Background:Immune checkpoint inhibitors play an important role in the treatment of solid tumors,but the currently used immune checkpoint inhibitors targeting programmed cell death-1(PD-1),programmed cell death ligand-...Background:Immune checkpoint inhibitors play an important role in the treatment of solid tumors,but the currently used immune checkpoint inhibitors targeting programmed cell death-1(PD-1),programmed cell death ligand-1(PD-L1),and cytotoxic T-lymphocyte antigen-4(CTLA-4)show limited clinical efficacy in many breast cancers.B7H3 has been widely reported as an immunosuppressive molecule,but its immunological function in breast cancer patients remains unclear.Methods:We analyzed the expression of B7H3 in breast cancer samples using data from the Cancer Genome Atlas Program(TCGA)and the Gene Expression Omnibus(GEO)databases.MicroRNAs were selected using the TarBase,miRTarBase,and miRBase databases.The regulatory role of the microRNA hsa-miR-214-3p on B7H3 was investigated through dual-luciferase reporter assays,which identified the specific action sites of interaction.The expression levels of B7H3 and hsa-miR-214-3p in human breast cancer tissues and adjacent normal tissues were quantified using Western blotting and quantitative PCR(qPCR).In vitro experiments were performed to observe the effects of modulating the expression of B7H3 or hsa-miR-214-3p on breast cancer cell proliferation and apoptosis.Additionally,the regulatory impact of hsa-miR-214-3p on B7H3 was examined.Enzyme-linked immunosorbent assays(ELISA)and flow cytometry were employed to assess the effects of co-cultured breast cancer cells and normal human peripheral blood mononuclear cells(PBMCs)on immune cells and associated cytokines.Results:In breast cancer tissues,the expression level of B7H3 is inversely correlated with that of hsa-miR-214-3p,as well as with the regulatory effects on breast cancercell behavior.Hsa-miR-214-3p was found to inhibit breast cancer cell growth by downregulating B7H3.Importantly,our research identified,for the first time,two binding sites for hsa-miR-214-3p on the 3’UTR of B7H3,both of which exert similar effects independently.Co-culture experiments revealed that hsamiR-214-3p obstructs the suppressive function of B7H3 on CD8^(+)T cells and natural killer cells.Conclusions:This study confirms the existence of two hsa-miR-214-3p binding sites on the 3’UTR of B7H3,reinforcing the role of hsamiR-214-3p as a regulatory factor for B7H3.In breast cancer,hsa-miR-214-3p reduces tumor cell proliferation and enhances the tumor immune microenvironment by downregulating B7H3.These findings suggest new potential targets for the clinical treatment of breast cancer.展开更多
基金funded by the Natural Science Foundation of Guangdong Province(grant number 2022A1515012315)Guangdong Medical Science and Technology Research Fund Project(grant number A2023185)+2 种基金the Discipline Construction Project of Guangdong Medical University(grant number 4SG22005G)the 2023 Provincial Basic and Applied Basic Research Fund Enterprise Joint Fund Project(grant number 2023A1515220149)Southern Medical University Shunde Hospital 2023 Research Initiation Programme Project(SRSP2023016).
文摘Background:Immune checkpoint inhibitors play an important role in the treatment of solid tumors,but the currently used immune checkpoint inhibitors targeting programmed cell death-1(PD-1),programmed cell death ligand-1(PD-L1),and cytotoxic T-lymphocyte antigen-4(CTLA-4)show limited clinical efficacy in many breast cancers.B7H3 has been widely reported as an immunosuppressive molecule,but its immunological function in breast cancer patients remains unclear.Methods:We analyzed the expression of B7H3 in breast cancer samples using data from the Cancer Genome Atlas Program(TCGA)and the Gene Expression Omnibus(GEO)databases.MicroRNAs were selected using the TarBase,miRTarBase,and miRBase databases.The regulatory role of the microRNA hsa-miR-214-3p on B7H3 was investigated through dual-luciferase reporter assays,which identified the specific action sites of interaction.The expression levels of B7H3 and hsa-miR-214-3p in human breast cancer tissues and adjacent normal tissues were quantified using Western blotting and quantitative PCR(qPCR).In vitro experiments were performed to observe the effects of modulating the expression of B7H3 or hsa-miR-214-3p on breast cancer cell proliferation and apoptosis.Additionally,the regulatory impact of hsa-miR-214-3p on B7H3 was examined.Enzyme-linked immunosorbent assays(ELISA)and flow cytometry were employed to assess the effects of co-cultured breast cancer cells and normal human peripheral blood mononuclear cells(PBMCs)on immune cells and associated cytokines.Results:In breast cancer tissues,the expression level of B7H3 is inversely correlated with that of hsa-miR-214-3p,as well as with the regulatory effects on breast cancercell behavior.Hsa-miR-214-3p was found to inhibit breast cancer cell growth by downregulating B7H3.Importantly,our research identified,for the first time,two binding sites for hsa-miR-214-3p on the 3’UTR of B7H3,both of which exert similar effects independently.Co-culture experiments revealed that hsamiR-214-3p obstructs the suppressive function of B7H3 on CD8^(+)T cells and natural killer cells.Conclusions:This study confirms the existence of two hsa-miR-214-3p binding sites on the 3’UTR of B7H3,reinforcing the role of hsamiR-214-3p as a regulatory factor for B7H3.In breast cancer,hsa-miR-214-3p reduces tumor cell proliferation and enhances the tumor immune microenvironment by downregulating B7H3.These findings suggest new potential targets for the clinical treatment of breast cancer.
文摘目的·分析人类mi R-223-3p(hsa-miR-223-3p)的靶基因及其参与的生物学过程,并寻找与糖尿病相关的生物标志物。方法·利用starBase数据库筛选hsa-miR-223-3p靶基因,并对其行基因本体数据库(Gene Ontology,GO)富集分析、京都基因与基因组百科全书(Kyoto Encyclopedia of Genes and Genome,KEGG)和Reactome通路分析。通过构建蛋白-蛋白相互作用(proteinprotein interaction,PPI)网络获得中枢基因,筛选最有意义的模块,并利用Venn图对糖尿病相关的中枢基因进行分析。结果·共筛选出870个hsa-miR-223-3p靶基因。GO、KEGG和Reactome富集分析显示,靶基因主要与RNA聚合酶Ⅱ启动子的调节、细胞对胰岛素刺激的反应、RNA结合等相关,且主要富集于胰岛素分泌、泛素介导的蛋白水解、雌激素依赖型基因表达等通路。PPI网络共得31个中枢基因,且中枢基因PRKACB参与胰岛素分泌通路;共筛选出3个最有意义的基因模块,其中模块1参与泛素介导的蛋白水解作用,模块2参与RNA转运和细胞周期,模块3参与内吞作用。结论·Hsa-miR-223-3p可能通过靶基因参与多种生物学过程,中枢基因PRKACB或可为糖尿病发生机制的探索提供帮助。