With the rapid growth of the maritime Internet of Things(IoT)devices for Maritime Monitor Services(MMS),maritime traffic controllers could not handle a massive amount of data in time.For unmanned MMS,one of the key te...With the rapid growth of the maritime Internet of Things(IoT)devices for Maritime Monitor Services(MMS),maritime traffic controllers could not handle a massive amount of data in time.For unmanned MMS,one of the key technologies is situation understanding.However,the presence of slow-fast high maneuvering targets and track breakages due to radar blind zones make modeling the dynamics of marine multi-agents difficult,and pose significant challenges to maritime situation understanding.In order to comprehend the situation accurately and thus offer unmanned MMS,it is crucial to model the complex dynamics of multi-agents using IoT big data.Nevertheless,previous methods typically rely on complex assumptions,are plagued by unstructured data,and disregard the interactions between multiple agents and the spatial-temporal correlations.A deep learning model,Graph Spatial-Temporal Generative Adversarial Network(GraphSTGAN),is proposed in this paper,which uses graph neural network to model unstructured data and uses STGAN to learn the spatial-temporal dependencies and interactions.Extensive experiments show the effectiveness and robustness of the proposed method.展开更多
Due to the rapid development of the maritime networks, there has been a growing demand for computation-intensive applications which have various energy consumption, transmission bandwidth and computing latency require...Due to the rapid development of the maritime networks, there has been a growing demand for computation-intensive applications which have various energy consumption, transmission bandwidth and computing latency requirements. Mobile edge computing(MEC) can efficiently minimize computational latency by offloading computation tasks by the terrestrial access network. In this work, we introduce a space-air-ground-sea integrated network architecture with edge and cloud computing components to provide flexible hybrid computing service for maritime service. In the integrated network, satellites and unmanned aerial vehicles(UAVs) provide the users with edge computing services and network access. Based on the architecture, the joint communication and computation resource allocation problem is modelled as a complex decision process, and a deep reinforcement learning based solution is designed to solve the complex optimization problem. Finally, numerical results verify that the proposed approach can improve the communication and computing efficiency greatly.展开更多
Ship.to.ship, ship.to.shore radio links empowered by Wi Fi, Wi MAX etc have been recently exploited to build maritime multi.hop mesh networks to provide internet services to on.ship users. However, because of the mobi...Ship.to.ship, ship.to.shore radio links empowered by Wi Fi, Wi MAX etc have been recently exploited to build maritime multi.hop mesh networks to provide internet services to on.ship users. However, because of the mobility of the vessels/ships and the large inter.ship distances, nodes in the maritime network are frequently disconnected, forcing data communication in the maritime mesh networks to be opportunistic and delay.tolerant. In this paper, we present Lane Post, an optimization approach for maritime delay.tolerant routing protocol. We exploit the shipping lane information to predict the rendezvous opportunities of the ships to optimize the route selection in delay.tolerant routing. In particular, we show that when the shipping lane information is available, an opportunistic routing graph(ORG) for each ship can be constructed to predict its multi.hop data routing opportunities to the other ships or to the shore. Based on the ORG, we develop an optimal route protocol(i.e., Lane Post) for each ship to minimize its delay of multi.hop packet delivery via dynamic programming. We discussed the ways of collecting shipping lane information by centralized method or distributed method.The proposed Lane Post protocol was evaluated by ONE, an open.source delay.tolerant network simulator, which shows its dramatic performance improvement in terms of delay reduction compared to the state.of.the.art opportunistic routing protocols.展开更多
With the rapid increasing of maritime activities, maritime wireless networks(MWNs) with high reliability, high energy efficiency, and low delay are required. However, the centralized networking with fixed resource sch...With the rapid increasing of maritime activities, maritime wireless networks(MWNs) with high reliability, high energy efficiency, and low delay are required. However, the centralized networking with fixed resource scheduling is not suitable for MWNs due to the special environment. In this paper,we introduce the collaborative relay communication in distributed MWNs to improve the link reliability, and propose an orthogonal time-frequency resource block reservation based multiple access(RRMA) scheme for both one-hop direct link and two-hop collaborative relay link to reduce the interference. To further improve the network performance, we formulate an energy efficiency(EE) maximization resource allocation problem and solve it by an iterative algorithm based on the Dinkelbach method. Finally, numerical results are provided to investigate the proposed RRMA scheme and resource allocation algorithm, showing that the low outage probability and transmission delay can be attained by the proposed RRMA scheme. Moreover,the proposed resource allocation algorithm is capable of achieving high EE in distributed MWNs.展开更多
