As the global temperature continues to increase, the sea level continues to rise at a rapid rate that has never been seen before. This becomes an issue for many facets of life but one of the most impacted is the trans...As the global temperature continues to increase, the sea level continues to rise at a rapid rate that has never been seen before. This becomes an issue for many facets of life but one of the most impacted is the transportation infrastructure. Many people living in low elevation coastal areas can become trapped by flooding with no way in or out. With Delaware being a coastal state, this would affect a large portion of the population and will have detrimental effects over time if nothing is done to combat sea level rise. The issue with sea level rise in transportation is that once the roads become flooded, they become virtually unusable and detour routes would be needed. If all the roads in a coastal area were to be affected by sea level rise, the options for detours would become limited. This article looks at direct solutions to combat sea level rise and indirect solutions that would specifically help transportation infrastructure and evacuation routes in Delaware. There is not one solution that can fix every problem, so many solutions are laid out to see what is applicable to each affected area. Some solutions include defense structures that would be put close to the coast, raising the elevation of vulnerable roads throughout the state and including pumping stations to drain the water on the surface of the road. With an understanding of all these solutions around the world, the ultimate conclusion came in the form of a six-step plan that Delaware should take in order to best design against sea level rise in these coastal areas.展开更多
The development of vehicle integrated photovoltaics-powered electric vehicles (VIPV-EV) significantly reduces CO<sub>2</sub> emissions from the transport sector to realize a decarbonized society. Although ...The development of vehicle integrated photovoltaics-powered electric vehicles (VIPV-EV) significantly reduces CO<sub>2</sub> emissions from the transport sector to realize a decarbonized society. Although long-distance driving of VIPV-EV without electricity charging is expected in sunny regions, driving distance of VIPV-EV is affected by climate conditions such as solar irradiation and temperature rise of PV modules. In this paper, detailed analytical results for effects of climate conditions such as solar irradiation and temperature rise of PV modules upon driving distance of the VIPV-EV were presented by using test data for Toyota Prius and Nissan Van demonstration cars installed with high-efficiency InGaP/GaAs/InGaAs 3-junction solar cell modules with a module efficiency of more than 30%. The temperature rise of some PV modules studied in this study was shown to be expressed by some coefficients related to solar irradiation, wind speed and radiative cooling. The potential of VIPV-EV to be deployed in 10 major cities was also analyzed. Although sunshine cities such as Phoenix show the high reduction ratio of driving range with 17% due to temperature rise of VIPV modules, populous cities such as Tokyo show low reduction ratio of 9%. It was also shown in this paper that the difference between the driving distance of VIPV-EV driving in the morning and the afternoon is due to PV modules’ radiative cooling. In addition, the importance of heat dissipation of PV modules and the development of high-efficiency PV modules with better temperature coefficients was suggested in order to expand driving range of VIPV-EV. The effects of air-conditioner usage and partial shading in addition to the effects of temperature rise of VIPV modules were suggested as the other power losses of VIPV-EV.展开更多
