Ti0.5Al0.5N coatings were deposited on TC11(Ti-6.5Al-3.5Mo-1.5Zr-0.3Si) and silicon substrates using a cathode arc ion-plating system.The microstructure, composition, phase structure, and oxidation-resistance of the...Ti0.5Al0.5N coatings were deposited on TC11(Ti-6.5Al-3.5Mo-1.5Zr-0.3Si) and silicon substrates using a cathode arc ion-plating system.The microstructure, composition, phase structure, and oxidation-resistance of the alloys and nitride coatings were investigated by scanning electron microscopy, X-ray diffraction, transmission electron microscopy, Auger electron spectroscopy, and thermal analyzer.The results show that the oxidation resistance of the titanium alloy is relatively limited;the compound structures of Ti mixed with Al oxides are formed during the heating process.The phases of the Ti0.5Al0.5N coatings are composed of a TiN solid solution phase.The oxidation kinetics obeys the parabolic law.During the oxidation process, the selective oxidation of Al occurs, thus protecting the underlying coating and substrate.展开更多
This paper introduces a thick 690 nickel-based alloy plate produced by the former Baosteel Special Steel Co.,Ltd.used as the steam-generator divider plate in the pressurized water reactor nuclear power plant.According...This paper introduces a thick 690 nickel-based alloy plate produced by the former Baosteel Special Steel Co.,Ltd.used as the steam-generator divider plate in the pressurized water reactor nuclear power plant.According to the product characteristics and design requirements of the thick nickel-based alloy plate,multidimensional sampling and testing were conducted to investigate its microstructure and mechanical properties.The results show that all the property indexes of the thick hot-rolled nickel-based alloy plate meet the design requirements,and there is good uniformity in the microstructure and mechanical properties in different dimensions.These findings indicate that China has mastered the core manufacturing technology of thick nickel-based alloy plates for their use as divider plates in nuclear power steam generators.展开更多
Fracture assessment of the cracked structures is essential to avoiding fracture failure.A number of fracture assessment procedures have been proposed for various steel structures.However,the studies about the applicat...Fracture assessment of the cracked structures is essential to avoiding fracture failure.A number of fracture assessment procedures have been proposed for various steel structures.However,the studies about the application of available procedures for titanium alloy structures are scarcely reported.Fracture assessment for the electron beam(EB) welded thick-walled damage tolerant Ti-6Al-4V(TC4-DT) alloy is performed by the fitness-for-service(FFS) FITNET procedure.Uniaxial tensile tests and fracture assessment tests of the base metal and weld metal are carried out to obtain the input information of assessment.The standard options and advanced options of FITNET FFS procedure are used to the fracture assessment of the present material.Moreover,the predicted maximum loads of compact tensile specimen using FITNET FFS procedure are verified with the experimental data of fracture assessment tests.As a result,it is shown that the mechanical properties of weld metal are inhomogeneous along the weld depth.The mismatch ratio M is less than 10% at the weld top and middle,whereas more than 10% at the weld bottom.Failure assessment lines of standard options are close to that of advanced option,which means that the standard options are suitable for fracture assessment of the present welds.The accurate estimation of the maximum loads has been obtained by fracture assessment of standard options with error less than 6%.Furthermore,there are no potential advantages of applying higher options or mismatch options.Thus,the present welded joints can be treated as homogeneous material during the fracture assessment,and standard option 1 can be used to achieve accurate enough results.This research provides the engineering treatment methods for the fracture assessment of titanium alloy and its EB welds.展开更多
We study the absorption of hydrogen of metal by the permeability method. With the help of the gas reaction controller(GRC), the absorptive capacity of hydrogen, which is a function of time, temperature and pressure, c...We study the absorption of hydrogen of metal by the permeability method. With the help of the gas reaction controller(GRC), the absorptive capacity of hydrogen, which is a function of time, temperature and pressure, can be recorded. The effect of the performance of the hydrogen permeability of AlN coating on the titanium alloy surface structure is studied.In the research, the AlN is selected to be added to the titanium alloy sample VT6, and the properties of the titanium alloy are investigated, and the hydrogen absorption rate of the coating is calculated by performing the hydrogen saturation of the test sample. The results show that under 600℃ the AlN film reduces the hydrogen absorption rate of titanium alloy and improves the surface properties of VT6 alloy.展开更多
文摘Ti0.5Al0.5N coatings were deposited on TC11(Ti-6.5Al-3.5Mo-1.5Zr-0.3Si) and silicon substrates using a cathode arc ion-plating system.The microstructure, composition, phase structure, and oxidation-resistance of the alloys and nitride coatings were investigated by scanning electron microscopy, X-ray diffraction, transmission electron microscopy, Auger electron spectroscopy, and thermal analyzer.The results show that the oxidation resistance of the titanium alloy is relatively limited;the compound structures of Ti mixed with Al oxides are formed during the heating process.The phases of the Ti0.5Al0.5N coatings are composed of a TiN solid solution phase.The oxidation kinetics obeys the parabolic law.During the oxidation process, the selective oxidation of Al occurs, thus protecting the underlying coating and substrate.