The hybrid satellite-UAV-terrestrial maritime networks have shown great promise for broadband coverage at sea.The existing works focused on vessels collaboratively served by UAV-enabled aerial base station(ABSs)and te...The hybrid satellite-UAV-terrestrial maritime networks have shown great promise for broadband coverage at sea.The existing works focused on vessels collaboratively served by UAV-enabled aerial base station(ABSs)and terrestrial base stations(TBSs)deployed along the coast,and proved that data rate could be improved by optimizing transmit power and ABS’s position.In practice,users on a vessel can be collaboratively served by an ABS and a vesselenabled base station(VBS)in different networks.In this case,how to select the network for users on a vessel is still an open issue.In this paper,a TBS and a satellite respectively provide wireless backhaul for the ABS and the VBS.The network selection is jointly optimized with transmit power of ABS and VBS,and ABS’s position for improving data rate of all users.We solve it by finding candidates for network selection and iteratively solving transmit power and ABS’s position for each candidate.Simulation results demonstrate that data rate can be improved by collaborative coverage for users on a vessel.展开更多
As an alternative to satellite communications,multi-hop relay networks can be deployed for maritime long-distance communications.Distinct from terrestrial environment,marine radio signals are affected by many factors,...As an alternative to satellite communications,multi-hop relay networks can be deployed for maritime long-distance communications.Distinct from terrestrial environment,marine radio signals are affected by many factors,e.g.,weather conditions,evaporation ducting,and ship rocking caused by waves.To ensure the data transmission reliability,the block Markov superposition transmission(BMST)codes,which are easily configurable and have predictable performance,are applied in this study.Meanwhile,the physical-layer network coding(PNC)scheme with spatial modulation(SM)is adopted to improve the spectrum utilization.For the BMST-SMPNC system,we propose an iterative algorithm,which utilizes the channel observations and the a priori information from BMST decoder,to compute the soft information corresponding to the XORed bits constructed by the relay node.The results indicate that the proposed scheme outperforms the convolutional coded SM-PNC over fast-fading Rician channels.Especially,the performance can be easily improved in high spatial correlation maritime channel by increasing the memory m.展开更多
With the rapid development of maritime activities,there has been a growing demand for high data rate and ultra-reliable maritime communications.Traditionally,this is provided by maritime satellites.Besides,shore and i...With the rapid development of maritime activities,there has been a growing demand for high data rate and ultra-reliable maritime communications.Traditionally,this is provided by maritime satellites.Besides,shore and island-based base stations(BSs)can be built to extend the coverage of terrestrial networks providing the fourth-generation(4G)or even the fifth-generation(5G)services.Unmanned aerial vehicles(UAVs)-aided and ship-borne BSs can also be exploited to serve as relaying nodes in maritime mesh/ad-hoc networks.Despite all these approaches,there are still open issues towards the establishment of an agile maritime communication network(MCN).展开更多
With the rapid development of maritime activities, there has been a growing demand for high data rate and ultra-reliable maritime communications. Traditionally, this is provided by maritime satellites. Besides, shore ...With the rapid development of maritime activities, there has been a growing demand for high data rate and ultra-reliable maritime communications. Traditionally, this is provided by maritime satellites. Besides, shore and island-based base stations (BSs) can be built to extend the coverage of terrestrial networks providing the fourth-generation (4G) or even the fifth-generation (5G) services. Unmanned aerial vehicles (UAVs)-aided and ship-borne BSs can also be exploited to serve as relaying nodes in maritime mesh/ad-hoc networks. Despite all these approaches, there are still open issues towards the establishment of an agile maritime communication network (MCN). Different from terrestrial communications for urban or suburban coverage, the MCN faces several challenges due to the complicated electromagnetic propagation environment, the limited geometrically available BS sites, and rigorous service demands from mission-critical applications. To address all these challenges, conventional communications and networking theories and methods need to be tailored for maritime application scenarios or new ones should be explored. The goal of this feature topic is to present the state-of-the-art original research, and the latest advances and innovations in key theories, technologies, and innovative applications for agile MCNs, as well as identify emerging research topics and point out the future research directions. Extended versions of papers published in conferences, symposiums, or workshop proceedings are encouraged for consideration.展开更多