Mangroves play a pivotal role in tropical and subtropical coastal ecosystem,yet they are highly vulnerable to the effects of climate change,particularly the accelerated global sea level rise(SLR)and stronger tropical ...Mangroves play a pivotal role in tropical and subtropical coastal ecosystem,yet they are highly vulnerable to the effects of climate change,particularly the accelerated global sea level rise(SLR)and stronger tropical cyclones(TCs).However,there is a lack of research addressing future simultaneous combined impacts of the slow-onset of SLR and rapid-onset of TCs on China's mangroves.In order to develop a comprehensive risk assessment method considering the superimposed effects of these two factors and analyze risk for mangroves in Dongzhaigang,Hainan Island,China,we used observational and climate model data to assess the risks to mangroves under low,intermediate,and very high greenhouse gas(GHG)emission scenarios(such as SSP1-2.6,SSP2-4.5,and SSP5-8.5)in 2030,2050,and 2100,and compiled a risk assessment scheme for mangroves in Dongzhaigang,China.The results showed that the combined risks from SLR and TCs will continue to rise;however,SLRs will increase in intensity,and TCs will decrease.The comprehensive risk of the Dongzhaigang mangroves posed by climate change will remain low under SSP1-2.6 and SSP2-4.5 scenarios by 2030,but it will increase substantially by 2100.While under SSP5-8.5 scenario,the risks to mangroves in Dongzhaigang are projected to increase considerably by 2050,and approximately 68.8%of mangroves will be at very high risk by 2100.The risk to the Dongzhaigang mangroves is not only influenced by the hazards but also closely linked to their exposure and vulnerability.We therefore propose climate resilience developmental responses for mangroves to address the effects of climate change.This study for the combined impact of TCs and SLR on mangroves in Dongzhaigang,China can enrich the method system of mangrove risk assessment and provide references for scientific management.展开更多
The nanosecond(ns) pulsed nitrogen dielectric barrier discharge(DBD) is employed to enhance the hydrophilicity of polypropylene(PP) surface and improve its application effect.The discharge characteristics of the ns pu...The nanosecond(ns) pulsed nitrogen dielectric barrier discharge(DBD) is employed to enhance the hydrophilicity of polypropylene(PP) surface and improve its application effect.The discharge characteristics of the ns pulsed nitrogen DBD with different pulse rise times(from 50to 500 ns) are investigated by electrical and optical diagnostic methods and the discharge uniformity is quantitatively analyzed by image processing method.To characterize the surface hydrophilicity,the water contact angle(WCA) is measured,and the physical morphology and chemical composition of PP before and after modification are analyzed to explore the effect of plasma on PP surface.It is found that with increasing pulse rise time from 50 to 500 ns,DBD uniformity becomes worse,energy efficiency decreases from 20% to 10.8%,and electron density decrease from 6.6 × 10^(11)to 5.5 × 10^(11)cm^(-3).The tendency of electron temperature is characterized with the intensity ratio of N_(2)/N_(2)^(+)emission spectrum,which decreases from 17.4 to15.9 indicating the decreasing of T_(e) with increasing pulse rise time from 50 to 500 ns.The PP surface treated with 50 ns pulse rise time DBD has a lower WCA(~47°),while the WCA of PP treated with 100 to 500 ns pulse rise time DBD expands gradually(~50°–57°).According to the study of the fixed-point WCA values,the DBD-treated PP surface has superior uniformity under50 ns pulse rise time(3° variation) than under 300 ns pulse rise time(8° variation).After DBD treatment,the increased surface roughness from 2.0 to 9.8 nm and hydrophilic oxygencontaining groups on the surface,i.e.hydroxyl(-OH) and carbonyl(C=O) have played the significant role to improve the sample’s surface hydrophilicity.The short pulse voltage rise time enhances the reduced electric field strength(E/n) in the discharge space and improves the discharge uniformity,which makes relatively sufficient physical and chemical reactions have taken place on the PP surface,resulting in better treatment uniformity.展开更多
Mangrove distribution along shorelines shows distinct zonation patterns;thus,different communities may face various influences from sea level rise(SLR)and land use.However,long-term change predictions are usually base...Mangrove distribution along shorelines shows distinct zonation patterns;thus,different communities may face various influences from sea level rise(SLR)and land use.However,long-term change predictions are usually based only on the total extent of mangroves.Few studies have revealed how SLR and land development such as agriculture,aquaculture,and urbanization jointly affect different intertidal mangrove communities.This study proposed a novel framework combining SLAMM(Sea Level Affecting Marshes Model)and the CLUE-S(Conversion of Land Use and its Effect at Small regional