When the soil condition and depth to water table stay constant, climate condition will then be the only determinant of evaporation intensity of phreatic water from bare soil. Based on a series of long-term quality-con...When the soil condition and depth to water table stay constant, climate condition will then be the only determinant of evaporation intensity of phreatic water from bare soil. Based on a series of long-term quality-controlled data collected at the Wudaogou Hydrological Experiment Station in the Huaibei Plain, Anhui, China, the variation trends of the evaporation rate of phreatic water from bare soil were studied through the Mann-Kendall trend test and the linear regression trend test, followed by the study on the responses of evaporation to climate change. Results indicated that in the Huaibei Plain during 1991-2008, evaporation of phreatic water from bare soil tended to increase at a rate of 5% on monthly scale in March, June and July while in other months the increase was minor. On the seasonal basis, the evaporation saw significant increase in spring and summer. In addition, annual evaporation tended to grow evidently over time. When air temperature rises by 1 °C, the annual evaporation rate increases by 7.24–14.21%, while when the vapor pressure deficit rises by 10%, it changes from-0.09 to 5.40%. The study also provides references for further understanding of the trends and responses of regional evapotranspiration to climate change.展开更多
Summer floods occur frequently in many regions of China,affecting economic development and social stability.Remote sensing is a new technique in disaster monitoring.In this study,the Sihu Basin in Hubei Province of Ch...Summer floods occur frequently in many regions of China,affecting economic development and social stability.Remote sensing is a new technique in disaster monitoring.In this study,the Sihu Basin in Hubei Province of China and the Huaibei Plain in Anhui Province of China were selected as the study areas.Thresholds of backscattering coefficients in the decision tree method were calculated with the histogram analysis method,and flood disaster monitoring in the two study areas was conducted with the threshold method using Sentinel-1 satellite images.Through satellite-based flood disaster monitoring,the flooded maps and the areas of expanded water bodies and flooded crops were derived.The satellite-based monitoring maps were derived by comparing the expanded area of images during a flood disaster with that before the disaster.The difference in spatiotemporal distribution of flood disasters in these two regions was analyzed.The results showed that flood disasters in the Sihu Basin occurred frequently in June and July,and flood disasters in the Huaibei Plain mostly occurred in August,with a high interannual vari-ability.Flood disasters in the Sihu Basin were usually widespread,and the affected area was between Changhu and Honghu lakes.The Huaibei Plain was affected by scattered disasters.The annual mean percentages of flooded crop area were 14.91%and 3.74% in the Sihu Basin and Huaibei Plain,respectively.The accuracies of the extracted flooded area in the Sihu Basin in 2016 and 2017 were 96.20% and 95.19%,respectively.展开更多
[Objectives]To study the relationship between soil water,groundwater burial depth,and precipitation for summer maize in Huaibei Plain.[Methods]The atmospheric precipitation,soil water and groundwater for the growth pe...[Objectives]To study the relationship between soil water,groundwater burial depth,and precipitation for summer maize in Huaibei Plain.[Methods]The atmospheric precipitation,soil water and groundwater for the growth period of summer maize in Huaibei Plain were analyzed using the 26-year long series of data from the Wudaogou Hydrological Experimental Station,combined with the hydrogen and oxygen stable isotope tracing method.[Results]The average soil moisture content of summer maize in different growth periods showed a trend of first decreasing,then increasing and then decreasing with the increase of soil depth.The average soil moisture content was the lowest at the surface soil layer.From the characteristic values of hydrogen and oxygen isotopes of atmospheric precipitation,soil water and groundwater,it can be known that the average values ofδ18O andδD of soil water decreased with the increase of soil depth,indicating that soil moisture evaporation leads to the enrichment of soil heavy isotopes,and the degree of enrichment decreased from the surface layer to the deep layer of the soil.The seasonal variation of the stable isotope of hydrogen and oxygen in soil water declined with the increase of soil depth.The soil water changes at 30 cm and 50 cm soil depths were the most obvious.The soil was easily recharged by precipitation,and soil evaporation was relatively strong.[Conclusions]The research results are favorable for in-depth understanding of the regional water cycle process,and are expected to provide a certain scientific basis for realizing the efficient and sustainable use of regional groundwater.展开更多
