期刊文献+
共找到4,070篇文章
< 1 2 204 >
每页显示 20 50 100
Experimental study on the activation of coal gasification fly ash from industrial CFB gasifiers
1
作者 Qiyao Yang Xiaobin Qi +1 位作者 Qinggang Lyu Zhiping Zhu 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2024年第1期8-18,共11页
Coal gasification fly ash(CGFA)is an industrial solid waste from the coal circulating fluidized bed(CFB)gasification process,and it needs to be effectively disposed to achieve sustainable development of the environmen... Coal gasification fly ash(CGFA)is an industrial solid waste from the coal circulating fluidized bed(CFB)gasification process,and it needs to be effectively disposed to achieve sustainable development of the environment.To realize the application of CGFA as a precursor of porous carbon materials,the physicochemical properties of three kinds of CGFA from industrial CFB gasifiers are analyzed.Then,the activation potential of CGFA is acquired via steam activation experiments in a tube furnace reactor.Finally,the fluidization activation technology of CGFA is practiced in a bench-scale CFB test rig,and its advantages are highlighted.The results show that CGFA is characterized by a high carbon content in the range of 54.06%–74.09%,an ultrafine particle size(d50:16.3–26.1 μm),and a relatively developed pore structure(specific surface area SSA:139.29–551.97 m^(2)·g^(-1)).The proportion of micropores in CGFA increases gradually with the coal rank.Steam activation experiments show that the pore development of CGFA mainly includes three stages:initial pore development,dynamic equilibrium between micropores and mesopores and pore collapse.The SSA of lignite fly ash(LFA),subbituminous fly ash(SBFA)and anthracite fly ash(AFA)is maximally increased by 105%,13%and 72%after steam activation;the order of the largest carbon reaction rate and decomposition ratio of steam among the three kinds of CGFA is SBFA>LFA>AFA.As the ratio of oxygen to carbon during the fluidization activation of LFA is from 0.09 to 0.19,the carbon conversion ratio increases from 14.4%to 26.8%and the cold gas efficiency increases from 6.8%to 10.2%.The SSA of LFA increases by up to 53.9%during the fluidization activation process,which is mainly due to the mesoporous development.Relative to steam activation in a tube furnace reactor,fluidization activation takes an extremely short time(seconds)to achieve the same activation effect.It is expected to further improve the activation effect of LFA by regulating the carbon conversion ratio range of 27%–35%to create pores in the initial development stage. 展开更多
关键词 Circulating fluidized bed coal gasification fly ash Steam activation Pore structure evolution Fluidization activation
下载PDF
Investigation into the operation of an autothermal two-section subbituminous coal fluidized bed gasifier
2
作者 Nikolay Abaimov Alexander Ryzhkov +3 位作者 Alexey Dubinin Lu Ding Vladimir Tuponogov Sergey Alekseenko 《International Journal of Coal Science & Technology》 EI CAS CSCD 2023年第3期190-203,共14页
Using a newly developed experimental setup,the features and advantages of an autothermal single-casing atmospheric sub-bituminous coal fluidized bed air-blown gasifier,combining a combustion and gasification section,a... Using a newly developed experimental setup,the features and advantages of an autothermal single-casing atmospheric sub-bituminous coal fluidized bed air-blown gasifier,combining a combustion and gasification section,and mixing the dispersed phase(inert material,char)and heat exchange between them through an annular transfer device,have been revealed.To increase the efficiency of the gasifier,an experimental-computational method was developed find the conditions for optimal operation,combining changing the annular flow's geometry and regulating the primary air for gasification.A simple and reliable multizone thermodynamic calculation model makes it possible to predict the composition of char and syngas in the gasification section with acceptable accuracy.This method confirmed that a two-section fluidized bed gasifier can provide efficient gasification of solid fuels and is suitable for use in small-scale cogeneration plants.Syngas with a heating value of 3.6-4.5 MJ/m^(3)and CGE of 38.2%-42.3%was obtained in the experimental setup without optimizing the primary air flow rate.With optimization,the indicators increased to the heating value of syngas of 5.20-5.34 MJ/m^(3)and CGE of 42.5%-50.0%.With heat regeneration of 0.8,CGE increases to 70%. 展开更多
