A simple and feasible method for the production of high nitrogen austenitic stainless steels involves nitrogen gas alloying and adding nitrided ferroalloys under normal atmospheric conditions. Alloying by nitrogen gas...A simple and feasible method for the production of high nitrogen austenitic stainless steels involves nitrogen gas alloying and adding nitrided ferroalloys under normal atmospheric conditions. Alloying by nitrogen gas bubbling in Fe-Cr-Mn-Mo series alloys was carried out in MoSi2 resistance furnace and air induction furnace under normal atmospheric conditions. The results showed that nitrogen alloying could be accelerated by increasing nitrogen gas flow rate, prolonging residence time of bubbles, increasing gas/molten steel interfaces, and decreasing the sulphur and oxygen contents in molten steel. Nitrogen content of 0.69% in 18Crl8Mn was obtained using air induction furnace by bubbling of nitrogen gas from porous plug. In addition, the nickel-free, high nitrogen austenitic stainless steels with sound and compact macrostructure had been produced in the laboratory using vacuum induction furnace and electroslag remelting furnace under nitrogen atmosphere by the addition of nitrided alloy with the maximum nitrogen content of 0.81%. Pores were observed in the ingots obtained by melting and casting in vacuum induction furnace with the addition of nitrided ferroalloys and under nitrogen atmosphere. After electroslag remelting of the cast ingots, they were all sound and were free of pores. The yield of nitrogen increased with the decrease of melting rate in the ESR process. Due to electroslag remelting under nitrogen atmosphere and the consequential addition of aluminum as deoxidizer to the slag, the loss of manganese decreased obviously. There existed mainly irregular Al2O3 inclusions and MnS inclusions in ESR ingots, and the size of most of the inclusions was less than 5 um. After homogenization of the hot rolled plate at 1 150℃ × 1 h followed by water quenching, the microstructure consisted of homogeneous austenite.展开更多
The mechanical and corrosive properties of 00Cr13Ni4Mo (S13 -4N) were tested and compared with those of 00Cr13Ni6Mo (S13 -6). The effects of nitrogen on the properties of the steels were analyzed. The results of t...The mechanical and corrosive properties of 00Cr13Ni4Mo (S13 -4N) were tested and compared with those of 00Cr13Ni6Mo (S13 -6). The effects of nitrogen on the properties of the steels were analyzed. The results of the tensile and corrosion tests show the strength,the ductility,and the pitting corrosion resistance of S13 -4N are higher, lower and poorer than those of S13 -6 respectively, when tempered at a temperature below 550 ℃and vice versa when the tempering temperature is higher than 550℃. The results of the X-ray diffraction (XRD) and the electron backscattered diffraction (EBSD) analyses reveal that inversed austenite appears at 550℃ and the amount of it peaks at 600 ℃ with the best ductility. And the total amount of the inversed austenite in S13 -6 is more than that in S13 -4N in different forms. Nitrogen performs better in terms of stabilizing inversed austenite while nickel is more favorable for forming inversed austenite, the amount and stability of which affect the ductility remarkably. The reason for the embrittlement of S13 -4N at 450℃ can be the result of carbide and nitride precipitating at grain boundaries.展开更多
A series of high nitrogen austenitic stainless steels were successfully developed with a pressurized electroslag remelting furnace. Nitride additives and deoxidizer were packed into the stainless steel pipes, and then...A series of high nitrogen austenitic stainless steels were successfully developed with a pressurized electroslag remelting furnace. Nitride additives and deoxidizer were packed into the stainless steel pipes, and then the stainless steel pipes were welded on the surface of an electrode with low nitrogen content to prepare a compound electrode. Using Si3N4 as a nitrogen alloying source, the silicon contents in the ingots were prone to be out of the specification range, the electric current fluctuated greatly and the surface qualities of the ingots were poor. The surface qualities of the ingots were improved with FeCrN as a nitrogen alloying source. The sound and compact macrostructure ingot with the maximum nitrogen content of 1.21wt% can be obtained. The 18Cr18Mn2Mo0.9N high nitrogen austenitic stainless steel exhibits high strength and good ductility at room temperature. The steel shows typical ductile-brittle transition behavior and excellent pitting corrosion resistance properties.展开更多