基金sponsored by Special Fund for Indus-trial Transformation and Upgrading in Shanghai(No.GYQJ-2018-2-03)Program of Shanghai Academ-ic/Technology Research Leader(No.17XD1420200).
文摘This paper introduces a thick 690 nickel-based alloy plate produced by the former Baosteel Special Steel Co.,Ltd.used as the steam-generator divider plate in the pressurized water reactor nuclear power plant.According to the product characteristics and design requirements of the thick nickel-based alloy plate,multidimensional sampling and testing were conducted to investigate its microstructure and mechanical properties.The results show that all the property indexes of the thick hot-rolled nickel-based alloy plate meet the design requirements,and there is good uniformity in the microstructure and mechanical properties in different dimensions.These findings indicate that China has mastered the core manufacturing technology of thick nickel-based alloy plates for their use as divider plates in nuclear power steam generators.
基金supported by Key Program of National Natural Science Foundation of China(Grant No.50935008)
文摘Fracture assessment of the cracked structures is essential to avoiding fracture failure.A number of fracture assessment procedures have been proposed for various steel structures.However,the studies about the application of available procedures for titanium alloy structures are scarcely reported.Fracture assessment for the electron beam(EB) welded thick-walled damage tolerant Ti-6Al-4V(TC4-DT) alloy is performed by the fitness-for-service(FFS) FITNET procedure.Uniaxial tensile tests and fracture assessment tests of the base metal and weld metal are carried out to obtain the input information of assessment.The standard options and advanced options of FITNET FFS procedure are used to the fracture assessment of the present material.Moreover,the predicted maximum loads of compact tensile specimen using FITNET FFS procedure are verified with the experimental data of fracture assessment tests.As a result,it is shown that the mechanical properties of weld metal are inhomogeneous along the weld depth.The mismatch ratio M is less than 10% at the weld top and middle,whereas more than 10% at the weld bottom.Failure assessment lines of standard options are close to that of advanced option,which means that the standard options are suitable for fracture assessment of the present welds.The accurate estimation of the maximum loads has been obtained by fracture assessment of standard options with error less than 6%.Furthermore,there are no potential advantages of applying higher options or mismatch options.Thus,the present welded joints can be treated as homogeneous material during the fracture assessment,and standard option 1 can be used to achieve accurate enough results.This research provides the engineering treatment methods for the fracture assessment of titanium alloy and its EB welds.
基金Project supported by the China Scholarship Council
文摘We study the absorption of hydrogen of metal by the permeability method. With the help of the gas reaction controller(GRC), the absorptive capacity of hydrogen, which is a function of time, temperature and pressure, can be recorded. The effect of the performance of the hydrogen permeability of AlN coating on the titanium alloy surface structure is studied.In the research, the AlN is selected to be added to the titanium alloy sample VT6, and the properties of the titanium alloy are investigated, and the hydrogen absorption rate of the coating is calculated by performing the hydrogen saturation of the test sample. The results show that under 600℃ the AlN film reduces the hydrogen absorption rate of titanium alloy and improves the surface properties of VT6 alloy.