There are two different genetic types of recently deposited silts widely distributing in Huaibei Plain of Anhui Province:flooding deposited silt of Yellow River and Huaihe River.These recently deposited silts have the...There are two different genetic types of recently deposited silts widely distributing in Huaibei Plain of Anhui Province:flooding deposited silt of Yellow River and Huaihe River.These recently deposited silts have the following unique characteristics:new formation age,feeble consolidation degree。展开更多
Climate change can lead to and intensify drought disasters.Quantifying the vulnerability of disaster-affected elements is significant for understanding the mechanisms that transform drought intensity into eventual los...Climate change can lead to and intensify drought disasters.Quantifying the vulnerability of disaster-affected elements is significant for understanding the mechanisms that transform drought intensity into eventual loss.This study proposed a growth-stage-based drought vulnerability index(GDVI)of soybean using meteorological,groundwater,land use,and field experiment data and crop growth model simulation.The CROPGRO-Soybean model was used to simulate crop growth and water deficit.Four growth stages were considered since the sensitivity of soybean to drought is strictly related to the growth stage.The GDVI was applied to the Huaibei Plain,Anhui Province,China,with the goal of quantifying the spatiotemporal characteristics of soybean drought vulnerability in typical years and growth stages.The results show that:(1)The sensitivity of leaf-related parameters exceeded that of other parameters during the vegetative growth stage,whereas the top weight and grain yield showed a higher sensitivity in the reproductive growth stage;(2)A semi-logarithmic law can describe the relationship between the drought sensitivity indicators and the GDVI during the four growth stages.The pod-filling phase is the most vulnerable stage for water deficit and with the highest loss upper limit(over 70%);(3)The 2001 and 2002 seasons were the driest time during 1997-2006.Fuyang and Huainan Cities were more vulnerable to drought than other regions on the Huaibei Plain in 2001,while Huaibei and Suzhou Cities were the most susceptible areas in 2002.The results could provide effective decision support for the categorization of areas vulnerable to droughts.展开更多
基金financially supported by“the Fundamental Research Funds for the Central Universities”of Hefei University of Technology(No.JZ2014HGBZ0040)the National Natural Science Foundation of China(No.51509064+2 种基金No.51309071No.51309155)the National Key Research and Development Programs of China(Grand 2016YFA0601601,2016YFA0601501)
文摘When the soil condition and depth to water table stay constant, climate condition will then be the only determinant of evaporation intensity of phreatic water from bare soil. Based on a series of long-term quality-controlled data collected at the Wudaogou Hydrological Experiment Station in the Huaibei Plain, Anhui, China, the variation trends of the evaporation rate of phreatic water from bare soil were studied through the Mann-Kendall trend test and the linear regression trend test, followed by the study on the responses of evaporation to climate change. Results indicated that in the Huaibei Plain during 1991-2008, evaporation of phreatic water from bare soil tended to increase at a rate of 5% on monthly scale in March, June and July while in other months the increase was minor. On the seasonal basis, the evaporation saw significant increase in spring and summer. In addition, annual evaporation tended to grow evidently over time. When air temperature rises by 1 °C, the annual evaporation rate increases by 7.24–14.21%, while when the vapor pressure deficit rises by 10%, it changes from-0.09 to 5.40%. The study also provides references for further understanding of the trends and responses of regional evapotranspiration to climate change.
基金This work was supported by the National Key Research and Development Program of China(Grants No.2018YFC1508302 and 2018YFC1508301)the Natural Science Foundation of Hubei Province of China(Grant No.2019CFB507).
