The types and growth of various oxide scales formed during the different phases of the production of hotrolled strip steel products are reviewed. Similarities and differences between the "tertiary scale" on the surf...The types and growth of various oxide scales formed during the different phases of the production of hotrolled strip steel products are reviewed. Similarities and differences between the "tertiary scale" on the surface of carbon steels at high temperatures and the oxide scale on pure iron are compared. The micro-structural features of the "final oxide scale" on the surface of strip steels at room temperature as well as the relationship between these features and the position of the steel coil (plate) and the subsequent processes of recoiling, temper rolling and trimming, etc. are summarized. The actual oxide scales retained on the commercial hot-rolled strip steels at room temperature have been proposed to define as " quartus scale" for the first time. The micro-structural development and phase transformation of the initial "tertiary scale" during and after cooling and coiling are described. The reasons for the "tertiary scale" on carbon steels differing from the oxide scale formed on pure iron, and the major influencing factors in the formation of various types of "quartus scales" are analyzed from both thermodynamic and dynamic viewpoints. The development mechanism of " quartus scales" is discussed and the potential effects of the " quartus scale" state (thickness, constitution, structure and defects), on the rusting and pickling properties of commercial hot-rolled strip steel, as well as on the mechanical properties of oxide scales are analyzed.展开更多
Nb-Tihot-rolled TRIP-assisted steel with high plasticity and appropriate volume percentage of retained austenite based on fine ferrite grain have been developed in the experiment. The test results showed that niobium ...Nb-Tihot-rolled TRIP-assisted steel with high plasticity and appropriate volume percentage of retained austenite based on fine ferrite grain have been developed in the experiment. The test results showed that niobium tend to exist in solution state in matrix with less precipitation, and niobium-titanium could be precipitated in form of (Nb, Ti)C or (Nb, Ti) (C, N), which play an important role in increasing yield strength (from 495 MPa to 610 MPa). Besides, the retained austenite had a positive effect on improving the plasticity by transformation into martensite during tensile deformation.展开更多
In order to simplify production process and to decrease production cost of thicker cold-rolled iF steel sheets for deep drawing applications, a new hot-rolled IF steel sheet is developed through hot-rolling in or regi...In order to simplify production process and to decrease production cost of thicker cold-rolled iF steel sheets for deep drawing applications, a new hot-rolled IF steel sheet is developed through hot-rolling in or region. In this paper, properties, microstructures and precipitate morphology of hot-rolled iF steel sheets are described..展开更多
As one of the important categories of hot-rolled products, hot-rolled steel plates for automobile applications generally undergo uniform corrosion or localized corrosion according to different environments of manufact...As one of the important categories of hot-rolled products, hot-rolled steel plates for automobile applications generally undergo uniform corrosion or localized corrosion according to different environments of manufacturing, transportation and/or storage of the plates. General corrosion often takes place on the surface of a plate in the exterior part of a package, and only reduces the thickness of the plate and slightly increases the roughness of the surface; however, localized corrosion on the surface of a plate inside the package is likely to result in the formation of pit-like defects on the substrate of the plate, which cannot be removed thoroughly by normal acid pickling or sand blasting, and affects the application of the plate. This research report analyzes the phenomena and characteristics of the rusting behavior of hot- rolled steel plates for automobile applications, and the influencing factors are summaried. The corresponding preventative measures are proposed.展开更多
Given their numerous functional and architectural benefits,such as improved bearing capacity and increased resistance to elastic instability modes,cold-formed steel(CFS)built-up sections have become increasingly devel...Given their numerous functional and architectural benefits,such as improved bearing capacity and increased resistance to elastic instability modes,cold-formed steel(CFS)built-up sections have become increasingly developed and used in recent years,particularly in the construction industry.This paper presents an analytical and numerical study of assembled CFS two single channel-shaped columns with different slenderness and configurations(backto-back,face-to-face,and box).These columns were joined by double-row rivets for the back-to-back and box configurations,whereas they were welded together for the face-to-face design.The built-up columns