extent)model to assess the potential impacts on upper and lower intertidal mangrove communities.Maoweihai in Guangxi,China,was selected as the study area and the potential impacts from the squeeze effect and mangrove expansion potential were evaluated.We established three scenarios combining SLR and land use patterns to predict mangrove coverage projections by 2070.The results showed that,under a single SLR driver,the upper intertidal mangroves would be more adaptive to rapid SLR than the lower intertidal mangroves.However,under the combined influence of the two drivers,the upper intertidal mangroves would experience larger squeeze effects than the lower intertidal mangroves,with up to 80.5%of suitable habitat lost.Moreover,the expansion potential of upper intertidal mangroves would be considerably more limited than that of lower intertidal mangroves.The length of the expandable habitat patch boundary of upper intertidal mangroves only reached 1.4–1.8 km,while that of the lower intertidal mangroves reached up to99.2–111.2 km.Further,we found that aquaculture ponds and cropland are the top two land development types that could occupy suitable habitat and restrict the mangrove expansion potential.Our results highlight that timely improvement of land use policies to create available landward accommodation space for mangrove migration is essential to maintain the coverage and diversity of mangrove communities under SLR.The proposed method can be a helpful tool for adaptive mangrove conservation and management under climate change.展开更多
To solve the problems of large losses and low productivity of permanent magnet synchronous generators used in wind power systems,the field-circuit coupling method is used to accurately solve the electromagnetic field ...To solve the problems of large losses and low productivity of permanent magnet synchronous generators used in wind power systems,the field-circuit coupling method is used to accurately solve the electromagnetic field and temperature field of the generator.The loss distribution of the motor is accurately obtained by considering the influence of external circuit characteristics on its internal physical field.By mapping the losses to the corresponding part of the three-dimensional finite element model of the motor,the temperature field is solved,and the global temperature distribution of the generator,considering the influence of end windings,is obtained.By changing the air gap length,permanent magnet thickness,and winding conductivity,the relationship between the loss,temperature rise,and exergy efficiency can be obtained.By optimizing the air gap length,permanent magnet thickness,and winding conductivity,the best configuration and material properties can improve the efficiency of the motor by up to 4%.展开更多
Mangrove forests are under the stress of sea level rise(SLR)which would affect mangrove soil biogeochemistry.Mangrove soils are important sources of soil-atmosphere greenhouse gas(GHG)emissions,including carbon dioxid...Mangrove forests are under the stress of sea level rise(SLR)which would affect mangrove soil biogeochemistry.Mangrove soils are important sources of soil-atmosphere greenhouse gas(GHG)emissions,including carbon dioxide(CO_(2)),methane(CH_(4))and nitrous oxide(N_(2)O).Understanding how SLR influences GHG emissions is critical for evaluating mangrove blue carbon capability.In this study,potential effects of SLR on the GHG emissions were quantified through static closed chamber technique among three sites under different intertidal elevations,representing tidal flooding situation of SLR values of 0 cm,40 cm and 80 cm,respectively.Compared with Site SLR 0 cm,annual CO_(2) and N_(2)O fluxes decreased by approximately 75.0%and 27.3%due to higher soil water content,lower salinity and soil nutrient environments at Site SLR 80 cm.However,CH_(4) fluxes increased by approximately 13.7%at Site SLR 40 cm and 8.8%at Site SLR 80 cm because of lower salinity,higher soil water content and soil pH.CO_(2)-equivalent fluxes were 396.61 g/(m^(2)·a),1423.29 g/(m^(2)·a)and 1420.21 g/(m^(2)·a)at Sites SLR 80 cm,SLR 40 cm and SLR 0 cm,respectively.From Site SLR 0 cm to Site SLR 80 cm,contribution rate of N_(2)O and CH_(4) increased by approximately 7.42%and 3.02%,while contribution rate of CO_(2) decreased by approximately 10.44%.The results indicated that warming potential of trace CH_(4) and N_(2)O was non-negligible with SLR.Potential effects of SLR on the mangrove blue carbon capability should warrant attention due to changes of all three greenhouse gas fluxes with SLR.展开更多