Nitrogen plays a vitally important role for improving properties for stainless steels in many aspects.In this paper,the physical metallurgy behavior and the beneficial effects of nitrogen on corrosion resistance and o...Nitrogen plays a vitally important role for improving properties for stainless steels in many aspects.In this paper,the physical metallurgy behavior and the beneficial effects of nitrogen on corrosion resistance and other mechanical properties of stainless steels were summarised.Based on nitrogen alloying,various stainless steel products,such as austenitic,duplex and martensitic staniless steels were developed with enhanced properties,such as corrosion resistance,mechanical strength and weldability,among other things.展开更多
Strain-induced martensitic phase transformation and its influence on the forrnability of newly developed nitrogen-alloyed metastable austenitic stainless steels were systematically investigated. Yield strength for the...Strain-induced martensitic phase transformation and its influence on the forrnability of newly developed nitrogen-alloyed metastable austenitic stainless steels were systematically investigated. Yield strength for the as- received steels bearing low nickel content was around 300 MPa and their elongation ratios varied from 55.2% to 61.7%. Erichsen numbers of these samples differed from 13.82 to 14.57 mm. Although its Cu content was lower than that of other samples, steel D2 exhibited better plasticity and formability, which was attributed to ~/--,c~' martensitic phase transformation. EBSD, XRD, and magnetism tests showed that increases in deformation ratio gradually increased the α' martensite phase of a sample ,thereby contributing to its strain and inducing the optimal transformation-induced plasticity effect. An Meeo/5o temperature of around 20 ℃, which is close to the deformation temperature,provided the austenite with adequate stability and gradually transformed it into martensite, thereby endowing lean ASS with better formability.展开更多
Research progress on nitrogen alloyed austenitic stainless steels was expounded through the development of steel grades. In addition, hot topics in the research of nitrogen-alloyed austenitic stainless steels were dis...Research progress on nitrogen alloyed austenitic stainless steels was expounded through the development of steel grades. In addition, hot topics in the research of nitrogen-alloyed austenitic stainless steels were discussed, in cluding the solubility of nitrogen, brittle ductile transition, and welding. On this basis, it was proposed that the fu- ture development tendency of nitrogen alloyed austenitic stainless steels lied in the three fields of high-performance steels, resource saving steels, and biologically friendly steels. The problems encountered during the research of ni- trogen-alloyed austenitic stainless steels were discussed.展开更多
研究了40 t LF炉精炼AISI410不锈钢时,在常压下吹氮气增氮工艺(吹氮流量、吹氮时间及钢液温度)对AISI410不锈钢氮含量的影响,建立了AISI410不锈钢氮溶解度热力学计算模型。结果表明:钢中氮含量随着吹氮时间、氮气流量的增加而增大;常压...研究了40 t LF炉精炼AISI410不锈钢时,在常压下吹氮气增氮工艺(吹氮流量、吹氮时间及钢液温度)对AISI410不锈钢氮含量的影响,建立了AISI410不锈钢氮溶解度热力学计算模型。结果表明:钢中氮含量随着吹氮时间、氮气流量的增加而增大;常压下吹氮10 min,钢液含氮量可达到0.05%;随着氮流量增加钢液达到饱和的时间缩短,氮的溶解度随着钢液温度的降低而升高。应用热力学模型进行了分析,不同吹氮条件下氮溶解度实测值与热力学模型计算值较吻合。为LF炉精炼含氮不锈钢控制氮含量提供了理论依据。展开更多
基金Item Sponsored by National Natural Science Foundation of China(50534010)
文摘A simple and feasible method for the production of high nitrogen austenitic stainless steels involves nitrogen gas alloying and adding nitrided ferroalloys under normal atmospheric conditions. Alloying by nitrogen gas bubbling in Fe-Cr-Mn-Mo series alloys was carried out in MoSi2 resistance furnace and air induction furnace under normal atmospheric conditions. The results showed that nitrogen alloying could be accelerated by increasing nitrogen gas flow rate, prolonging residence time of bubbles, increasing gas/molten steel interfaces, and decreasing the sulphur and oxygen contents in molten steel. Nitrogen content of 0.69% in 18Crl8Mn was obtained using air induction furnace by bubbling of nitrogen gas from porous plug. In addition, the nickel-free, high nitrogen austenitic stainless steels with sound and compact macrostructure had been produced in the laboratory using vacuum induction furnace and electroslag remelting furnace under nitrogen atmosphere by the addition of nitrided alloy with the maximum nitrogen content of 0.81%. Pores were observed in the ingots obtained by melting and casting in vacuum induction furnace with the addition of nitrided ferroalloys and under nitrogen atmosphere. After electroslag remelting of the cast ingots, they were all sound and were free of pores. The yield of nitrogen increased with the decrease of melting rate in the ESR process. Due to electroslag remelting under nitrogen atmosphere and the consequential addition of aluminum as deoxidizer to the slag, the loss of manganese decreased obviously. There existed mainly irregular Al2O3 inclusions and MnS inclusions in ESR ingots, and the size of most of the inclusions was less than 5 um. After homogenization of the hot rolled plate at 1 150℃ × 1 h followed by water quenching, the microstructure consisted of homogeneous austenite.