were filled with ordinary concrete of good strength.Finite element models were applied,using ABAQUS software,to assess mechanical performance and study the influence of assembly techniques on the behavior of cold-formed columns under axial compression.Analytical approaches based on Eurocode 3 and Eurocode 4 recommendations for un-filled and concrete-filled columns respectively were followed for the numerical analysis,and concrete confinement effects were also considered per American Concrete Institute(ACI)standards for face-to-face and box configurations.The obtained results indicated a good correlation between the numerical results and the proposed analytical methodology which did not exceed 8%.The failure modes showed that the columns failed due to instabilities such as local and global buckling.展开更多
The microstructure characteristics with super fine ferrite grain size less than 5mm, appropriate retained austenite fraction around 5.0% and or removable abundant dislocations have been obtained by controlled rolling ...The microstructure characteristics with super fine ferrite grain size less than 5mm, appropriate retained austenite fraction around 5.0% and or removable abundant dislocations have been obtained by controlled rolling and cooling, which leads to well balance com- prehensive properties with high tensile strength of 510 and 615MPa, high elongation of 40% and 27%, low ratio of yield strength to tensile strength 0.83 and 0.80, as well as low ductile- brittle transition temperature less than -80 and -70℃ for advanced aluminum hot-rolled TRIP steel and silicon hot-rolled TRIP steel, respectively.展开更多
Influence of thermo-mechanical controlled processing(TMCP),including two-stage rolling with laminar cooling,air cooling and ultra-fast cooling,on the microstructure and mechanical properties of three kinds of Nb-micro...Influence of thermo-mechanical controlled processing(TMCP),including two-stage rolling with laminar cooling,air cooling and ultra-fast cooling,on the microstructure and mechanical properties of three kinds of Nb-microalloeyed steels was investigated by hot-rolling experiment.Effect of chemistry compositions and microstructure on mechanical properties and the relationship between the multiphase microstructure' s formation with TMCP were analyzed.The results showed that the mixed microstructure containing ferrite,bainite,martensite and a small amount of retained austenite can be obtained by thermo-mechanical controlled processing.Size, quantity and distribution of the constituents(ferrite grain,bainite packet and M-A islands) significantly affect the mechanical properties of three kinds of Nb-microalloyed steels.Under the condition of similar TMCP parameters, there is a gradually decreasing tendency in tensile strength from high silicon Nb steel,high silicon Nb-Ti steel to low silicon Nb-Ti steel,and an opposite tendency in total elongation and product of tensile strength and ductility. Total elongation and product of tensile strength and ductility reach the maximum values(41%and 25256 MPa% respectively) for low silicon Nb-Ti steel.展开更多
The patenting process of three hot-rolled steels with carbon mass contents of 0.70%-0. 90% was studied. The effect of the quenching temperature on the cementite lamellar distance in the steel was evaluated on the basi...The patenting process of three hot-rolled steels with carbon mass contents of 0.70%-0. 90% was studied. The effect of the quenching temperature on the cementite lamellar distance in the steel was evaluated on the basis of microstructural characterization and mechanical property tests. The patenting treatment of high-carbon hot- rolled strip and its application in springs were discussed.展开更多
The critical transformation temperatures,A_(c1) and A_(c3),of a hot-rolled low-carbon titanium microalloyed steel were determined as a part of an examination of its phase-transformation behavior. Austenite decompositi...The critical transformation temperatures,A_(c1) and A_(c3),of a hot-rolled low-carbon titanium microalloyed steel were determined as a part of an examination of its phase-transformation behavior. Austenite decomposition during the continuous cooling of the titanium microalloyed steel was studied by heating it to 1 250 ℃,cooling it to 880 ℃,holding for 2 s,and then cooling it to room temperature at different cooling rates. The transformation kinetics( CCT curve) was characterized as well.展开更多
In this study, the welding technology of the hot-rolled extra-high-strength steel, BS960QC, has been comprehensively investigated. Analysis has been made on the weldability ,the different welding procedures ,the mecha...In this study, the welding technology of the hot-rolled extra-high-strength steel, BS960QC, has been comprehensively investigated. Analysis has been made on the weldability ,the different welding procedures ,the mechanical properties, and the fatigue properties, and a set of recommendation guidelines have been proposed for evaluating the welded joints of the extra-high-strength steel. The research and results indicate that the hot-rolled extra-high-strength steel, BS960QC,has good weldability and an excellent adaptability to welding procedures. Further,the excellent mechanical properties and fatigue properties of the welded joints ,which can be achieved by using optimized welding procedures, can completely meet the technical requirements of the construction machinery industry.展开更多