考虑模型不确定性和外部干扰等影响,基于径向基函数神经网络(radial basis function neural network,RBFNN)和改进的误差符号函数鲁棒积分(robust integral of signum error,RISE)技术,建立无人直升机(unmanned aerial helicopter,UAH)...考虑模型不确定性和外部干扰等影响,基于径向基函数神经网络(radial basis function neural network,RBFNN)和改进的误差符号函数鲁棒积分(robust integral of signum error,RISE)技术,建立无人直升机(unmanned aerial helicopter,UAH)轨迹跟踪控制设计方案。首先,建立包含模型不确定性和外部干扰的UAH非线性系统模型,利用跟踪误差作为RBFNN输入信号估计由模型不确定性和外部干扰组成的复合扰动。其次,将滤波信号及其变化率权重组合作为RISE输入信号设计控制器,从而降低控制设计方案对UAH动力学模型的依赖程度。进而,借助Lyapunov稳定性理论分析整合后闭环跟踪误差系统的稳定性,并给出控制参数的选取方法。最后,借助现有文献中UAH系统模型,仿真与比较结果均说明所提控制算法的有效性和优越性。展开更多
Bangladesh is vulnerable to climate change-induced sea level rise due to its location and socioeconomic position. The study examines the Beel Kapalia region in polder no. 24 of the Monirampur upazila of Jessore distri...Bangladesh is vulnerable to climate change-induced sea level rise due to its location and socioeconomic position. The study examines the Beel Kapalia region in polder no. 24 of the Monirampur upazila of Jessore district, Khulna division. To assess local attitudes on sea level rise-related permanent flooding, Kapalia, Monoharpur, Nehalpur, Balidaha, and Panchakori were polled. This flooding has disrupted residents’ lifestyles, making them vulnerable to increasing sea levels. Viability and adaptability were assessed using livelihood capitals. Participants’ thoughts and knowledge about their resilience in several livelihood factors were gathered using participatory rural appraisal (PRA) instruments and a questionnaire survey in the area. Major discoveries include the impact of permanent floods on Beel Kapalia’s livelihoods, vulnerability and resilience assessments in numerous villages, and community viewpoints on regional adaptation methods to mitigate these consequences. The study found that a sustained 30.5 cm inundation would reduce local human, natural, physical, financial, and social capital resilience to 69.6%, 30.7%, 69.1%, 68.9%, and 69.1%. A constant 61 cm inundation would lower resistance to 40.9%, 8.7%, 42.4%, 45.6%, and 43.8%. Residents believe they can weather a 30.5 cm inundation with local adaptation measures, but if the water level rises to 61 cm, they may be displaced.展开更多
针对强迫导向油循环风冷(oir directrd air forced,ODAF)结构变压器负荷能力受温升约束影响的问题,提出了3种负荷类型情况下变压器负荷能力评估方法。首先,考虑风扇与油泵的运行状态以及油粘度变化对热阻的影响等因素,基于热电类比法建...针对强迫导向油循环风冷(oir directrd air forced,ODAF)结构变压器负荷能力受温升约束影响的问题,提出了3种负荷类型情况下变压器负荷能力评估方法。首先,考虑风扇与油泵的运行状态以及油粘度变化对热阻的影响等因素,基于热电类比法建立了变压器热路模型,以计算绕组热点与顶部油温度;其次,采用粒子群优化(particle swarm optimization,PSO)算法拟合热路模型参数,并基于2台不同型号变压器的运行数据,对热路模型的计算精度与拟合参数适用性进行有效性验证;最后,参考GB/T1094.7负载导则给出的温升限值,基于温升特性提出了负荷能力评估模型。分析结果表明,该研究所提热路模型计算热点温度的误差不大于2.35℃,在工程允许范围内;正常周期性负荷下当环境温度低于1℃时,关闭1组子散热器后仍满足温升约束。展开更多
文摘As the global temperature continues to increase, the sea level continues to rise at a rapid rate that has never been seen before. This becomes an issue for many facets of life but one of the most impacted is the transportation infrastructure. Many people living in low elevation coastal areas can become trapped by flooding with no way in or out. With Delaware being a coastal state, this would affect a large portion of the population and will have detrimental effects over time if nothing is done to combat sea level rise. The issue with sea level rise in transportation is that once the roads become flooded, they become virtually unusable and detour routes would be needed. If all the roads in a coastal area were to be affected by sea level rise, the options for detours would become limited. This article looks at direct solutions to combat sea level rise and indirect solutions that would specifically help transportation infrastructure and evacuation routes in Delaware. There is not one solution that can fix every problem, so many solutions are laid out to see what is applicable to each affected area. Some solutions include defense structures that would be put close to the coast, raising the elevation of vulnerable roads throughout the state and including pumping stations to drain the water on the surface of the road. With an understanding of all these solutions around the world, the ultimate conclusion came in the form of a six-step plan that Delaware should take in order to best design against sea level rise in these coastal areas.