With the rapid development of maritime activities, there has been a growing demand for high data rate and ultra-reliable maritime communications. Traditionally,this is provided by maritime satellites. Besides, shore a...With the rapid development of maritime activities, there has been a growing demand for high data rate and ultra-reliable maritime communications. Traditionally,this is provided by maritime satellites. Besides, shore and island-based base stations (BSs) can be built to extend the coverage of terrestrial networks providing the fourth-generation (4G) or even the fifth-generation (5G) services.展开更多
The maritime communication network(MCN)plays an important role in the 6th generation(6G)system development.In MCNs,packet transport over long-distance lossy links will be ubiquitous.Transmission control protocol(TCP),...The maritime communication network(MCN)plays an important role in the 6th generation(6G)system development.In MCNs,packet transport over long-distance lossy links will be ubiquitous.Transmission control protocol(TCP),the dominant transport protocol in the past decades,have had performance issues in such links.In this paper,we propose a novel transport approach which uses user datagram protocol(UDP)along with a simple yet effective bandwidth estimator for congestion control,and with a proactive packet-level forward erasure correction(FEC)code called streaming code to provide low-delay loss recovery without data retransmissions at all.We show that the approach can effectively address two issues of the state-of-the-art TCP variants in the long-distance lossy links,namely 1)the low bandwidth utilization caused by the slow increase of the congestion window(CWND)due to long roundtrip time(RTT)and the frequent CWND drop due to random and congestion losses,and 2)the high endto-end in-order delivery delay when re-transmissions are incurred to recover lost packets.In addition,we show that the scheme’s goodput has good smoothness and short-term intra-protocol fairness properties,which are beneficial for multimedia streaming and interactive applications that are prominent parts of today’s wireless traffic.展开更多
Mobile Edge Computing(MEC)can support various high-reliability and low-delay applications in Maritime Networks(MNs).However,security risks in computing task offloading exist.In this study,the location privacy leakage ...Mobile Edge Computing(MEC)can support various high-reliability and low-delay applications in Maritime Networks(MNs).However,security risks in computing task offloading exist.In this study,the location privacy leakage risk of Maritime Mobile Terminals(MMTs)is quantified during task offloading and relevant Location Privacy Protection(LPP)schemes of MMT are considered under two kinds of task offloading scenarios.In single-MMT and single-time offloading scenario,a dynamic cache and spatial cloaking-based LPP(DS-CLP)algorithm is proposed;and under the multi-MMTs and multi-time offloading scenario,a pseudonym and alterable silent period-based LPP(PA-SLP)strategy is proposed.Simulation results show that the DS-CLP can save the response time and communication cost compared with traditional algorithms while protecting the MMT location privacy.Meanwhile,extending the alterable silent period,increasing the number of MMTs in the maritime area or improving the pseudonym update probability can enhance the LPP effect of MMTs in PA-SLP.Furthermore,the study results can be effectively applied to MNs with poor communication environments and relatively insufficient computing resources.展开更多
This paper investigates an unmanned aerial vehicle(UAV)-enabled maritime secure communication network,where the UAV aims to provide the communication service to a legitimate mobile vessel in the presence of multiple e...This paper investigates an unmanned aerial vehicle(UAV)-enabled maritime secure communication network,where the UAV aims to provide the communication service to a legitimate mobile vessel in the presence of multiple eavesdroppers.In this maritime communication networks(MCNs),it is challenging for the UAV to determine its trajectory on the ocean,since it cannot land or replenish energy on the sea surface,the trajectory should be pre-designed before the UAV takes off.Furthermore,the take-off location of the UAV and the sea lane of the vessel may be random,which leads to a highly dynamic environment.To address these issues,we propose two reinforcement learning schemes,Q-learning and deep deterministic policy gradient(DDPG)algorithms,to solve the discrete and continuous UAV trajectory design problem,respectively.Simulation results are provided to validate the effectiveness and superior performance of the proposed reinforcement learning schemes versus the existing schemes in the literature.Additionally,the proposed DDPG algorithm converges faster and achieves higher utilities for the UAV,compared to the Q-learning algorithm.展开更多