关键词 coal SYNGAS GASIFICATION Bubbling fluidized bed theRMODYNAMICS Modeling
下载PDF
A critical review on direct catalytic hydrogasification of coal into CH_(4):catalysis process configurations,evaluations,and prospects
3
作者 Shuai Yan Jun Feng +4 位作者 Shenfu Yuan Zihong Xia Fengshuang Han Xuan Qu Jicheng Bi 《International Journal of Coal Science & Technology》 EI CAS CSCD 2024年第3期51-85,共35页
Coal catalytic hydrogasification(CCHG)is a straightforward approach for producing CH_(4),which shows advantages over the mature coal-to-CH_(4) technologies from the perspectives of CH_(4) yield,thermal efficiency,and ... Coal catalytic hydrogasification(CCHG)is a straightforward approach for producing CH_(4),which shows advantages over the mature coal-to-CH_(4) technologies from the perspectives of CH_(4) yield,thermal efficiency,and CO_(2) emission.The core of CCHG is to make carbon in coal convert into CH_(4) efficiently with a catalyst.In the past decades,intensive research has been devoted to catalytic hydrogasification of model carbon(pitch coke,activated carbon,coal char).However,the chemical process of CCHG is still not well understood because the coal structure is more complicated,and CCHG is a combination of coal catalytic hydropyrolysis and coal char catalytic hydrogasification.This review seeks to shed light on the catalytic process of raw coal during CCHG.The configuration of suitable catalysts,operating conditions,and feedstocks for tailoring CH_(4) formation were identified,and the underlying mechanisms were elucidated.Based on these results,the CCHG process was evaluated,emphasizing pollutant emissions,energy efficiency,and reactor design.Furthermore,the opportunities and strategic approaches for CCHG under the restraint of carbon neutrality were highlighted by considering the penetration of“green”H2,biomass,and CO_(2) into CCHG.Preliminary investigations from our laboratories demonstrated that the integrated CCHG and biomass/CO_(2) hydrogenation process could perform as an emerging pathway for boosting CH_(4) production by consuming fewer fossil fuels,fulfilling the context of green manufacturing.This work not only provides systematic knowledge of CCHG but also helps to guide the efficient hydrogenation of other carbonaceous resources such as biomass,CO_(2),and coal-derived wastes. 展开更多
关键词 coal gasification Catalytic hydrogasification Methane Pressurized fluidized bed
下载PDF
Influences of Temperature and Coal Particle Size on the Flash Pyrolysis of Coal in a Fast-entrained Bed 被引量:19
4
作者 CUI Li-jie LIN Wei-gang YAO Jian-zhong 《Chemical Research in Chinese Universities》 SCIE CAS CSCD 2006年第1期103-110,共8页
The experiments on the flash pyrolysis of a lignite were carried out in a fast-entrained bed reactor as a basic study on a so-called ' coal topping process'. The investigation focused on the effects of pyrolysis tem... The experiments on the flash pyrolysis of a lignite were carried out in a fast-entrained bed reactor as a basic study on a so-called ' coal topping process'. The investigation focused on the effects of pyrolysis temperature and coal particle size on the product distribution and composition. The experimental results show that an increase in the pyrolysis temperature results in a higher yield of gaseous products while a larger particle size leads to a decrease of the liquid yield. An optimum temperature for the liquid yield was found to be 650℃. A certain amount of phenol groups was found in the liquid products, which may be used to produce high-valued fine chemicals. The FTIR analyses of the coal and chars show that aliphatic structures in the chars are gradually replaced by aromatic structures with the increasing of pyrolysis temperature and coal particle size. The results of this study provide fundamental data and optimal conditions to maximize light oils yields for the coal topping process. 展开更多
关键词 Fluidized bed coal Flash pyrolysis Particle Size TEMPERATURE
下载PDF
A numerical simulation study on mechanical behaviour of coal with bedding planes under coupled static and dynamic load 被引量:9
5
作者 Lihai Tan Ting Ren +1 位作者 Xiaohan Yang Xueqiu He 《International Journal of Mining Science and Technology》 SCIE EI CSCD 2018年第5期791-797,共7页