Results presented in this study contribute to investigation of the microstructure and mechanical properties of the hot-rolled Fe16Mn0.6C steel plates.The steel plates have been produced by being hot-rolled at temperat...Results presented in this study contribute to investigation of the microstructure and mechanical properties of the hot-rolled Fe16Mn0.6C steel plates.The steel plates have been produced by being hot-rolled at temperatures ranging from 1100℃ to 850℃ in seven passes to 97.5% reduction in thickness and then cooled in a furnace of 650℃.Some plates have been annealed at temperatures ranging from 300℃ to 1100℃ for 5min to 60min,and then followed by water quenching.There are annealing twins in the hot-rolled Fe16Mn0.6C steel.Fe16Mn0.6C steel presents similar ductile behavior as X-IPTM steel,but much higher elongation than commercial martensitic steel (MP) 1000,dual phase (DP) 980,and transformation induced plasticity (TRIP) 980 steels.Fe16Mn0.6C steel experiences γε (-α) transformation in some local regions,but remains mostly austenite during the entire deformation process.Fe16Mn0.6C steel with special mechanical properties can be produced by using the appropriate anneal technology.Twinning induced plasticity(TWIP) effect only occurs in the Fe16Mn0.6C steel annealed at temperature higher than 900℃.展开更多
Laser multipass welding techniques for thick section steels have been developed using a new type of UV combined narrow groove. The shape and sizes at the bottom of groove are determined by analyzing the plasma behavio...Laser multipass welding techniques for thick section steels have been developed using a new type of UV combined narrow groove. The shape and sizes at the bottom of groove are determined by analyzing the plasma behavior using high speed photographic equipment. A stable autogenous CO2 laser welding process and greater penetration are generated at the root pass because of strong reduction of the plasma volume. According to the waveforms of welding current and arc voltage, and the interaction between the arc and the laser induced plasma, a suitable groove angle is obtained. Laser-double MIG hybrid welding process is studied and the optimum distances between the laser and two arcs are determined. By using autogenous CO2 laser welding, CO2 laser-MIG hybrid welding and laser-double MIG hybrid welding, 28 mm thick steel plates are welded with four passes. The welds produced are assessed by X-ray. No crack is found and there is only a small amount of pores. The experimental results show that the multipuss welding procedures proposed can realize the joining of thick section steels with high efficiency and good quality.展开更多
Taking the seamless tube plant of Baoshan Iron & Steel Complex in China as the background,we analyze the characters of hot rolling seamless steel tube:multi varieties,low volume,complicated production process,flex...Taking the seamless tube plant of Baoshan Iron & Steel Complex in China as the background,we analyze the characters of hot rolling seamless steel tube:multi varieties,low volume,complicated production process,flexible production routes.Then integrated scheduling problem for hot rolling seamless steel tube production is studied,which covers two key points;order-grouping problem and solution method for flowshop/jobshop scheduling problem.On the basis of these two problems,integrated scheduling decision system is developed.The design idea,function flow sheet,data processing method,and functional module of visualized human-computer interactive scheduling system implemented in seamless steel tube plant of Shanghai Baoshan Iron & Steel Complex are described into detail.Compared with manual system,the performance of system shows the applicability and superiority in several criteria.展开更多
To investigate the seismic behavior of I-section columns made of 460 MPa high strength steel (HSS), six specimens were tested under constant axial load and cyclic horizontal load. The specimens were designed with di...To investigate the seismic behavior of I-section columns made of 460 MPa high strength steel (HSS), six specimens were tested under constant axial load and cyclic horizontal load. The specimens were designed with different width-to-thickness ratios and loaded under different axial load ratios. For each specimen, the failure mode was observed and hysteretic curve was measured. Comparison of different specimens on hysteretic characteristic, energy dissipation capacity and deformation capacity were further investigated. Test results showed that the degradation of bearing capacity was due to local buckling of flange and web. Under the same axial load ratio, as width-to-thickness ratio increased, the deformation area of local buckling became smaller. And also, displacement level at both peak load and failure load became smaller. In addition, the full extent of hysteretic curve, energy dissipation capacity, ultimate story drift angle decreased, and capacity degradation occurred more rapidly with the increase of width-to-thickness ratio or axial load ratio. Based on the capacity of story drift angle, limiting values which shall not be exceeded are suggested respectively for flange and web plate of 460 MPa HSS I-section columns when used in SMFs and in IMFs in the case of axial load ratio no more than 0.2. Such values should be smaller when the axial load ratio increases.展开更多
