The chaotic characteristics and maximum predictable time scale of the observation series of hourly water consumption in Hangzhou were investigated using the advanced algorithm presented here is based on the convention...The chaotic characteristics and maximum predictable time scale of the observation series of hourly water consumption in Hangzhou were investigated using the advanced algorithm presented here is based on the conventional Wolf's algorithm for the largest Lyapunov exponent. For comparison, the largest Lyapunov exponents of water consumption series with one-hour and 24-hour intervals were calculated respectively. The results indicated that chaotic characteristics obviously exist in the hourly water consumption system; and that observation series with 24-hour interval have longer maximum predictable scale than hourly series. These findings could have significant practical application for better prediction of urban hourly water consumption.展开更多
A new method of short-term forecasting for water consumption in municipal supply water networks based on wavelet transformation is introduced. By wavelet decomposing commonly used in the signal field, water consumptio...A new method of short-term forecasting for water consumption in municipal supply water networks based on wavelet transformation is introduced. By wavelet decomposing commonly used in the signal field, water consumption per hour is decomposed into many series. Trend item, cycle item and random item are separated from the original time series in this way.Then by analyzing, building a model, forecasting every series and composing the results, the forecasting value of the original consumption is received. Simulation results show that this forecasting method is faster and more accurate, of which the error is less than 2%, indicating that the wavelet analytical method is practicable.展开更多
基金Project (No. 50078048) supported by the National Natural Science Foundation of China
文摘The chaotic characteristics and maximum predictable time scale of the observation series of hourly water consumption in Hangzhou were investigated using the advanced algorithm presented here is based on the conventional Wolf's algorithm for the largest Lyapunov exponent. For comparison, the largest Lyapunov exponents of water consumption series with one-hour and 24-hour intervals were calculated respectively. The results indicated that chaotic characteristics obviously exist in the hourly water consumption system; and that observation series with 24-hour interval have longer maximum predictable scale than hourly series. These findings could have significant practical application for better prediction of urban hourly water consumption.
文摘A new method of short-term forecasting for water consumption in municipal supply water networks based on wavelet transformation is introduced. By wavelet decomposing commonly used in the signal field, water consumption per hour is decomposed into many series. Trend item, cycle item and random item are separated from the original time series in this way.Then by analyzing, building a model, forecasting every series and composing the results, the forecasting value of the original consumption is received. Simulation results show that this forecasting method is faster and more accurate, of which the error is less than 2%, indicating that the wavelet analytical method is practicable.