The influence of different contents of Cr, Mo, and rare earth element(RE) additives on the thermal conductivity of austenitic medium manganese steel was studied and discussed. The results show that the addition of Cr ...The influence of different contents of Cr, Mo, and rare earth element(RE) additives on the thermal conductivity of austenitic medium manganese steel was studied and discussed. The results show that the addition of Cr in medium manganese steel can improved the ordering of C–Mn atomic clusters, so as to improve the steel's thermal conductivity. However, Cr will lead to precipitation of a great deal of carbides in medium manganese steel when its content is greater than 4wt%. These carbides would aggregate around the grain boundary, and as a result, the thermal conductivity is decreased. By the addition of Mo whose content is about 2wt%, spherical carbides will be formed, thus improving the thermal conductivity of the medium manganese steel. The interaction between rare earth elements and alloying elements will raise both the thermal conductivity and the wear-resisting property of medium manganese steel.展开更多
By calculation of thermodynamics,analysis of crystal structure and study of TEM and eletron probe,it is first discovered that SiO2 can be acted as one of the heterogeneous nu- clei for lamellar intergorowth eutectic(a...By calculation of thermodynamics,analysis of crystal structure and study of TEM and eletron probe,it is first discovered that SiO2 can be acted as one of the heterogeneous nu- clei for lamellar intergorowth eutectic(austenite and cementite)crystallizing in modified as-cast medium manganese steel.展开更多
Alumina-magnesia dry materials are widely used in induction furnace linings, but they show different kinds of damage when melting different kinds of alloy steel. In this paper, the chemical composition, phase composit...Alumina-magnesia dry materials are widely used in induction furnace linings, but they show different kinds of damage when melting different kinds of alloy steel. In this paper, the chemical composition, phase composition, and microstructure of the post-use dry materials for the working liners melting different kinds of steel were evaluated. Furthermore, the corrosion mechanism of the steel on the furnace lining materials was comprehensively analyzed. The findings reveal a significant ability of the Mn element in the molten steel to diffuse and penetrate into the refractories. Mn oxidizes to form MnO at the steel-refractory interface, and then forms a liquid phase with Al_(2)O_(3). The Cr element is dissolved into corundum and spinel of the refractories, resulting in lattice defects and structural damage of the materials. TiO2reacts with Al_(2)O_(3) to form Al_(2)TiO_(5), which plays a crucial role in preventing crack formation and propagation. Part of Ti4+dissolves into magnesia-alumina(MA), densifying the materials. TiO2also slows down the reaction between the Cr element and refractory components, further improving the corrosion resistance of the materials.展开更多
The effect of RE-modifier on the microstructure and mechanical properties of high carbon-medium manganese steel has been investigated in present work.The results showed that the RE-modifier can refine the crystalline ...The effect of RE-modifier on the microstructure and mechanical properties of high carbon-medium manganese steel has been investigated in present work.The results showed that the RE-modifier can refine the crystalline grain of high-carbon medium-manganese steel.The shape and distribution of carbides are improved and the columnar grains and phosphide in grain boundary are eliminated.Consequently,the impact toughness of the steel is increased by more than one time,compared with no addition of RE-modifier.展开更多
A medium manganese steel with high wear-resistance,strength and toughness has been produced with addition of a complex modifier (or refining agent) containing Nb,N,RE and Si-Ca. The results showed that the wear resist...A medium manganese steel with high wear-resistance,strength and toughness has been produced with addition of a complex modifier (or refining agent) containing Nb,N,RE and Si-Ca. The results showed that the wear resistance,strength and toughness of the modified medium manganese steel are respectively 1.92 times,1.45 times and 3.63 times as high as that of the referenced unmodified medium manganese steel. The plastic deformation characteristic involved in the wear mechanism of the modified medium manganese steel was investigated by means of plastic-elasticity calculation and TEM electro-microscopy. The relationship between wear resistance and yield strength of the steel was established. Since the wear volume W is proportional to the square of the loading and to the numbers of the abrasives,and inversely proportional to the square of the yield strength of the materials,the wear resistance can be substantially improved by the enhancement of yield strength of the materials. The calculation results generally agreed with the experimental results.展开更多