文摘Summer floods occur frequently in many regions of China,affecting economic development and social stability.Remote sensing is a new technique in disaster monitoring.In this study,the Sihu Basin in Hubei Province of China and the Huaibei Plain in Anhui Province of China were selected as the study areas.Thresholds of backscattering coefficients in the decision tree method were calculated with the histogram analysis method,and flood disaster monitoring in the two study areas was conducted with the threshold method using Sentinel-1 satellite images.Through satellite-based flood disaster monitoring,the flooded maps and the areas of expanded water bodies and flooded crops were derived.The satellite-based monitoring maps were derived by comparing the expanded area of images during a flood disaster with that before the disaster.The difference in spatiotemporal distribution of flood disasters in these two regions was analyzed.The results showed that flood disasters in the Sihu Basin occurred frequently in June and July,and flood disasters in the Huaibei Plain mostly occurred in August,with a high interannual vari-ability.Flood disasters in the Sihu Basin were usually widespread,and the affected area was between Changhu and Honghu lakes.The Huaibei Plain was affected by scattered disasters.The annual mean percentages of flooded crop area were 14.91%and 3.74% in the Sihu Basin and Huaibei Plain,respectively.The accuracies of the extracted flooded area in the Sihu Basin in 2016 and 2017 were 96.20% and 95.19%,respectively.
基金the Youth Science and Technology Innovation Fund of Water Resources Research Institute of Anhui Province and Huaihe River Commission,Ministry of Water Resources of China(KY201904).
文摘[Objectives]To study the relationship between soil water,groundwater burial depth,and precipitation for summer maize in Huaibei Plain.[Methods]The atmospheric precipitation,soil water and groundwater for the growth period of summer maize in Huaibei Plain were analyzed using the 26-year long series of data from the Wudaogou Hydrological Experimental Station,combined with the hydrogen and oxygen stable isotope tracing method.[Results]The average soil moisture content of summer maize in different growth periods showed a trend of first decreasing,then increasing and then decreasing with the increase of soil depth.The average soil moisture content was the lowest at the surface soil layer.From the characteristic values of hydrogen and oxygen isotopes of atmospheric precipitation,soil water and groundwater,it can be known that the average values ofδ18O andδD of soil water decreased with the increase of soil depth,indicating that soil moisture evaporation leads to the enrichment of soil heavy isotopes,and the degree of enrichment decreased from the surface layer to the deep layer of the soil.The seasonal variation of the stable isotope of hydrogen and oxygen in soil water declined with the increase of soil depth.The soil water changes at 30 cm and 50 cm soil depths were the most obvious.The soil was easily recharged by precipitation,and soil evaporation was relatively strong.[Conclusions]The research results are favorable for in-depth understanding of the regional water cycle process,and are expected to provide a certain scientific basis for realizing the efficient and sustainable use of regional groundwater.
文摘There are two different genetic types of recently deposited silts widely distributing in Huaibei Plain of Anhui Province:flooding deposited silt of Yellow River and Huaihe River.These recently deposited silts have the following unique characteristics:new formation age,feeble consolidation degree。
基金the support of the Natural Science Foundation of Anhui Province(Grant no.2208085US03)the National Natural Science Foundation of China(Grant nos.U2240223,52109009,42271084)。
文摘Climate change can lead to and intensify drought disasters.Quantifying the vulnerability of disaster-affected elements is significant for understanding the mechanisms that transform drought intensity into eventual loss.This study proposed a growth-stage-based drought vulnerability index(GDVI)of soybean using meteorological,groundwater,land use,and field experiment data and crop growth model simulation.The CROPGRO-Soybean model was used to simulate crop growth and water deficit.Four growth stages were considered since the sensitivity of soybean to drought is strictly related to the growth stage.The GDVI was applied to the Huaibei Plain,Anhui Province,China,with the goal of quantifying the spatiotemporal characteristics of soybean drought vulnerability in typical years and growth stages.The results show that:(1)The sensitivity of leaf-related parameters exceeded that of other parameters during the vegetative growth stage,whereas the top weight and grain yield showed a higher sensitivity in the reproductive growth stage;(2)A semi-logarithmic law can describe the relationship between the drought sensitivity indicators and the GDVI during the four growth stages.The pod-filling phase is the most vulnerable stage for water deficit and with the highest loss upper limit(over 70%);(3)The 2001 and 2002 seasons were the driest time during 1997-2006.Fuyang and Huainan Cities were more vulnerable to drought than other regions on the Huaibei Plain in 2001,while Huaibei and Suzhou Cities were the most susceptible areas in 2002.The results could provide effective decision support for the categorization of areas vulnerable to droughts.