To investigate the bedding influence on coal mechanical behaviour in underground environments such as coal or rock burst, simulations of dynamic SHPB tests of pre-stressed coal specimens with different bedding angles ... To investigate the bedding influence on coal mechanical behaviour in underground environments such as coal or rock burst, simulations of dynamic SHPB tests of pre-stressed coal specimens with different bedding angles were carried out using a particle flow code 2-dimensional(PFC2D). Three impact velocities of 4, 8 and 12 m/s were selected to study dynamic behaviours of coal containing bedding planes under different dynamic loads. The simulation results showed that the existence of bedding planes leads to the degradation of the mechanical properties and their weakening effect significantly depends on the angle h between the bedding planes and load direction. With h increaseing from 0° to 90°, the strength first decreased and subsequently increased and specimens became most vulnerable when h was 30° or 45°.Five failure modes were observed in the specimens in the context of macro-cracks. Furthermore, energy characteristics combined with ultimate failure patterns revealed that maximum accumulated energy and failure intensity have a positive relation with the strength of specimen. When bedding planes were parallel or perpendicular to loading direction, specimens absorbed more energy and experienced more violent failure with increased number of cracks. In contrast, bedding planes with h of 30° or 45° reduced the specimens' ability of storing strain energy to the lowest with fewer cracks observed after failure. 展开更多
关键词 Static–dynamic COUPLED loads SHPB coal bedDING angle Strain energy PFC2D
下载PDF
Prediction of geotemperatures in coal-bearing strata and implications for coal bed methane accumulation in the Bide-Santang basin,western Guizhou,China 被引量:4
6
作者 Chen Guo Yong Qin +2 位作者 Dongmin Ma Zhaobiao Yang Lingling Lu 《International Journal of Mining Science and Technology》 SCIE EI CSCD 2020年第2期235-242,共8页
The geothermal fields of coal-bearing strata have become a key topic in geological research into coal and coal bed methane(CBM).Based on temperature data from 135 boreholes that penetrate the Upper Permian coal-bearin... The geothermal fields of coal-bearing strata have become a key topic in geological research into coal and coal bed methane(CBM).Based on temperature data from 135 boreholes that penetrate the Upper Permian coal-bearing strata in the Bide-Santang basin,western Guizhou,the precisions of geothermal predictions made using a geothermal gradient model and a gray sequence GM(1,1)model are analyzed and compared.The results indicate that the gray sequence GM(1,1)model is more appropriate for the prediction of geothermal fields.The GM(1,1)model is used to predict the geothermal field at three levels with depths of 500,1000,and 1500 m,as well as within the No.6,No.16,and No.27 coal seams.The results indicate that the geotemperatures of the 500 m depth level are between 21.0 and 30.0°C,indicating no heat damage;the geotemperatures of the 1000 m depth level are between 29.4 and 44.7°C,indicating the first level of heat damage;and the geotemperatures of the 1500 m depth level are between35.6 and 63.4°C,indicating the second level of heat damage.The CBM contents are positively correlated with the geotemperatures of the coal seams.The target area for CBM development is identified. 展开更多
关键词 Geotemperature GRAY sequence GEOtheRMAL gradient Heat damage coal coal bed methane
下载PDF
Study on the emission characteristics of nitrogen oxides with coal combustion in pressurized fluidized bed 被引量:2
7
作者 Zheng Gong Yingjuan Shao +2 位作者 Lei Pang Wenqi Zhong Chao Chen 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2019年第5期1177-1183,共7页
Nitrogen oxides are one of the most significant pollution sources during coal combustion. This experimental study was conducted in a 15 kWth lab-scale pressurized fluidized bed (inner diameter = 81-100 mm, H = 2100 mm... Nitrogen oxides are one of the most significant pollution sources during coal combustion. This experimental study was conducted in a 15 kWth lab-scale pressurized fluidized bed (inner diameter = 81-100 mm, H = 2100 mm) firing with bituminous coals. The effects of operating parameters, including bed temperature (800℃-900℃), operating pressure (0.1-0.4 MPa), excess air level (16%-30%) and flow pattern on NOX and N2O emissions were systematically studied during the tests. During each test the interaction effects of all the operating parameters were properly controlled. The results show that most operating parameters have an opposite effect on NOX and N2O emissions, and the N2O emissions mainly depend on the bed temperature. Increasing the operating pressure can significantly suppress the fuel-N conversion to NOX but enhance its conversion to N2O. With the rise of the excess air level and fluidization number, NOX emissions grow distinctly while N2O emissions remain almost unchanged. Total nitrogen oxide emissions increase with the bed temperature while decrease with the operating pressure. 展开更多