Plastic instability,including both the discontinuous yielding and stress serrations,has been frequently observed during the tensile deformation of medium-Mn steels(MMnS)and has been intensively studied in recent years...Plastic instability,including both the discontinuous yielding and stress serrations,has been frequently observed during the tensile deformation of medium-Mn steels(MMnS)and has been intensively studied in recent years.Unfortunately,research results are controversial,and no consensus has been achieved regarding the topic.Here,we first summarize all the possible factors that affect the yielding and flow stress serrations in MMnS,including the morphology and stability of austenite,the feature of the phase interface,and the deformation parameters.Then,we propose a universal mechanism to explain the conflicting experimental results.We conclude that the discontinuous yielding can be attributed to the lack of mobile dislocation before deformation and the rapid dislocation multiplication at the beginning of plastic deformation.Meanwhile,the results show that the stress serrations are formed due to the pinning and depinning between dislocations and interstitial atoms in austenite.Strain-induced martensitic transformation,influenced by the mechanical stability of austenite grain and deformation parameters,should not be the intrinsic cause of plastic instability.However,it can intensify or weaken the discontinuous yielding and the stress serrations by affecting the mobility and density of dislocations,as well as the interaction between the interstitial atoms and dislocations in austenite grains.展开更多
The effect of Al on the morphology of MnS in medium-carbon non-quenched and tempered steel was investigated at three different cooling rates of 0.24, 0.43, and 200°C·s^-1. The formation mechanisms of three t...The effect of Al on the morphology of MnS in medium-carbon non-quenched and tempered steel was investigated at three different cooling rates of 0.24, 0.43, and 200°C·s^-1. The formation mechanisms of three types of MnS were elucidated based on phase diagram information combined with crystal growth models. The morphology of MnS is governed by the precipitation mode and the growth conditions. A monotectic reaction and subsequent fast solidification lead to globular Type I MnS. Type II MnS inclusions with different morphological characteristics form as a result of a eutectic reaction followed by the growth in the Fe matrix. Type III MnS presents a divorced eutectic morphology. At the cooling rate of 0.24°C·s^-1, the precipitation of dispersed Type III MnS is significantly enhanced by the addition of 0.044wt% acid-soluble Al(Als), while Type II MnS clusters prefer to form in steels with either 0.034wt% or 0.052wt% Als. At the relatively higher cooling rates of 200°C·s^-1 and 0.43°C·s^-1, the formation of Type I and Type II MnS inclusions is promoted, and the influence of Al is negligible. The results of this work are expected to be employed in practice to improve the mechanical properties of non-quenched and tempered steels.展开更多
1.IntroductionMedium Mn steel was developed be-cause the wear resistance of Hadfield steel(Mn13)is poor under low or medium im-pact and extrusion abrasion[1-4].In theforegoing investigations[2-4]we found thatwith the ...1.IntroductionMedium Mn steel was developed be-cause the wear resistance of Hadfield steel(Mn13)is poor under low or medium im-pact and extrusion abrasion[1-4].In theforegoing investigations[2-4]we found thatwith the increase of C content,theneedle-like and network carbide in mediumMn steel increased(as shown in Fig.1(a)and(c)).Although its wear resistance was largelyimproved,its impact toughness was greatlydecreased.In order to increase toughness,along-term high temperature heat-treatmentwas needed.But the treatment caused cracks展开更多
The effect of Al content(0.035 wt%,0.5 wt%,1 wt%,and 2 wt%)on the composition change of steel and slag as well as inclusion transformation of high manganese steel after it has equilibrated with Ca O-Si O_(2)-Al_(2)O_(...The effect of Al content(0.035 wt%,0.5 wt%,1 wt%,and 2 wt%)on the composition change of steel and slag as well as inclusion transformation of high manganese steel after it has equilibrated with Ca O-Si O_(2)-Al_(2)O_(3)-Mg O slag was studied using the method of slag/steel reaction.The experimental results showed that as the initial content of Al increased from 0.035 wt%to 2 wt%,Al gradually replaced Mn to react with Si O_(2)in slag to avoid the loss of Mn due to the reaction;this process caused both Al_(2)O_(3)in slag and Si in steel to increase while Si O_(2)and Mn O in slag to reduce.In addition,the type of inclusions also evolved as the initial Al content increased.The evolution route of inclusions was Mn O→Mn O-Al_(2)O_(3)-Mg O→Mg O→Mn O-Ca O-Al_(2)O_(3)-Mg O and Mn O-Ca O-Mg O.The shape of inclusions evolved from spherical to irregular,became faceted,and finally transformed to spherical.The average size of inclusions presented a trend that was increasing first and then decreasing.The transformation mechanism of inclusions was explored.As the initial content of Al increased,Mg and Ca were reduced from top slag into molten steel in sequence,which consequently caused the transformation of inclusions.展开更多