Thanks to the fantastic development of power, transportation, chemical engineering, architecture and other fields, there has been an increasing demand for new type of section steel with large sections used for constru...Thanks to the fantastic development of power, transportation, chemical engineering, architecture and other fields, there has been an increasing demand for new type of section steel with large sections used for construction frame, such as type-H, type-T, and type-C section steel. New types of section steel usually are long and with large cross section. Therefore, for the sake of the cost, steel plate welding structure is used home and abroad. During the welding process, welding distortion seems unavoidable. Presently, proper welding machinery, technique and standards are adopted to minimize the distortion. Angular distortion is corrected with oil press and angular distortion corrector, while horizontal distortions like sickle curve and arch are mainly done with flame. Flame correction is of great labor intensity and is also time and material consuming. Besides, the correction is affected by the operators’ skill and mood, which, to some extent, limits the productivity. In this paper, a new technique of section steel distortion correction with high efficiency and adaptability and yet low investment and cost will be proposed for the development of new-type section steel. The correction principles and capability calculation should be done some research on, which will be introduced. The practice done on section steel with a wing edge of 40~60 mm, proves satisfactory: compared with oil-press correction, continual mangling correction saves equipment investment by three quarters, installed capacity by three quarters and investment by three quarters and with a much higher efficiency. Particularly in the distortion correction of heavy welding structures, mangling correction stands out from the crowd. Mangling correction proves to be the best solution to the continual horizontal distortion correction of welding section steel.展开更多
In this study, the matrix structure, state and composition of the mill scales of four typical domestically made 510L hot-rolled strips were observed and analyzed by means of optical microscopy (OM) ,scanning electro...In this study, the matrix structure, state and composition of the mill scales of four typical domestically made 510L hot-rolled strips were observed and analyzed by means of optical microscopy (OM) ,scanning electron microscopy (SEM) and X-ray diffraction (XRD). The corrosion behavior of the steels with and without mill scales were investigated by means of hot-humid corrosion tests under the condition of relative humidity ( RH ) of 95% at 50℃ and 70℃, respectively. The results show that the matrix structures, state, composition and thickness of mill scales vary in the strips. The rusting starting time of the specimens with scales is generally a bit longer than that of the specimens without scales, but their corrosion mass-gain is higher. For these two kinds of specimens ,their corrosion rate increases significantly with the increase of temperature. The rusting behavior of the 510L strips produced by various plants is different due to the variations of hot-rolling processes and designed chemical compositions. Various relevant aspects should be taken into account in the evaluation of the corrosion behavior of hot-rolled strips.展开更多
Pier-Pile integral structures provide construction works with many environmental and landscape advantages. For example, the space required to construct these structures is smaller than that of other bridges due to the...Pier-Pile integral structures provide construction works with many environmental and landscape advantages. For example, the space required to construct these structures is smaller than that of other bridges due to the footing being removed, meaning that it is not necessity to greatly change the surroundings of these bridges. While there are environmental and landscape advantages, there are also a few demerits for the overall land-scape designs, including demerits in the design of this proposed structure which consists of relatively slender parts. This proposed structure has already been constructed in areas where possibility of a severe earthquake is low. However, some problems that have yet to be examined are related to the use of this proposed structure in areas where earthquakes are frequent. Lacking detailed studies of its behavior during severe earthquakes, it is currently difficult to construct these structures in Japan. Consequently, it is necessary to investigate in detail limited performance about compression and bending moment, and earthquake- resistant performance of these structures in order to resolve these problems. In this paper, It was clarified the relationship between the rigidity of the ground and the effective buckling length by buckling analysis and elasto- plastic finite deformation analysis. Moreover, it was proposed a simplified formula using a proposed characteristic value β and several factors for analysis accuracy. A simplified formula would support to determine the effective buckling length to design the pier using the load-bearing capacity curve based on the slenderness ratio parameter.展开更多