文摘The development of vehicle integrated photovoltaics-powered electric vehicles (VIPV-EV) significantly reduces CO<sub>2</sub> emissions from the transport sector to realize a decarbonized society. Although long-distance driving of VIPV-EV without electricity charging is expected in sunny regions, driving distance of VIPV-EV is affected by climate conditions such as solar irradiation and temperature rise of PV modules. In this paper, detailed analytical results for effects of climate conditions such as solar irradiation and temperature rise of PV modules upon driving distance of the VIPV-EV were presented by using test data for Toyota Prius and Nissan Van demonstration cars installed with high-efficiency InGaP/GaAs/InGaAs 3-junction solar cell modules with a module efficiency of more than 30%. The temperature rise of some PV modules studied in this study was shown to be expressed by some coefficients related to solar irradiation, wind speed and radiative cooling. The potential of VIPV-EV to be deployed in 10 major cities was also analyzed. Although sunshine cities such as Phoenix show the high reduction ratio of driving range with 17% due to temperature rise of VIPV modules, populous cities such as Tokyo show low reduction ratio of 9%. It was also shown in this paper that the difference between the driving distance of VIPV-EV driving in the morning and the afternoon is due to PV modules’ radiative cooling. In addition, the importance of heat dissipation of PV modules and the development of high-efficiency PV modules with better temperature coefficients was suggested in order to expand driving range of VIPV-EV. The effects of air-conditioner usage and partial shading in addition to the effects of temperature rise of VIPV modules were suggested as the other power losses of VIPV-EV.
基金Under the auspices of the National Key Research and Development Program of China (No.2017YFA0604902,2017YFA0604903,2017YFA0604901)。
文摘Mangroves play a pivotal role in tropical and subtropical coastal ecosystem,yet they are highly vulnerable to the effects of climate change,particularly the accelerated global sea level rise(SLR)and stronger tropical cyclones(TCs).However,there is a lack of research addressing future simultaneous combined impacts of the slow-onset of SLR and rapid-onset of TCs on China's mangroves.In order to develop a comprehensive risk assessment method considering the superimposed effects of these two factors and analyze risk for mangroves in Dongzhaigang,Hainan Island,China,we used observational and climate model data to assess the risks to mangroves under low,intermediate,and very high greenhouse gas(GHG)emission scenarios(such as SSP1-2.6,SSP2-4.5,and SSP5-8.5)in 2030,2050,and 2100,and compiled a risk assessment scheme for mangroves in Dongzhaigang,China.The results showed that the combined risks from SLR and TCs will continue to rise;however,SLRs will increase in intensity,and TCs will decrease.The comprehensive risk of the Dongzhaigang mangroves posed by climate change will remain low under SSP1-2.6 and SSP2-4.5 scenarios by 2030,but it will increase substantially by 2100.While under SSP5-8.5 scenario,the risks to mangroves in Dongzhaigang are projected to increase considerably by 2050,and approximately 68.8%of mangroves will be at very high risk by 2100.The risk to the Dongzhaigang mangroves is not only influenced by the hazards but also closely linked to their exposure and vulnerability.We therefore propose climate resilience developmental responses for mangroves to address the effects of climate change.This study for the combined impact of TCs and SLR on mangroves in Dongzhaigang,China can enrich the method system of mangrove risk assessment and provide references for scientific management.