The austenite transformation behavior and mechanical properties of medium manganese steel subjected to tensile strain were studied by electron backscatter diffraction,X-ray diffraction and tensile tests.The results sh...The austenite transformation behavior and mechanical properties of medium manganese steel subjected to tensile strain were studied by electron backscatter diffraction,X-ray diffraction and tensile tests.The results show that the austenite phases are mainly distributed on the grain boundary in the duplex microstructure of austenite and ferrite,and it is easy for the big-size austenite to transform at small beginning tension strain following the mechanisms of both austenite (fcc)→ε- martensite (hcp)→α-martensite (bcc)and austenite (fcc)→α-martensite (bcc).Both yield strength and tensile strength increase with the increase in pre-strain,and the total elongation decreases,while the value of pre-strain plus total elongation almost keeps constant.During tensile deformation,transformation from austenite into martensite improves work-hardening rate remarkably.展开更多
Medium manganese austenitic steel (MMAS) fabricated through the hot rolling process has been used in the mining,military,and mechanical industries.In this paper,the abrasion performance and hardening mechanism were me...Medium manganese austenitic steel (MMAS) fabricated through the hot rolling process has been used in the mining,military,and mechanical industries.In this paper,the abrasion performance and hardening mechanism were measured under a series of impact energies.The impact wear was tested at different impact energies from 0.5 J to 6 J using a dynamic load abrasive wear tester (MLD-10).Microstructure and surface morphologies were analyzed using scanning electron microscopy,X-Ray diffraction,and transmission electron microscopy.The results suggest that MMSA has the best wear resistance at 3.5 J and the worst wear resistance at 1.5 J.Furthermore,the wear mechanism and worn surface microstructure change with different impact energies.There are small differences between a large amount of martensite on the worn surfaces under different impact energies and the shapes of dislocation and twins change with different impact energies.展开更多
The influence of Nb-V microalloying on the hot deformation behavior and microstructures of medium Mn steel(MMS)was investigated by uniaxial hot compression tests.By establishing the constitutive equations for simulati...The influence of Nb-V microalloying on the hot deformation behavior and microstructures of medium Mn steel(MMS)was investigated by uniaxial hot compression tests.By establishing the constitutive equations for simulating the measured flow curves,we successfully constructed deformation activation energy(Q)maps and processing maps for identifying the region of flow instability.We concluded the following consequences of Nb-V alloying for MMS.(i)The critical strain increases and the increment diminishes with the increasing deformation temperature,suggesting that NbC precipitates more efficiently retard dynamic recrystallization(DRX)in MMS compared with solute Nb.(ii)The deformation activation energy of MMS is significantly increased and even higher than that of some reported high Mn steels,suggesting that its ability to retard DRX is greater than that of the high Mn content.(iii)The hot workability of MMS is improved by narrowing the hot processing window for the unstable flow stress,in which fine recrystallized and coarse unrecrystallized grains are present.展开更多
In this study,the hot rolled medium manganese steel containing titanium was solution treated at 1,000°C and followed by aging treatment at 500,550,and 600°C.The influence of aging treatment on mechanical pro...In this study,the hot rolled medium manganese steel containing titanium was solution treated at 1,000°C and followed by aging treatment at 500,550,and 600°C.The influence of aging treatment on mechanical properties and wear resistance of medium manganese steel reinforced with Ti(C,N)particles was investigated.It was found that the matrix of medium manganese steel was austenite.The austenite grain size was refined,and Ti(C,N)particles were precipitated after aging treatment.Compared to that of the as-hot rolled sample,the initial hardness of 500°C aged sample increased by 9.5%to 312.86 HV,whose impact energy was more than doubled to 148.5 J.As the aging temperature raised to 600°C,the initial hardness changed slightly.However,the impact energy dropped significantly to 8 J due to the aggregation of Mn at the grain boundaries.In addition,the main wear mechanisms of the samples were fatigue wear and abrasive wear.It was worth noting that 500°C aged sample exhibited the best wear resistance under a 300 N applied load,whose wear loss was just half of the as-hot rolled sample.The relationship between wear loss and mechanical properties indicated that the wear resistance of medium manganese steel was independent of the initial hardness.The large difference in the wear resistance was predominately due to the outstanding work hardening ability of 500°C aged sample,whose strengthening mechanisms were contributed from transformation induced plasticity(TRIP)effect,dislocation strengthening,twinning induced plasticity(TWIP)effect,and precipitation strengthening.展开更多