The article presents the results of calculations of the effective thermal conductivity kef for bundles of steel rectangular sections obtained for a few analytical models. This coefficient expresses the ability of the ...The article presents the results of calculations of the effective thermal conductivity kef for bundles of steel rectangular sections obtained for a few analytical models. This coefficient expresses the ability of the bundles to heat transfer. The knowledge about the values of the kef coefficient of the section bundles is essential to correctly identify the parameters of their heat treatment process. The quality of the Calculation results were verified by the experimental measurement data. These measurements were performed in the guarded hot plate apparatus. It should be noted, that none of the eleven analyzed models of effective thermal conductivity is suitable for evaluation of thermal properties of the section bundles.展开更多
文摘The types and growth of various oxide scales formed during the different phases of the production of hotrolled strip steel products are reviewed. Similarities and differences between the "tertiary scale" on the surface of carbon steels at high temperatures and the oxide scale on pure iron are compared. The micro-structural features of the "final oxide scale" on the surface of strip steels at room temperature as well as the relationship between these features and the position of the steel coil (plate) and the subsequent processes of recoiling, temper rolling and trimming, etc. are summarized. The actual oxide scales retained on the commercial hot-rolled strip steels at room temperature have been proposed to define as " quartus scale" for the first time. The micro-structural development and phase transformation of the initial "tertiary scale" during and after cooling and coiling are described. The reasons for the "tertiary scale" on carbon steels differing from the oxide scale formed on pure iron, and the major influencing factors in the formation of various types of "quartus scales" are analyzed from both thermodynamic and dynamic viewpoints. The development mechanism of " quartus scales" is discussed and the potential effects of the " quartus scale" state (thickness, constitution, structure and defects), on the rusting and pickling properties of commercial hot-rolled strip steel, as well as on the mechanical properties of oxide scales are analyzed.
文摘Nb-Tihot-rolled TRIP-assisted steel with high plasticity and appropriate volume percentage of retained austenite based on fine ferrite grain have been developed in the experiment. The test results showed that niobium tend to exist in solution state in matrix with less precipitation, and niobium-titanium could be precipitated in form of (Nb, Ti)C or (Nb, Ti) (C, N), which play an important role in increasing yield strength (from 495 MPa to 610 MPa). Besides, the retained austenite had a positive effect on improving the plasticity by transformation into martensite during tensile deformation.
基金The auLhors thank for the financial aid from Scienceamend of Shandong Province (No. Q98F05146)
文摘In order to simplify production process and to decrease production cost of thicker cold-rolled iF steel sheets for deep drawing applications, a new hot-rolled IF steel sheet is developed through hot-rolling in or region. In this paper, properties, microstructures and precipitate morphology of hot-rolled iF steel sheets are described..
文摘As one of the important categories of hot-rolled products, hot-rolled steel plates for automobile applications generally undergo uniform corrosion or localized corrosion according to different environments of manufacturing, transportation and/or storage of the plates. General corrosion often takes place on the surface of a plate in the exterior part of a package, and only reduces the thickness of the plate and slightly increases the roughness of the surface; however, localized corrosion on the surface of a plate inside the package is likely to result in the formation of pit-like defects on the substrate of the plate, which cannot be removed thoroughly by normal acid pickling or sand blasting, and affects the application of the plate. This research report analyzes the phenomena and characteristics of the rusting behavior of hot- rolled steel plates for automobile applications, and the influencing factors are summaried. The corresponding preventative measures are proposed.
