwu Zhang Li Lu 《Neural Regeneration Research》 2025年第12期3620-3634,共15页
Studies have shown that vascular dysfunction is closely related to the pathogenesis of Alzheimer's disease.The middle temporal gyrus region of the brain is susceptible to pronounced impairment in Alzheimer's d... Studies have shown that vascular dysfunction is closely related to the pathogenesis of Alzheimer's disease.The middle temporal gyrus region of the brain is susceptible to pronounced impairment in Alzheimer's disease.Identification of the molecules involved in vascular aberrance of the middle temporal gyrus would support elucidation of the mechanisms underlying Alzheimer's disease and discove ry of novel targets for intervention.We carried out single-cell transcriptomic analysis of the middle temporal gyrus in the brains of patients with Alzheimer's disease and healthy controls,revealing obvious changes in vascular function.CellChat analysis of intercellular communication in the middle temporal gyrus showed that the number of cell interactions in this region was decreased in Alzheimer's disease patients,with altered intercellular communication of endothelial cells and pericytes being the most prominent.Differentially expressed genes were also identified.Using the CellChat results,AUCell evaluation of the pathway activity of specific cells showed that the obvious changes in vascular function in the middle temporal gyrus in Alzheimer's disease were directly related to changes in the vascular endothelial growth factor(VEGF)A-VEGF receptor(VEGFR)2 pathway.AUCell analysis identified subtypes of endothelial cells and pericytes directly related to VEGFA-VEGFR2 pathway activity.Two subtypes of middle temporal gyrus cells showed significant alteration in AD:endothelial cells with high expression of Erb-B2 receptor tyrosine kinase 4(ERBB4^(high))and pericytes with high expression of angiopoietin-like 4(ANGPTL4^(high)).Finally,combining bulk RNA sequencing data and two machine learning algorithms(least absolute shrinkage and selection operator and random forest),four characteristic Alzheimer's disease feature genes were identified:somatostatin(SST),protein tyrosine phosphatase non-receptor type 3(PTPN3),glutinase(GL3),and tropomyosin 3(PTM3).These genes were downregulated in the middle temporal gyrus of patients with Alzheimer's disease and may be used to target the VEGF pathway.Alzheimer's disease mouse models demonstrated consistent altered expression of these genes in the middle temporal gyrus.In conclusion,this study detected changes in intercellular communication between endothelial cells and pericytes in the middle temporal gyrus and identified four novel feature genes related to middle temporal gyrus and vascular functioning in patients with Alzheimer's disease.These findings contribute to a deeper understanding of the molecular mechanisms underlying Alzheimer's disease and present novel treatment targets. 展开更多
关键词 Alzheimer’s disease bioinformatics CellChat cerebrovascular disorders endothelial cells intercellular communication machine learning middle temporal gyrus PERICYTES vascular endothelial growth factor pathway
下载PDF
Machine learning for predicting the outcome of terminal ballistics events 被引量:2
13
作者 Shannon Ryan Neeraj Mohan Sushma +4 位作者 Arun Kumar AV Julian Berk Tahrima Hashem Santu Rana Svetha Venkatesh 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第1期14-26,共13页
Machine learning(ML) is well suited for the prediction of high-complexity,high-dimensional problems such as those encountered in terminal ballistics.We evaluate the performance of four popular ML-based regression mode... Machine learning(ML) is well suited for the prediction of high-complexity,high-dimensional problems such as those encountered in terminal ballistics.We evaluate the performance of four popular ML-based regression models,extreme gradient boosting(XGBoost),artificial neural network(ANN),support vector regression(SVR),and Gaussian process regression(GP),on two common terminal ballistics’ problems:(a)predicting the V50ballistic limit of monolithic metallic armour impacted by small and medium calibre projectiles and fragments,and(b) predicting the depth to which a projectile will penetrate a target of semi-infinite thickness.To achieve this we utilise two datasets,each consisting of approximately 1000samples,collated from public release sources.We demonstrate that all four model types provide similarly excellent agreement when interpolating within the training data and diverge when extrapolating outside this range.Although extrapolation is not advisable for ML-based regression models,for applications such as lethality/survivability analysis,such capability is required.To circumvent this,we implement expert knowledge and physics-based models via enforced monotonicity,as a Gaussian prior mean,and through a modified loss function.The physics-informed models demonstrate improved performance over both classical physics-based models and the basic ML regression models,providing an ability to accurately fit experimental data when it is available and then revert to the physics-based model when not.The resulting models demonstrate high levels of predictive accuracy over a very wide range of projectile types,target materials and thicknesses,and impact conditions significantly more diverse than that achievable from any existing analytical approach.Compared with numerical analysis tools such as finite element solvers the ML models run orders of magnitude faster.We provide some general guidelines throughout for the development,application,and reporting of ML models in terminal ballistics problems. 展开更多