文摘The influence of different contents of Cr, Mo, and rare earth element(RE) additives on the thermal conductivity of austenitic medium manganese steel was studied and discussed. The results show that the addition of Cr in medium manganese steel can improved the ordering of C–Mn atomic clusters, so as to improve the steel's thermal conductivity. However, Cr will lead to precipitation of a great deal of carbides in medium manganese steel when its content is greater than 4wt%. These carbides would aggregate around the grain boundary, and as a result, the thermal conductivity is decreased. By the addition of Mo whose content is about 2wt%, spherical carbides will be formed, thus improving the thermal conductivity of the medium manganese steel. The interaction between rare earth elements and alloying elements will raise both the thermal conductivity and the wear-resisting property of medium manganese steel.
基金The projected was supported by National Natural Science Foundation of China
文摘By calculation of thermodynamics,analysis of crystal structure and study of TEM and eletron probe,it is first discovered that SiO2 can be acted as one of the heterogeneous nu- clei for lamellar intergorowth eutectic(austenite and cementite)crystallizing in modified as-cast medium manganese steel.
基金the National Natural Science Foundation of China(52272022)Key Program of Natural Science Foundation of Hubei Province(2021CFA071).
文摘Alumina-magnesia dry materials are widely used in induction furnace linings, but they show different kinds of damage when melting different kinds of alloy steel. In this paper, the chemical composition, phase composition, and microstructure of the post-use dry materials for the working liners melting different kinds of steel were evaluated. Furthermore, the corrosion mechanism of the steel on the furnace lining materials was comprehensively analyzed. The findings reveal a significant ability of the Mn element in the molten steel to diffuse and penetrate into the refractories. Mn oxidizes to form MnO at the steel-refractory interface, and then forms a liquid phase with Al_(2)O_(3). The Cr element is dissolved into corundum and spinel of the refractories, resulting in lattice defects and structural damage of the materials. TiO2reacts with Al_(2)O_(3) to form Al_(2)TiO_(5), which plays a crucial role in preventing crack formation and propagation. Part of Ti4+dissolves into magnesia-alumina(MA), densifying the materials. TiO2also slows down the reaction between the Cr element and refractory components, further improving the corrosion resistance of the materials.
文摘The effect of RE-modifier on the microstructure and mechanical properties of high carbon-medium manganese steel has been investigated in present work.The results showed that the RE-modifier can refine the crystalline grain of high-carbon medium-manganese steel.The shape and distribution of carbides are improved and the columnar grains and phosphide in grain boundary are eliminated.Consequently,the impact toughness of the steel is increased by more than one time,compared with no addition of RE-modifier.
基金This work was supported by the Innovation Fund for Outstanding Scholar of Henan province, No.0621000600.
文摘A medium manganese steel with high wear-resistance,strength and toughness has been produced with addition of a complex modifier (or refining agent) containing Nb,N,RE and Si-Ca. The results showed that the wear resistance,strength and toughness of the modified medium manganese steel are respectively 1.92 times,1.45 times and 3.63 times as high as that of the referenced unmodified medium manganese steel. The plastic deformation characteristic involved in the wear mechanism of the modified medium manganese steel was investigated by means of plastic-elasticity calculation and TEM electro-microscopy. The relationship between wear resistance and yield strength of the steel was established. Since the wear volume W is proportional to the square of the loading and to the numbers of the abrasives,and inversely proportional to the square of the yield strength of the materials,the wear resistance can be substantially improved by the enhancement of yield strength of the materials. The calculation results generally agreed with the experimental results.
基金support from the National Natural Science Foundation of China(Nos.51831002,51904028,and 52233018)the Beijing Municipal Natural Science Foundation(No.2242048)the Fundamental Research Funds for the Central Universities,China(No.FRF-EYIT-23-08).