基金supported by National Natural Science Foundation of China (Nos. 52037004, 51777091 and52250410350)Postgraduate Research&Practice Innovation Program of Jiangsu Province (No.KYCX22_1314)。
文摘The nanosecond(ns) pulsed nitrogen dielectric barrier discharge(DBD) is employed to enhance the hydrophilicity of polypropylene(PP) surface and improve its application effect.The discharge characteristics of the ns pulsed nitrogen DBD with different pulse rise times(from 50to 500 ns) are investigated by electrical and optical diagnostic methods and the discharge uniformity is quantitatively analyzed by image processing method.To characterize the surface hydrophilicity,the water contact angle(WCA) is measured,and the physical morphology and chemical composition of PP before and after modification are analyzed to explore the effect of plasma on PP surface.It is found that with increasing pulse rise time from 50 to 500 ns,DBD uniformity becomes worse,energy efficiency decreases from 20% to 10.8%,and electron density decrease from 6.6 × 10^(11)to 5.5 × 10^(11)cm^(-3).The tendency of electron temperature is characterized with the intensity ratio of N_(2)/N_(2)^(+)emission spectrum,which decreases from 17.4 to15.9 indicating the decreasing of T_(e) with increasing pulse rise time from 50 to 500 ns.The PP surface treated with 50 ns pulse rise time DBD has a lower WCA(~47°),while the WCA of PP treated with 100 to 500 ns pulse rise time DBD expands gradually(~50°–57°).According to the study of the fixed-point WCA values,the DBD-treated PP surface has superior uniformity under50 ns pulse rise time(3° variation) than under 300 ns pulse rise time(8° variation).After DBD treatment,the increased surface roughness from 2.0 to 9.8 nm and hydrophilic oxygencontaining groups on the surface,i.e.hydroxyl(-OH) and carbonyl(C=O) have played the significant role to improve the sample’s surface hydrophilicity.The short pulse voltage rise time enhances the reduced electric field strength(E/n) in the discharge space and improves the discharge uniformity,which makes relatively sufficient physical and chemical reactions have taken place on the PP surface,resulting in better treatment uniformity.
基金financially supported by the National Key Research and Development Program of China(2022YFF0802204,2019YFE0124700)the Provincial Natural Science Foundation of Fujian(2020J05078)the National Natural Science Foundation of China(41906127 and 42076163)。
文摘Mangrove distribution along shorelines shows distinct zonation patterns;thus,different communities may face various influences from sea level rise(SLR)and land use.However,long-term change predictions are usually based only on the total extent of mangroves.Few studies have revealed how SLR and land development such as agriculture,aquaculture,and urbanization jointly affect different intertidal mangrove communities.This study proposed a novel framework combining SLAMM(Sea Level Affecting Marshes Model)and the CLUE-S(Conversion of Land Use and its Effect at Small regional extent)model to assess the potential impacts on upper and lower intertidal mangrove communities.Maoweihai in Guangxi,China,was selected as the study area and the potential impacts from the squeeze effect and mangrove expansion potential were evaluated.We established three scenarios combining SLR and land use patterns to predict mangrove coverage projections by 2070.The results showed that,under a single SLR driver,the upper intertidal mangroves would be more adaptive to rapid SLR than the lower intertidal mangroves.However,under the combined influence of the two drivers,the upper intertidal mangroves would experience larger squeeze effects than the lower intertidal mangroves,with up to 80.5%of suitable habitat lost.Moreover,the expansion potential of upper intertidal mangroves would be considerably more limited than that of lower intertidal mangroves.The length of the expandable habitat patch boundary of upper intertidal mangroves only reached 1.4–1.8 km,while that of the lower intertidal mangroves reached up to99.2–111.2 km.Further,we found that aquaculture ponds and cropland are the top two land development types that could occupy suitable habitat and restrict the mangrove expansion potential.Our results highlight that timely improvement of land use policies to create available landward accommodation space for mangrove migration is essential to maintain the coverage and diversity of mangrove communities under SLR.The proposed method can be a helpful tool for adaptive mangrove conservation and management under climate change.
基金supported by the National Natural Science Foundation of China(Nos.51966013,52066013)the Special Fund of Inner Mongolia Education Department(No.STZC202230).
文摘To solve the problems of large losses and low productivity of permanent magnet synchronous generators used in wind power systems,the field-circuit coupling method is used to accurately solve the electromagnetic field and temperature field of the generator.The loss distribution of the motor is accurately obtained by considering the influence of external circuit characteristics on its internal physical field.By mapping the losses to the corresponding part of the three-dimensional finite element model of the motor,the temperature field is solved,and the global temperature distribution of the generator,considering the influence of end windings,is obtained.By changing the air gap length,permanent magnet thickness,and winding conductivity,the relationship between the loss,temperature rise,and exergy efficiency can be obtained.By optimizing the air gap length,permanent magnet thickness,and winding conductivity,the best configuration and material properties can improve the efficiency of the motor by up to 4%.