关键词 machine learning Artificial intelligence Physics-informed machine learning Terminal ballistics Armour
下载PDF
Significant risk factors for intensive care unit-acquired weakness:A processing strategy based on repeated machine learning 被引量:10
14
作者 Ling Wang Deng-Yan Long 《World Journal of Clinical Cases》 SCIE 2024年第7期1235-1242,共8页
BACKGROUND Intensive care unit-acquired weakness(ICU-AW)is a common complication that significantly impacts the patient's recovery process,even leading to adverse outcomes.Currently,there is a lack of effective pr... BACKGROUND Intensive care unit-acquired weakness(ICU-AW)is a common complication that significantly impacts the patient's recovery process,even leading to adverse outcomes.Currently,there is a lack of effective preventive measures.AIM To identify significant risk factors for ICU-AW through iterative machine learning techniques and offer recommendations for its prevention and treatment.METHODS Patients were categorized into ICU-AW and non-ICU-AW groups on the 14th day post-ICU admission.Relevant data from the initial 14 d of ICU stay,such as age,comorbidities,sedative dosage,vasopressor dosage,duration of mechanical ventilation,length of ICU stay,and rehabilitation therapy,were gathered.The relationships between these variables and ICU-AW were examined.Utilizing iterative machine learning techniques,a multilayer perceptron neural network model was developed,and its predictive performance for ICU-AW was assessed using the receiver operating characteristic curve.RESULTS Within the ICU-AW group,age,duration of mechanical ventilation,lorazepam dosage,adrenaline dosage,and length of ICU stay were significantly higher than in the non-ICU-AW group.Additionally,sepsis,multiple organ dysfunction syndrome,hypoalbuminemia,acute heart failure,respiratory failure,acute kidney injury,anemia,stress-related gastrointestinal bleeding,shock,hypertension,coronary artery disease,malignant tumors,and rehabilitation therapy ratios were significantly higher in the ICU-AW group,demonstrating statistical significance.The most influential factors contributing to ICU-AW were identified as the length of ICU stay(100.0%)and the duration of mechanical ventilation(54.9%).The neural network model predicted ICU-AW with an area under the curve of 0.941,sensitivity of 92.2%,and specificity of 82.7%.CONCLUSION The main factors influencing ICU-AW are the length of ICU stay and the duration of mechanical ventilation.A primary preventive strategy,when feasible,involves minimizing both ICU stay and mechanical ventilation duration. 展开更多
关键词 Intensive care unit-acquired weakness Risk factors machine learning PREVENTION Strategies
下载PDF
High-throughput calculations combining machine learning to investigate the corrosion properties of binary Mg alloys 被引量:4
15
作者 Yaowei Wang Tian Xie +4 位作者 Qingli Tang Mingxu Wang Tao Ying Hong Zhu Xiaoqin Zeng 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2024年第4期1406-1418,共13页
Magnesium(Mg)alloys have shown great prospects as both structural and biomedical materials,while poor corrosion resistance limits their further application.In this work,to avoid the time-consuming and laborious experi... Magnesium(Mg)alloys have shown great prospects as both structural and biomedical materials,while poor corrosion resistance limits their further application.In this work,to avoid the time-consuming and laborious experiment trial,a high-throughput computational strategy based on first-principles calculations is designed for screening corrosion-resistant binary Mg alloy with intermetallics,from both the thermodynamic and kinetic perspectives.The stable binary Mg intermetallics with low equilibrium potential difference with respect to the Mg matrix are firstly identified.Then,the hydrogen adsorption energies on the surfaces of these Mg intermetallics are calculated,and the corrosion exchange current density is further calculated by a hydrogen evolution reaction(HER)kinetic model.Several intermetallics,e.g.Y_(3)Mg,Y_(2)Mg and La_(5)Mg,are identified to be promising intermetallics which might effectively hinder the cathodic HER.Furthermore,machine learning(ML)models are developed to predict Mg intermetallics with proper hydrogen adsorption energy employing work function(W_(f))and weighted first ionization energy(WFIE).The generalization of the ML models is tested on five new binary Mg intermetallics with the average root mean square error(RMSE)of 0.11 eV.This study not only predicts some promising binary Mg intermetallics which may suppress the galvanic corrosion,but also provides a high-throughput screening strategy and ML models for the design of corrosion-resistant alloy,which can be extended to ternary Mg alloys or other alloy systems. 展开更多