文摘Plastic instability,including both the discontinuous yielding and stress serrations,has been frequently observed during the tensile deformation of medium-Mn steels(MMnS)and has been intensively studied in recent years.Unfortunately,research results are controversial,and no consensus has been achieved regarding the topic.Here,we first summarize all the possible factors that affect the yielding and flow stress serrations in MMnS,including the morphology and stability of austenite,the feature of the phase interface,and the deformation parameters.Then,we propose a universal mechanism to explain the conflicting experimental results.We conclude that the discontinuous yielding can be attributed to the lack of mobile dislocation before deformation and the rapid dislocation multiplication at the beginning of plastic deformation.Meanwhile,the results show that the stress serrations are formed due to the pinning and depinning between dislocations and interstitial atoms in austenite.Strain-induced martensitic transformation,influenced by the mechanical stability of austenite grain and deformation parameters,should not be the intrinsic cause of plastic instability.However,it can intensify or weaken the discontinuous yielding and the stress serrations by affecting the mobility and density of dislocations,as well as the interaction between the interstitial atoms and dislocations in austenite grains.
基金financially supported by the National Natural Science Foundation of China (Nos. 51174020 and 51374018)the National High-Tech Research and Development Program of China (No. 2013AA031601)
文摘The effect of Al on the morphology of MnS in medium-carbon non-quenched and tempered steel was investigated at three different cooling rates of 0.24, 0.43, and 200°C·s^-1. The formation mechanisms of three types of MnS were elucidated based on phase diagram information combined with crystal growth models. The morphology of MnS is governed by the precipitation mode and the growth conditions. A monotectic reaction and subsequent fast solidification lead to globular Type I MnS. Type II MnS inclusions with different morphological characteristics form as a result of a eutectic reaction followed by the growth in the Fe matrix. Type III MnS presents a divorced eutectic morphology. At the cooling rate of 0.24°C·s^-1, the precipitation of dispersed Type III MnS is significantly enhanced by the addition of 0.044wt% acid-soluble Al(Als), while Type II MnS clusters prefer to form in steels with either 0.034wt% or 0.052wt% Als. At the relatively higher cooling rates of 200°C·s^-1 and 0.43°C·s^-1, the formation of Type I and Type II MnS inclusions is promoted, and the influence of Al is negligible. The results of this work are expected to be employed in practice to improve the mechanical properties of non-quenched and tempered steels.
文摘1.IntroductionMedium Mn steel was developed be-cause the wear resistance of Hadfield steel(Mn13)is poor under low or medium im-pact and extrusion abrasion[1-4].In theforegoing investigations[2-4]we found thatwith the increase of C content,theneedle-like and network carbide in mediumMn steel increased(as shown in Fig.1(a)and(c)).Although its wear resistance was largelyimproved,its impact toughness was greatlydecreased.In order to increase toughness,along-term high temperature heat-treatmentwas needed.But the treatment caused cracks
基金financially supported by the Ministry of Industry and Information Technology of China(No.TC180A6MR)China Scholarship Council and the National Natural Science Foundation of China(No.51404020)。
文摘The effect of Al content(0.035 wt%,0.5 wt%,1 wt%,and 2 wt%)on the composition change of steel and slag as well as inclusion transformation of high manganese steel after it has equilibrated with Ca O-Si O_(2)-Al_(2)O_(3)-Mg O slag was studied using the method of slag/steel reaction.The experimental results showed that as the initial content of Al increased from 0.035 wt%to 2 wt%,Al gradually replaced Mn to react with Si O_(2)in slag to avoid the loss of Mn due to the reaction;this process caused both Al_(2)O_(3)in slag and Si in steel to increase while Si O_(2)and Mn O in slag to reduce.In addition,the type of inclusions also evolved as the initial Al content increased.The evolution route of inclusions was Mn O→Mn O-Al_(2)O_(3)-Mg O→Mg O→Mn O-Ca O-Al_(2)O_(3)-Mg O and Mn O-Ca O-Mg O.The shape of inclusions evolved from spherical to irregular,became faceted,and finally transformed to spherical.The average size of inclusions presented a trend that was increasing first and then decreasing.The transformation mechanism of inclusions was explored.As the initial content of Al increased,Mg and Ca were reduced from top slag into molten steel in sequence,which consequently caused the transformation of inclusions.