文摘Given their numerous functional and architectural benefits,such as improved bearing capacity and increased resistance to elastic instability modes,cold-formed steel(CFS)built-up sections have become increasingly developed and used in recent years,particularly in the construction industry.This paper presents an analytical and numerical study of assembled CFS two single channel-shaped columns with different slenderness and configurations(backto-back,face-to-face,and box).These columns were joined by double-row rivets for the back-to-back and box configurations,whereas they were welded together for the face-to-face design.The built-up columns were filled with ordinary concrete of good strength.Finite element models were applied,using ABAQUS software,to assess mechanical performance and study the influence of assembly techniques on the behavior of cold-formed columns under axial compression.Analytical approaches based on Eurocode 3 and Eurocode 4 recommendations for un-filled and concrete-filled columns respectively were followed for the numerical analysis,and concrete confinement effects were also considered per American Concrete Institute(ACI)standards for face-to-face and box configurations.The obtained results indicated a good correlation between the numerical results and the proposed analytical methodology which did not exceed 8%.The failure modes showed that the columns failed due to instabilities such as local and global buckling.
文摘The microstructure characteristics with super fine ferrite grain size less than 5mm, appropriate retained austenite fraction around 5.0% and or removable abundant dislocations have been obtained by controlled rolling and cooling, which leads to well balance com- prehensive properties with high tensile strength of 510 and 615MPa, high elongation of 40% and 27%, low ratio of yield strength to tensile strength 0.83 and 0.80, as well as low ductile- brittle transition temperature less than -80 and -70℃ for advanced aluminum hot-rolled TRIP steel and silicon hot-rolled TRIP steel, respectively.
文摘Influence of thermo-mechanical controlled processing(TMCP),including two-stage rolling with laminar cooling,air cooling and ultra-fast cooling,on the microstructure and mechanical properties of three kinds of Nb-microalloeyed steels was investigated by hot-rolling experiment.Effect of chemistry compositions and microstructure on mechanical properties and the relationship between the multiphase microstructure' s formation with TMCP were analyzed.The results showed that the mixed microstructure containing ferrite,bainite,martensite and a small amount of retained austenite can be obtained by thermo-mechanical controlled processing.Size, quantity and distribution of the constituents(ferrite grain,bainite packet and M-A islands) significantly affect the mechanical properties of three kinds of Nb-microalloyed steels.Under the condition of similar TMCP parameters, there is a gradually decreasing tendency in tensile strength from high silicon Nb steel,high silicon Nb-Ti steel to low silicon Nb-Ti steel,and an opposite tendency in total elongation and product of tensile strength and ductility. Total elongation and product of tensile strength and ductility reach the maximum values(41%and 25256 MPa% respectively) for low silicon Nb-Ti steel.
文摘The patenting process of three hot-rolled steels with carbon mass contents of 0.70%-0. 90% was studied. The effect of the quenching temperature on the cementite lamellar distance in the steel was evaluated on the basis of microstructural characterization and mechanical property tests. The patenting treatment of high-carbon hot- rolled strip and its application in springs were discussed.
文摘The critical transformation temperatures,A_(c1) and A_(c3),of a hot-rolled low-carbon titanium microalloyed steel were determined as a part of an examination of its phase-transformation behavior. Austenite decomposition during the continuous cooling of the titanium microalloyed steel was studied by heating it to 1 250 ℃,cooling it to 880 ℃,holding for 2 s,and then cooling it to room temperature at different cooling rates. The transformation kinetics( CCT curve) was characterized as well.
文摘In this study, the welding technology of the hot-rolled extra-high-strength steel, BS960QC, has been comprehensively investigated. Analysis has been made on the weldability ,the different welding procedures ,the mechanical properties, and the fatigue properties, and a set of recommendation guidelines have been proposed for evaluating the welded joints of the extra-high-strength steel. The research and results indicate that the hot-rolled extra-high-strength steel, BS960QC,has good weldability and an excellent adaptability to welding procedures. Further,the excellent mechanical properties and fatigue properties of the welded joints ,which can be achieved by using optimized welding procedures, can completely meet the technical requirements of the construction machinery industry.