关键词 Mg intermetallics Corrosion property HIGH-THROUGHPUT Density functional theory machine learning
下载PDF
Machine Fault Diagnosis Using Audio Sensors Data and Explainable AI Techniques-LIME and SHAP 被引量:1
16
作者 Aniqua Nusrat Zereen Abir Das Jia Uddin 《Computers, Materials & Continua》 SCIE EI 2024年第9期3463-3484,共22页
Machine fault diagnostics are essential for industrial operations,and advancements in machine learning have significantly advanced these systems by providing accurate predictions and expedited solutions.Machine learni... Machine fault diagnostics are essential for industrial operations,and advancements in machine learning have significantly advanced these systems by providing accurate predictions and expedited solutions.Machine learning models,especially those utilizing complex algorithms like deep learning,have demonstrated major potential in extracting important information fromlarge operational datasets.Despite their efficiency,machine learningmodels face challenges,making Explainable AI(XAI)crucial for improving their understandability and fine-tuning.The importance of feature contribution and selection using XAI in the diagnosis of machine faults is examined in this study.The technique is applied to evaluate different machine-learning algorithms.Extreme Gradient Boosting,Support Vector Machine,Gaussian Naive Bayes,and Random Forest classifiers are used alongside Logistic Regression(LR)as a baseline model because their efficacy and simplicity are evaluated thoroughly with empirical analysis.The XAI is used as a targeted feature selection technique to select among 29 features of the time and frequency domain.The XAI approach is lightweight,trained with only targeted features,and achieved similar results as the traditional approach.The accuracy without XAI on baseline LR is 79.57%,whereas the approach with XAI on LR is 80.28%. 展开更多
关键词 Explainable AI feature selection machine learning machine fault diagnosis
下载PDF
Prediction model for corrosion rate of low-alloy steels under atmospheric conditions using machine learning algorithms 被引量:3
17
作者 Jingou Kuang Zhilin Long 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2024年第2期337-350,共14页
This work constructed a machine learning(ML)model to predict the atmospheric corrosion rate of low-alloy steels(LAS).The material properties of LAS,environmental factors,and exposure time were used as the input,while ... This work constructed a machine learning(ML)model to predict the atmospheric corrosion rate of low-alloy steels(LAS).The material properties of LAS,environmental factors,and exposure time were used as the input,while the corrosion rate as the output.6 dif-ferent ML algorithms were used to construct the proposed model.Through optimization and filtering,the eXtreme gradient boosting(XG-Boost)model exhibited good corrosion rate prediction accuracy.The features of material properties were then transformed into atomic and physical features using the proposed property transformation approach,and the dominant descriptors that affected the corrosion rate were filtered using the recursive feature elimination(RFE)as well as XGBoost methods.The established ML models exhibited better predic-tion performance and generalization ability via property transformation descriptors.In addition,the SHapley additive exPlanations(SHAP)method was applied to analyze the relationship between the descriptors and corrosion rate.The results showed that the property transformation model could effectively help with analyzing the corrosion behavior,thereby significantly improving the generalization ability of corrosion rate prediction models. 展开更多
关键词 machine learning low-alloy steel atmospheric corrosion prediction corrosion rate feature fusion
下载PDF
Machine learning applications in stroke medicine:advancements,challenges,and future prospectives 被引量:5
18
作者 Mario Daidone Sergio Ferrantelli Antonino Tuttolomondo 《Neural Regeneration Research》 SCIE CAS CSCD 2024年第4期769-773,共5页
Stroke is a leading cause of disability and mortality worldwide,necessitating the development of advanced technologies to improve its diagnosis,treatment,and patient outcomes.In recent years,machine learning technique... Stroke is a leading cause of disability and mortality worldwide,necessitating the development of advanced technologies to improve its diagnosis,treatment,and patient outcomes.In recent years,machine learning techniques have emerged as promising tools in stroke medicine,enabling efficient analysis of large-scale datasets and facilitating personalized and precision medicine approaches.This abstract provides a comprehensive overview of machine learning’s applications,challenges,and future directions in stroke medicine.Recently introduced machine learning algorithms have been extensively employed in all the fields of stroke medicine.Machine learning models have demonstrated remarkable accuracy in