关键词 Pressurized fluidized bed coal COMBUSTION Operating PARAMETER NOX N2O
下载PDF
Seismic studies of coal bed methane content in the west coal mining area of Qinshui Basin 被引量:2
8
作者 Zou Guangui Peng Suping +3 位作者 Yin Caiyun Xu Yanyong Chen Fengying Liu Jinkai 《International Journal of Mining Science and Technology》 SCIE EI 2013年第6期795-803,共9页
The coal bed methane content(CBMC)in the west mining area of Jincheng coalfield,southeastern Qjnshui Basin,is studied based on seismic data and well-logs together with laboratory measurements.The results show that the... The coal bed methane content(CBMC)in the west mining area of Jincheng coalfield,southeastern Qjnshui Basin,is studied based on seismic data and well-logs together with laboratory measurements.The results show that the Shuey approximation has better adaptability according to the Zoeppritz equation result;the designed fold number for an ordinary seismic data is sufficient for post-stack data but insufficient for pre-stack data regarding the signal to noise ratio(SNR).Therefore a larger grid analysis was created in order to improve the SNR.The velocity field created by logging is better than that created by stack velocity in both accuracy and effectiveness.A reasonable distribution of the amplitude versus offset(AVO)attributes can be facilitated by taking the AVO response from logging as a standard for calibrating the amplitude distribution.Some AVO attributes have a close relationship with CBMC.The worst attribute is polarization magnitude,for which the correlation coefficient is 0.308;and the best attribute is the polarization product from intercept,of which the correlation coefficient is-0.8136.CBMC predicted by AVO attributes is better overall than that predicted by direct interpolation of CBMC;the validation error of the former is 14.47%,which is lower than that of the latter 23.30%.CBMC of this area ranges from2.5 m^3/t to 22 m^3/t.Most CBMC in the syncline is over 10m^3/t,but it is below 10m^3/t in the anticline;on the whole,CBMC in the syncline is higher than that in anticline. 展开更多
关键词 coal bed methane content Amplitude versus offset AVO attribute Correlation coefficient
下载PDF
Theories and techniques of coal bed methane control in China 被引量:1
9
作者 Liang Yuan 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE 2011年第4期343-351,共9页
Coal bed methane control with low permeability is a hot issue at present. The current status of coal bed methane control in China is introduced. The government-support policies on coal bed methane control are presente... Coal bed methane control with low permeability is a hot issue at present. The current status of coal bed methane control in China is introduced. The government-support policies on coal bed methane control are presented. This paper proposes the theories of methane control in depressurized mining, including methane extraction in depressurized mining, simultaneous mining technique of coal and methane without coal pillar, and circular overlying zone for high-efficiency methane extraction in coal seams with low permeability. The techniques of methane control and related instruments and equipments in China are introduced. On this basis, the problems related to coal bed methane control are addressed and further studies are pointed out. 展开更多
关键词 coal bed methane control depressurized mining low permeability coal seams simultaneous mining technique ofcoal and methane without coal pillar circular overlying zone
下载PDF
The control of coal mine gas and coordinated exploitation of coal bed methane in China 被引量:4
10
作者 LIU Jian-zhong 《Journal of Coal Science & Engineering(China)》 2009年第3期267-272,共6页