基金supported by the Key Research Foundation of Baoshan Iron & Steel Co.,Ltd.(No.D06EBEA207)
文摘Results presented in this study contribute to investigation of the microstructure and mechanical properties of the hot-rolled Fe16Mn0.6C steel plates.The steel plates have been produced by being hot-rolled at temperatures ranging from 1100℃ to 850℃ in seven passes to 97.5% reduction in thickness and then cooled in a furnace of 650℃.Some plates have been annealed at temperatures ranging from 300℃ to 1100℃ for 5min to 60min,and then followed by water quenching.There are annealing twins in the hot-rolled Fe16Mn0.6C steel.Fe16Mn0.6C steel presents similar ductile behavior as X-IPTM steel,but much higher elongation than commercial martensitic steel (MP) 1000,dual phase (DP) 980,and transformation induced plasticity (TRIP) 980 steels.Fe16Mn0.6C steel experiences γε (-α) transformation in some local regions,but remains mostly austenite during the entire deformation process.Fe16Mn0.6C steel with special mechanical properties can be produced by using the appropriate anneal technology.Twinning induced plasticity(TWIP) effect only occurs in the Fe16Mn0.6C steel annealed at temperature higher than 900℃.
文摘Laser multipass welding techniques for thick section steels have been developed using a new type of UV combined narrow groove. The shape and sizes at the bottom of groove are determined by analyzing the plasma behavior using high speed photographic equipment. A stable autogenous CO2 laser welding process and greater penetration are generated at the root pass because of strong reduction of the plasma volume. According to the waveforms of welding current and arc voltage, and the interaction between the arc and the laser induced plasma, a suitable groove angle is obtained. Laser-double MIG hybrid welding process is studied and the optimum distances between the laser and two arcs are determined. By using autogenous CO2 laser welding, CO2 laser-MIG hybrid welding and laser-double MIG hybrid welding, 28 mm thick steel plates are welded with four passes. The welds produced are assessed by X-ray. No crack is found and there is only a small amount of pores. The experimental results show that the multipuss welding procedures proposed can realize the joining of thick section steels with high efficiency and good quality.
文摘Taking the seamless tube plant of Baoshan Iron & Steel Complex in China as the background,we analyze the characters of hot rolling seamless steel tube:multi varieties,low volume,complicated production process,flexible production routes.Then integrated scheduling problem for hot rolling seamless steel tube production is studied,which covers two key points;order-grouping problem and solution method for flowshop/jobshop scheduling problem.On the basis of these two problems,integrated scheduling decision system is developed.The design idea,function flow sheet,data processing method,and functional module of visualized human-computer interactive scheduling system implemented in seamless steel tube plant of Shanghai Baoshan Iron & Steel Complex are described into detail.Compared with manual system,the performance of system shows the applicability and superiority in several criteria.
基金the National Natural Science Foundation of China under Grant No.51478244
文摘To investigate the seismic behavior of I-section columns made of 460 MPa high strength steel (HSS), six specimens were tested under constant axial load and cyclic horizontal load. The specimens were designed with different width-to-thickness ratios and loaded under different axial load ratios. For each specimen, the failure mode was observed and hysteretic curve was measured. Comparison of different specimens on hysteretic characteristic, energy dissipation capacity and deformation capacity were further investigated. Test results showed that the degradation of bearing capacity was due to local buckling of flange and web. Under the same axial load ratio, as width-to-thickness ratio increased, the deformation area of local buckling became smaller. And also, displacement level at both peak load and failure load became smaller. In addition, the full extent of hysteretic curve, energy dissipation capacity, ultimate story drift angle decreased, and capacity degradation occurred more rapidly with the increase of width-to-thickness ratio or axial load ratio. Based on the capacity of story drift angle, limiting values which shall not be exceeded are suggested respectively for flange and web plate of 460 MPa HSS I-section columns when used in SMFs and in IMFs in the case of axial load ratio no more than 0.2. Such values should be smaller when the axial load ratio increases.