imaging analysis,diagnosing stroke subtypes,risk stratifications,guiding medical treatment,and predicting patient prognosis.Despite the tremendous potential of machine learning in stroke medicine,several challenges must be addressed.These include the need for standardized and interoperable data collection,robust model validation and generalization,and the ethical considerations surrounding privacy and bias.In addition,integrating machine learning models into clinical workflows and establishing regulatory frameworks are critical for ensuring their widespread adoption and impact in routine stroke care.Machine learning promises to revolutionize stroke medicine by enabling precise diagnosis,tailored treatment selection,and improved prognostication.Continued research and collaboration among clinicians,researchers,and technologists are essential for overcoming challenges and realizing the full potential of machine learning in stroke care,ultimately leading to enhanced patient outcomes and quality of life.This review aims to summarize all the current implications of machine learning in stroke diagnosis,treatment,and prognostic evaluation.At the same time,another purpose of this paper is to explore all the future perspectives these techniques can provide in combating this disabling disease. 展开更多
关键词 cerebrovascular disease deep learning machine learning reinforcement learning STROKE stroke therapy supervised learning unsupervised learning
下载PDF
Leveraging machine learning for early recurrence prediction in hepatocellular carcinoma:A step towards precision medicine 被引量:3
19
作者 Abhimati Ravikulan Kamran Rostami 《World Journal of Gastroenterology》 SCIE CAS 2024年第5期424-428,共5页
The high rate of early recurrence in hepatocellular carcinoma(HCC)post curative surgical intervention poses a substantial clinical hurdle,impacting patient outcomes and complicating postoperative management.The advent... The high rate of early recurrence in hepatocellular carcinoma(HCC)post curative surgical intervention poses a substantial clinical hurdle,impacting patient outcomes and complicating postoperative management.The advent of machine learning provides a unique opportunity to harness vast datasets,identifying subtle patterns and factors that elude conventional prognostic methods.Machine learning models,equipped with the ability to analyse intricate relationships within datasets,have shown promise in predicting outcomes in various medical disciplines.In the context of HCC,the application of machine learning to predict early recurrence holds potential for personalized postoperative care strategies.This editorial comments on the study carried out exploring the merits and efficacy of random survival forests(RSF)in identifying significant risk factors for recurrence,stratifying patients at low and high risk of HCC recurrence and comparing this to traditional COX proportional hazard models(CPH).In doing so,the study demonstrated that the RSF models are superior to traditional CPH models in predicting recurrence of HCC and represent a giant leap towards precision medicine. 展开更多
关键词 machine learning Artificial intelligence Hepatocellular carcinoma HEPATOLOGY Early recurrence Liver resection
下载PDF
Five-phase Synchronous Reluctance Machines Equipped with a Novel Type of Fractional Slot Winding 被引量:1
20
作者 S.M.Taghavi Araghi A.Kiyoumarsi B.Mirzaeian Dehkordi 《CES Transactions on Electrical Machines and Systems》 EI CSCD 2024年第3期264-273,共10页
Multi-phase machines are so attractive for electrical machine designers because of their valuable advantages such as high reliability and fault tolerant ability.Meanwhile,fractional slot concentrated windings(FSCW)are... Multi-phase machines are so attractive for electrical machine designers because of their valuable advantages such as high reliability and fault tolerant ability.Meanwhile,fractional slot concentrated windings(FSCW)are well known because of short end winding length,simple structure,field weakening sufficiency,fault tolerant capability and higher slot fill factor.The five-phase machines equipped with FSCW,are very good candidates for the purpose of designing motors for high reliable applications,like electric cars,major transporting buses,high speed trains and massive trucks.But,in comparison to the general distributed windings,the FSCWs contain high magnetomotive force(MMF)space harmonic contents,which cause unwanted effects on the machine ability,such as localized iron saturation and core losses.This manuscript introduces several new five-phase fractional slot winding layouts,by the means of slot shifting concept in order to design the new types of synchronous reluctance motors(SynRels).In order to examine the proposed winding’s performances,three sample machines are designed as case studies,and analytical study and finite element analysis(FEA)is used for validation. 展开更多
关键词 Finite element analysis Five-phase machine Fractional slot concentrated winding(FSCW) machine slot/pole combination MMF harmonics Synchronous reluctance machine Winding factor
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部