Based on the characteristics of the coalfield geology and the distribution of coalbed methane (CBM) in China,the geological conditions for exploiting the CBM and drainingthe coal mine gas were analyzed,as well as the ... Based on the characteristics of the coalfield geology and the distribution of coalbed methane (CBM) in China,the geological conditions for exploiting the CBM and drainingthe coal mine gas were analyzed,as well as the characteristics of CBM production.Bycomparing the current situation of CBM exploitation in China with that in the United States,the current technology and characteristics of the CBM exploitation in China were summarizedand the major technical problems of coal mine gas control and CBM exploitationanalyzed.It was emphasized that the CBM exploitation in China should adopt the coalmine gas drainage method coordinated with coal mine exploitation as the main model.Itwas proposed that coal mine gas control should be coordinated with coal mine gas exploitation.The technical countermeasure should be integrating the exploitation of coal andCBM and draining gas before coal mining. 展开更多
关键词 煤层气开采 煤矿瓦斯 协调开采 瓦斯控制 中国 煤层气开发 瓦斯抽放方法 地质条件
下载PDF
A Comprehensive Appraisal on the Characteristics of Coal-Bed Methane Reservoir in Turpan-Hami Basin 被引量:10
11
作者 TANG Shu-heng WANG Yan-bin ZHANG Dai-sheng 《Journal of China University of Mining and Technology》 EI 2007年第4期521-525,545,共6页
The rich coal-bed methane resources in the Turpan-Hami Basin are mainly located in the Shisanjianfang,Hami,Shanshan,Sha'erhu,Kekeya,Kerjian,Aidinghu inclines and the Dananhu coal-bed methane reservoirs. The big-ge... The rich coal-bed methane resources in the Turpan-Hami Basin are mainly located in the Shisanjianfang,Hami,Shanshan,Sha'erhu,Kekeya,Kerjian,Aidinghu inclines and the Dananhu coal-bed methane reservoirs. The big-ger coal-bed reservoirs are sitting at a depth of less than 1500 m. The coalbed methane generation,storage and confin-ing conditions of the Turpan-Hami basin can be indicated by eight key parameters. They are coal-bed thickness,coal rank,missing period,permeability,Langmuir volume,rock covering ability,structural confinement and hydrodynamic sealing environment. These parameters constitute a comprehensive appraisal index system of the coal-bed methane res-ervoir characteristics of the Turpan-Hami basin. In these parameters,the missing period of coal-bed methane is indi-cated by a stratum missing intensity factor. It reflects the relative exposure period of coal series. The results of a fuzzy comprehensive judgment showed that the Shisanjianfang coal-bed methane reservoir has the best prospects for exploita-tion and the Sha'erhu,Shanshan,Hami coal-bed methane reservoirs are next in line. 展开更多
关键词 煤床 瓦斯 储蓄量 盆地
下载PDF
Study on the distribution of PAHs in fly ash from coal and residual char combustion in a pressurized fluidized bed 被引量:1
12
作者 Hongcang ZHOU 《Chinese Journal Of Geochemistry》 EI CAS 2006年第B08期54-55,共2页
关键词 PAHS 加压燃烧 硫化床 飞尘
下载PDF
Accumulation of coal-bed gas in the Wangying-Liujia area of the Fuxin basin 被引量:2
13
作者 Wang Bo Jiang Bo +5 位作者 Xu Fengyin Kong Xiangwen Li Guizhong Wang Xiaoyi Chen Weiyin Geng Meng 《International Journal of Mining Science and Technology》 2012年第1期1-6,共6页
The gas enrichment conditions in the Fuxin basin are compared to those of the Powder River basin.The coal bed depth,the gas content,the individual coal bed layer thickness,and the overall structure thickness of the Po... The gas enrichment conditions in the Fuxin basin are compared to those of the Powder River basin.The coal bed depth,the gas content,the individual coal bed layer thickness,and the overall structure thickness of the Powder River basin in the U.S.were examined.The main factors affecting gas enrichment were examined.These factors include the coal-forming environment,the gas sources,the geological structure,the presence of magmatic activity,and the local hydrology.The coal-bed gas enrichment area in the Wangying-Liujia block of the Fuxin basin is then discussed by analogy.A hydrodynamic-force/dike-plugging model based on a magma fractured bed is proposed to explain the gas enrichment in this part of the Fuxin basin.High gas production is predicted in areas having similar conditions.This work will aid future coal-bed gas exploration and development. 展开更多
关键词 煤层气勘探 阜新盆地 刘家区 天然气富集 积累 岩浆活动 天然气产量 富集条件
下载PDF
Investigation of thermochemical process of coal particle packed bed reactions for the development of UCG
14
作者 Tata Sutardi Linwei Wang +1 位作者 Nader Karimi Manosh C.Paul 《International Journal of Coal Science & Technology》 EI 2020年第3期476-492,共17页