文摘The mechanical and corrosive properties of 00Cr13Ni4Mo (S13 -4N) were tested and compared with those of 00Cr13Ni6Mo (S13 -6). The effects of nitrogen on the properties of the steels were analyzed. The results of the tensile and corrosion tests show the strength,the ductility,and the pitting corrosion resistance of S13 -4N are higher, lower and poorer than those of S13 -6 respectively, when tempered at a temperature below 550 ℃and vice versa when the tempering temperature is higher than 550℃. The results of the X-ray diffraction (XRD) and the electron backscattered diffraction (EBSD) analyses reveal that inversed austenite appears at 550℃ and the amount of it peaks at 600 ℃ with the best ductility. And the total amount of the inversed austenite in S13 -6 is more than that in S13 -4N in different forms. Nitrogen performs better in terms of stabilizing inversed austenite while nickel is more favorable for forming inversed austenite, the amount and stability of which affect the ductility remarkably. The reason for the embrittlement of S13 -4N at 450℃ can be the result of carbide and nitride precipitating at grain boundaries.
基金supported by the National Natural Science Foundation of China(No.50534010)
文摘A series of high nitrogen austenitic stainless steels were successfully developed with a pressurized electroslag remelting furnace. Nitride additives and deoxidizer were packed into the stainless steel pipes, and then the stainless steel pipes were welded on the surface of an electrode with low nitrogen content to prepare a compound electrode. Using Si3N4 as a nitrogen alloying source, the silicon contents in the ingots were prone to be out of the specification range, the electric current fluctuated greatly and the surface qualities of the ingots were poor. The surface qualities of the ingots were improved with FeCrN as a nitrogen alloying source. The sound and compact macrostructure ingot with the maximum nitrogen content of 1.21wt% can be obtained. The 18Cr18Mn2Mo0.9N high nitrogen austenitic stainless steel exhibits high strength and good ductility at room temperature. The steel shows typical ductile-brittle transition behavior and excellent pitting corrosion resistance properties.
文摘Nitrogen plays a vitally important role for improving properties for stainless steels in many aspects.In this paper,the physical metallurgy behavior and the beneficial effects of nitrogen on corrosion resistance and other mechanical properties of stainless steels were summarised.Based on nitrogen alloying,various stainless steel products,such as austenitic,duplex and martensitic staniless steels were developed with enhanced properties,such as corrosion resistance,mechanical strength and weldability,among other things.
基金sponsored by Shanghai Rising-Star Program with No.17QB1400100
文摘Strain-induced martensitic phase transformation and its influence on the forrnability of newly developed nitrogen-alloyed metastable austenitic stainless steels were systematically investigated. Yield strength for the as- received steels bearing low nickel content was around 300 MPa and their elongation ratios varied from 55.2% to 61.7%. Erichsen numbers of these samples differed from 13.82 to 14.57 mm. Although its Cu content was lower than that of other samples, steel D2 exhibited better plasticity and formability, which was attributed to ~/--,c~' martensitic phase transformation. EBSD, XRD, and magnetism tests showed that increases in deformation ratio gradually increased the α' martensite phase of a sample ,thereby contributing to its strain and inducing the optimal transformation-induced plasticity effect. An Meeo/5o temperature of around 20 ℃, which is close to the deformation temperature,provided the austenite with adequate stability and gradually transformed it into martensite, thereby endowing lean ASS with better formability.
基金Sponsored by National Science and Technology Support Program of China(2012BAE04B01)
文摘Research progress on nitrogen alloyed austenitic stainless steels was expounded through the development of steel grades. In addition, hot topics in the research of nitrogen-alloyed austenitic stainless steels were discussed, in cluding the solubility of nitrogen, brittle ductile transition, and welding. On this basis, it was proposed that the fu- ture development tendency of nitrogen alloyed austenitic stainless steels lied in the three fields of high-performance steels, resource saving steels, and biologically friendly steels. The problems encountered during the research of ni- trogen-alloyed austenitic stainless steels were discussed.
文摘研究了40 t LF炉精炼AISI410不锈钢时,在常压下吹氮气增氮工艺(吹氮流量、吹氮时间及钢液温度)对AISI410不锈钢氮含量的影响,建立了AISI410不锈钢氮溶解度热力学计算模型。结果表明:钢中氮含量随着吹氮时间、氮气流量的增加而增大;常压下吹氮10 min,钢液含氮量可达到0.05%;随着氮流量增加钢液达到饱和的时间缩短,氮的溶解度随着钢液温度的降低而升高。应用热力学模型进行了分析,不同吹氮条件下氮溶解度实测值与热力学模型计算值较吻合。为LF炉精炼含氮不锈钢控制氮含量提供了理论依据。