基金The National Natural Science Foundation of China under contract Nos 42076142 and 41776097the Provincial Natural Science Foundation of Fujian under contract No.2020J06030the Fund of Fujian Provincial Key Laboratory of Marine Ecological Conservation and Restoration under contract No.EPR2020003.
文摘Mangrove forests are under the stress of sea level rise(SLR)which would affect mangrove soil biogeochemistry.Mangrove soils are important sources of soil-atmosphere greenhouse gas(GHG)emissions,including carbon dioxide(CO_(2)),methane(CH_(4))and nitrous oxide(N_(2)O).Understanding how SLR influences GHG emissions is critical for evaluating mangrove blue carbon capability.In this study,potential effects of SLR on the GHG emissions were quantified through static closed chamber technique among three sites under different intertidal elevations,representing tidal flooding situation of SLR values of 0 cm,40 cm and 80 cm,respectively.Compared with Site SLR 0 cm,annual CO_(2) and N_(2)O fluxes decreased by approximately 75.0%and 27.3%due to higher soil water content,lower salinity and soil nutrient environments at Site SLR 80 cm.However,CH_(4) fluxes increased by approximately 13.7%at Site SLR 40 cm and 8.8%at Site SLR 80 cm because of lower salinity,higher soil water content and soil pH.CO_(2)-equivalent fluxes were 396.61 g/(m^(2)·a),1423.29 g/(m^(2)·a)and 1420.21 g/(m^(2)·a)at Sites SLR 80 cm,SLR 40 cm and SLR 0 cm,respectively.From Site SLR 0 cm to Site SLR 80 cm,contribution rate of N_(2)O and CH_(4) increased by approximately 7.42%and 3.02%,while contribution rate of CO_(2) decreased by approximately 10.44%.The results indicated that warming potential of trace CH_(4) and N_(2)O was non-negligible with SLR.Potential effects of SLR on the mangrove blue carbon capability should warrant attention due to changes of all three greenhouse gas fluxes with SLR.
文摘考虑模型不确定性和外部干扰等影响,基于径向基函数神经网络(radial basis function neural network,RBFNN)和改进的误差符号函数鲁棒积分(robust integral of signum error,RISE)技术,建立无人直升机(unmanned aerial helicopter,UAH)轨迹跟踪控制设计方案。首先,建立包含模型不确定性和外部干扰的UAH非线性系统模型,利用跟踪误差作为RBFNN输入信号估计由模型不确定性和外部干扰组成的复合扰动。其次,将滤波信号及其变化率权重组合作为RISE输入信号设计控制器,从而降低控制设计方案对UAH动力学模型的依赖程度。进而,借助Lyapunov稳定性理论分析整合后闭环跟踪误差系统的稳定性,并给出控制参数的选取方法。最后,借助现有文献中UAH系统模型,仿真与比较结果均说明所提控制算法的有效性和优越性。
文摘Bangladesh is vulnerable to climate change-induced sea level rise due to its location and socioeconomic position. The study examines the Beel Kapalia region in polder no. 24 of the Monirampur upazila of Jessore district, Khulna division. To assess local attitudes on sea level rise-related permanent flooding, Kapalia, Monoharpur, Nehalpur, Balidaha, and Panchakori were polled. This flooding has disrupted residents’ lifestyles, making them vulnerable to increasing sea levels. Viability and adaptability were assessed using livelihood capitals. Participants’ thoughts and knowledge about their resilience in several livelihood factors were gathered using participatory rural appraisal (PRA) instruments and a questionnaire survey in the area. Major discoveries include the impact of permanent floods on Beel Kapalia’s livelihoods, vulnerability and resilience assessments in numerous villages, and community viewpoints on regional adaptation methods to mitigate these consequences. The study found that a sustained 30.5 cm inundation would reduce local human, natural, physical, financial, and social capital resilience to 69.6%, 30.7%, 69.1%, 68.9%, and 69.1%. A constant 61 cm inundation would lower resistance to 40.9%, 8.7%, 42.4%, 45.6%, and 43.8%. Residents believe they can weather a 30.5 cm inundation with local adaptation measures, but if the water level rises to 61 cm, they may be displaced.