In this study,a packed bed reactor was developed to investigate the gasification process of coal particles.The effects of coal particle size and heater temperature of reactor were examined to identify the thermochemic... In this study,a packed bed reactor was developed to investigate the gasification process of coal particles.The effects of coal particle size and heater temperature of reactor were examined to identify the thermochemical processes through the packed bed.Three different coal samples with varying size,named as A,B,and C,are used,and the experimental results show that the packed bed with smaller coal size has higher temperature,reaching 624°C,582°C,and 569°C for coal A,B,and C,respectively.In the case of CO formation,the smaller particle size has greater products in the unit of mole fraction over the area of generation.However,the variation in the porosity of the packed bed due to different coal particle sizes affects the reactions through the oxygen access.Consequently,the CO formation is least from the coal packed bed formed by the smallest particle size A.A second test with the temperature variations shows that the higher heater temperature promotes the chemical reactions,resulting in the increased gas products.The findings indicate the important role of coal seam porosity in underground coal gasification application,as well as temperature to promote the syngas productions. 展开更多
关键词 thermochemical process Particle packed bed coal particle gasification Gas products underground coal gasification(UCG)
下载PDF
Thermochemical Conversion of Coal and Coal-Biomass Blends in an Autothermal Moving Bed Gasifier: Experimental Investigation
15
作者 Abhijit Bhagavatula Naresh Shah 《Journal of Power and Energy Engineering》 2021年第7期41-60,共20页
<span style="font-family:Verdana;">A unique laboratory scale auto-thermal moving bed gasifier was designed for studyin</span><span style="font-family:Verdana;">g the thermochemica... <span style="font-family:Verdana;">A unique laboratory scale auto-thermal moving bed gasifier was designed for studyin</span><span style="font-family:Verdana;">g the thermochemical conversion of coal-biomass blends. </span><span style="font-family:Verdana;">For th</span><span style="font-family:Verdana;">is purpose, two coals (lignite and sub-bituminous), two biomass materials (corn stover and switchgrass)</span><span style="font-family:Verdana;">,</span><span style="font-family:Verdana;"> and their respective blends were used. Gasification characteristics of the fuels were evaluated with an emphasis on improving the producer gas composition. The efficiency and product gas compositions reveal that utilizing </span><span style="font-family:Verdana;">the</span><span style="font-family:Verdana;"> inner stainless-steel tubing better promotes heat transfer upwards in the axial direction when compared to utilizing quartz insulation. The H<sub>2</sub>/CO ratio at </span><span style="font-family:Verdana;">the </span><span style="font-family:Verdana;">same operating conditions is much higher due to the increase in bed temperature and heat transfer upwards in the axial direction. This improved the overall efficiency by at least 20%. Using pure oxygen and steam, efficiency greater than 50% was obtained for blends with corn stover at steam to oxygen ratio of 2:1. Also, using air as the gasifying agent greatly improved the H<sub>2</sub>/CO ratios and overall efficiency in blends with corn stover. In contrast, blends with switchgrass were not very effective with respect to the overall gasification characteristics. Blending switchgrass with coal may not be viable option from the viewpoint of generating high quality producer gas for downstream operations.</span> 展开更多
关键词 coal Biomass Autothermal Moving bed Gasifier GASIFICATION SYNGAS
下载PDF
Evaluation of coal bed methane content using BET adsorption isotherm equation 被引量:1
16
作者 ZHANG Yi FAN Xiaomin HAN Xue NAN Zeyu XU Jun 《Global Geology》 2012年第1期74-77,共4页
Coal bed methane is unconventional raw natural gas stored in coal seam with considerable reserves in China.In recent years,as the coal bed methane production,the safety and the use of resources have been paid more att... Coal bed methane is unconventional raw natural gas stored in coal seam with considerable reserves in China.In recent years,as the coal bed methane production,the safety and the use of resources have been paid more attentions.Evaluating coal bed methane content is an urgent problem.A BET adsorption isotherm equation is used to process the experimental data.The various parameters of BET equation under different temperatures are obtained;a theoretical gas content correction factor is proposed,and an evaluation method of actual coal bed methane is established. 展开更多