文摘Thanks to the fantastic development of power, transportation, chemical engineering, architecture and other fields, there has been an increasing demand for new type of section steel with large sections used for construction frame, such as type-H, type-T, and type-C section steel. New types of section steel usually are long and with large cross section. Therefore, for the sake of the cost, steel plate welding structure is used home and abroad. During the welding process, welding distortion seems unavoidable. Presently, proper welding machinery, technique and standards are adopted to minimize the distortion. Angular distortion is corrected with oil press and angular distortion corrector, while horizontal distortions like sickle curve and arch are mainly done with flame. Flame correction is of great labor intensity and is also time and material consuming. Besides, the correction is affected by the operators’ skill and mood, which, to some extent, limits the productivity. In this paper, a new technique of section steel distortion correction with high efficiency and adaptability and yet low investment and cost will be proposed for the development of new-type section steel. The correction principles and capability calculation should be done some research on, which will be introduced. The practice done on section steel with a wing edge of 40~60 mm, proves satisfactory: compared with oil-press correction, continual mangling correction saves equipment investment by three quarters, installed capacity by three quarters and investment by three quarters and with a much higher efficiency. Particularly in the distortion correction of heavy welding structures, mangling correction stands out from the crowd. Mangling correction proves to be the best solution to the continual horizontal distortion correction of welding section steel.
文摘In this study, the matrix structure, state and composition of the mill scales of four typical domestically made 510L hot-rolled strips were observed and analyzed by means of optical microscopy (OM) ,scanning electron microscopy (SEM) and X-ray diffraction (XRD). The corrosion behavior of the steels with and without mill scales were investigated by means of hot-humid corrosion tests under the condition of relative humidity ( RH ) of 95% at 50℃ and 70℃, respectively. The results show that the matrix structures, state, composition and thickness of mill scales vary in the strips. The rusting starting time of the specimens with scales is generally a bit longer than that of the specimens without scales, but their corrosion mass-gain is higher. For these two kinds of specimens ,their corrosion rate increases significantly with the increase of temperature. The rusting behavior of the 510L strips produced by various plants is different due to the variations of hot-rolling processes and designed chemical compositions. Various relevant aspects should be taken into account in the evaluation of the corrosion behavior of hot-rolled strips.
文摘Pier-Pile integral structures provide construction works with many environmental and landscape advantages. For example, the space required to construct these structures is smaller than that of other bridges due to the footing being removed, meaning that it is not necessity to greatly change the surroundings of these bridges. While there are environmental and landscape advantages, there are also a few demerits for the overall land-scape designs, including demerits in the design of this proposed structure which consists of relatively slender parts. This proposed structure has already been constructed in areas where possibility of a severe earthquake is low. However, some problems that have yet to be examined are related to the use of this proposed structure in areas where earthquakes are frequent. Lacking detailed studies of its behavior during severe earthquakes, it is currently difficult to construct these structures in Japan. Consequently, it is necessary to investigate in detail limited performance about compression and bending moment, and earthquake- resistant performance of these structures in order to resolve these problems. In this paper, It was clarified the relationship between the rigidity of the ground and the effective buckling length by buckling analysis and elasto- plastic finite deformation analysis. Moreover, it was proposed a simplified formula using a proposed characteristic value β and several factors for analysis accuracy. A simplified formula would support to determine the effective buckling length to design the pier using the load-bearing capacity curve based on the slenderness ratio parameter.
文摘The article presents the results of calculations of the effective thermal conductivity kef for bundles of steel rectangular sections obtained for a few analytical models. This coefficient expresses the ability of the bundles to heat transfer. The knowledge about the values of the kef coefficient of the section bundles is essential to correctly identify the parameters of their heat treatment process. The quality of the Calculation results were verified by the experimental measurement data. These measurements were performed in the guarded hot plate apparatus. It should be noted, that none of the eleven analyzed models of effective thermal conductivity is suitable for evaluation of thermal properties of the section bundles.