文摘The austenite transformation behavior and mechanical properties of medium manganese steel subjected to tensile strain were studied by electron backscatter diffraction,X-ray diffraction and tensile tests.The results show that the austenite phases are mainly distributed on the grain boundary in the duplex microstructure of austenite and ferrite,and it is easy for the big-size austenite to transform at small beginning tension strain following the mechanisms of both austenite (fcc)→ε- martensite (hcp)→α-martensite (bcc)and austenite (fcc)→α-martensite (bcc).Both yield strength and tensile strength increase with the increase in pre-strain,and the total elongation decreases,while the value of pre-strain plus total elongation almost keeps constant.During tensile deformation,transformation from austenite into martensite improves work-hardening rate remarkably.
文摘Medium manganese austenitic steel (MMAS) fabricated through the hot rolling process has been used in the mining,military,and mechanical industries.In this paper,the abrasion performance and hardening mechanism were measured under a series of impact energies.The impact wear was tested at different impact energies from 0.5 J to 6 J using a dynamic load abrasive wear tester (MLD-10).Microstructure and surface morphologies were analyzed using scanning electron microscopy,X-Ray diffraction,and transmission electron microscopy.The results suggest that MMSA has the best wear resistance at 3.5 J and the worst wear resistance at 1.5 J.Furthermore,the wear mechanism and worn surface microstructure change with different impact energies.There are small differences between a large amount of martensite on the worn surfaces under different impact energies and the shapes of dislocation and twins change with different impact energies.
基金financial support from the National Natural Science Foundation of China(Nos.52233018 and 51831002)the China Baowu Low Carbon Metallurgy Innovation Foudation(No.BWLCF202213)。
文摘The influence of Nb-V microalloying on the hot deformation behavior and microstructures of medium Mn steel(MMS)was investigated by uniaxial hot compression tests.By establishing the constitutive equations for simulating the measured flow curves,we successfully constructed deformation activation energy(Q)maps and processing maps for identifying the region of flow instability.We concluded the following consequences of Nb-V alloying for MMS.(i)The critical strain increases and the increment diminishes with the increasing deformation temperature,suggesting that NbC precipitates more efficiently retard dynamic recrystallization(DRX)in MMS compared with solute Nb.(ii)The deformation activation energy of MMS is significantly increased and even higher than that of some reported high Mn steels,suggesting that its ability to retard DRX is greater than that of the high Mn content.(iii)The hot workability of MMS is improved by narrowing the hot processing window for the unstable flow stress,in which fine recrystallized and coarse unrecrystallized grains are present.
基金The authors acknowledge the support from the National Natural Foundation of China(Grant No.51974084)Taiyuan University of Science and Technology Scientific Research Initial Funding(Grant Nos.20202039 and 20212052)China Postdoctoral Science Foundation(Grant Nos.2020M673194 and 2020T130329).
文摘In this study,the hot rolled medium manganese steel containing titanium was solution treated at 1,000°C and followed by aging treatment at 500,550,and 600°C.The influence of aging treatment on mechanical properties and wear resistance of medium manganese steel reinforced with Ti(C,N)particles was investigated.It was found that the matrix of medium manganese steel was austenite.The austenite grain size was refined,and Ti(C,N)particles were precipitated after aging treatment.Compared to that of the as-hot rolled sample,the initial hardness of 500°C aged sample increased by 9.5%to 312.86 HV,whose impact energy was more than doubled to 148.5 J.As the aging temperature raised to 600°C,the initial hardness changed slightly.However,the impact energy dropped significantly to 8 J due to the aggregation of Mn at the grain boundaries.In addition,the main wear mechanisms of the samples were fatigue wear and abrasive wear.It was worth noting that 500°C aged sample exhibited the best wear resistance under a 300 N applied load,whose wear loss was just half of the as-hot rolled sample.The relationship between wear loss and mechanical properties indicated that the wear resistance of medium manganese steel was independent of the initial hardness.The large difference in the wear resistance was predominately due to the outstanding work hardening ability of 500°C aged sample,whose strengthening mechanisms were contributed from transformation induced plasticity(TRIP)effect,dislocation strengthening,twinning induced plasticity(TWIP)effect,and precipitation strengthening.