关键词 吸附等温方程 评价方法 甲烷含量 煤层气 原料天然气 BET方程 实验数据 校正因子
下载PDF
Research on Structural Design of Coal Crusher House in Thermal Power Plant
17
作者 Junhu Wang 《Journal of Architectural Environment & Structural Engineering Research》 2020年第2期14-17,共4页
This paper takes the specific characteristics of pulverized coal room in thermal power plant as the starting point,firstly,this paper analyzes the process layout and structure selection,and then the structural design ... This paper takes the specific characteristics of pulverized coal room in thermal power plant as the starting point,firstly,this paper analyzes the process layout and structure selection,and then the structural design and vibration design requirements of coal crusher house are introduced in this paper.Finally,based on the engineering example,a new structure form of vibration isolation design is creatively proposed,which provides a new design idea for the practical engineering design. 展开更多
关键词 coal-fired power plant coal crusher house Vibration calculation Vibration isolation design
下载PDF
The experiment study on slippage effect of the coal-bed methane transfusion
18
作者 彭晓华 潘一山 +1 位作者 肖晓春 陈长华 《Journal of Coal Science & Engineering(China)》 2008年第4期530-533,共4页
When the gas flow in the compact porous medium at low speed,it has slippage effect which is caused by the gas molecular collision whit the solidskeleton.Using the gas transfusion slippage effect at researching the coa... When the gas flow in the compact porous medium at low speed,it has slippage effect which is caused by the gas molecular collision whit the solidskeleton.Using the gas transfusion slippage effect at researching the coal bed transfusion rule,established the transfusion mathematical model of the coal bed which had considered the slippage effect. Observing the influence of the different toencircle presses,the different hole press and the different actual stress to the coal bed by using the three-axles permeameter.Thus sum- marized the transfusion rule of the coal bed.The experiment indicates that the bigger of the surrounding pressure,the more obvious of the slippage effect.At the same condition of axial pressure and the surrounding pressure,with the increase of the hole pressure,the coal permeability became bigger and then smaller.The coal body effective tress and the permeability curve nearly also has the same change tendency.Thus we can draws the conclusion that the transfusion of the gas in the coal bed generally has the slippage effect. 展开更多
关键词 煤层 透气性系数 测定 低渗透气藏 数值模拟
下载PDF
The influence of discharge style on the separation of coarse coal slime by a hindered fluidized bed
19
《Journal of Coal Science & Engineering(China)》 2012年第1期96-100,共5页
关键词 放电式 粗煤泥 流化床 分离 水流速度 灰分含量 液体分配器 颗粒速度
下载PDF
Study on optimization of underlying coal bed exploited depth for tunnel
20
作者 JIN Xiao-guang DING Bao-chen LI Xiao-hong 《Journal of Coal Science & Engineering(China)》 2010年第1期11-16,共6页
Combined with highway construction, the analysis on the relationship betweentunnel construction and coal resource exploitation was processed, which was based onthe research of rational exploitation depth of coal.3D FE... Combined with highway construction, the analysis on the relationship betweentunnel construction and coal resource exploitation was processed, which was based onthe research of rational exploitation depth of coal.3D FEM numerical analysis for tunnelexcavation was carried out according to engineering geological features of coal measurestrata in the project area.Based on the analysis of displacement and stress of the surroundingrock in the tunnel after excavation, the characteristics for displacement andstress of the tunnel support structure were analyzed when the underlying coal bed wasexploited with sublevel and full caving method.In addition, combined with the related codeand standard, the economic and safe prohibiting exploited depth of the underlying coalbed was proposed, so that a scientific basis for tunnel construction of coal measure strataand reasonable exploitation of the mineral resources in complex geological conditions canbe offered. 展开更多
关键词 隧道施工 煤层气 优化利用 有限元数值分析 合理开采深度 复杂地质条件 煤系地层 应力分析
下载PDF
上一页 1 2 204 下一页 到第
使用帮助 返回顶部