It is very important to establish cooperative mechanism to guarantee allmembers to develop their e-conomies in the Yellow Sea Rim. In this paper, the development strategiesof shipping centers and transportation networ...It is very important to establish cooperative mechanism to guarantee allmembers to develop their e-conomies in the Yellow Sea Rim. In this paper, the development strategiesof shipping centers and transportation network are discussed based on economic globalizationtendency. The results argue that a united transportation network should be built in order to promotethe economic competition of Northeast Asia in the world. As a key component of the economiccooperation, a hierarchical shipping centers network should be established with Hong Kong, Shanghai,Pusan, Kobe, and Tokyo as cores. The authorities of China, Japan, R. 0. Korea and D. P. R. Koreashould make more efforts to build a set of cooperation institutions based on raising thetransportation efficiency.展开更多
In recent years,with the prosperity of world trade,the water transport industry has developed rapidly,the number of ships has surged,and ship safety accidents in busy waters and complex waterways have become more freq...In recent years,with the prosperity of world trade,the water transport industry has developed rapidly,the number of ships has surged,and ship safety accidents in busy waters and complex waterways have become more frequent.Predicting the movement of the ship and analyzing the trajectory of the ship are of great significance for improving the safety level of the ship.Aiming at the multi-dimensional characteristics of ship navigation behavior and the accuracy and real-time requirements of ship traffic service system for ship trajectory prediction,a ship navigation trajectory prediction method combining ship automatic identification system information and Back Propagation(BP)neural network are proposed.According to the basic principle of BP neural network structure,the BP neural network is trained by taking the characteristic values of ship navigation behavior at three consecutive moments as input and the characteristic values of ship navigation behavior at the fourth moment as output to predict the future ship navigation trajectory.Based on the Automatic Identification System(AIS)information of the waters near the Nanpu Bridge in Pudong New Area,Shanghai,the results show that the method is used to predict the ship's navigational behavior eigenvalues accurately and in real time.Compared with the traditional kinematics prediction trajectory method,the model can effectively predict ship navigation.The trajectory improves the accuracy of the ship's motion situation prediction,and has the advantages of high computational efficiency and strong versatility,and the error is within an acceptable range.展开更多
The mega-size containership viability was analyzed by considering different service networks for different ship sizes:hub-and-spoke and multi-port-calling (MPC) networks for mega-size containerships and conventional s...The mega-size containership viability was analyzed by considering different service networks for different ship sizes:hub-and-spoke and multi-port-calling (MPC) networks for mega-size containerships and conventional ships.A model was proposed,which quantifies the economies of scale in operating large con- tainerships and constructs models for ship routing under different service networks.A sensitivity analysis was conducted to test the effect of feeder costs and the results analyzed to determine optimal containership size with respect to different operational scenarios.Throughout model applications for Asia-Europe and Asia-North America trades,the mega-size containership is competitive in all scenarios for Asia-Europe,while it is viable for Asia-North America only when the feeder costs are low.展开更多
基金supported by National Natural Science Foundation of China under Grants No.62076249,62022092,62293545.
文摘With the rapid growth of the maritime Internet of Things(IoT)devices for Maritime Monitor Services(MMS),maritime traffic controllers could not handle a massive amount of data in time.For unmanned MMS,one of the key technologies is situation understanding.However,the presence of slow-fast high maneuvering targets and track breakages due to radar blind zones make modeling the dynamics of marine multi-agents difficult,and pose significant challenges to maritime situation understanding.In order to comprehend the situation accurately and thus offer unmanned MMS,it is crucial to model the complex dynamics of multi-agents using IoT big data.Nevertheless,previous methods typically rely on complex assumptions,are plagued by unstructured data,and disregard the interactions between multiple agents and the spatial-temporal correlations.A deep learning model,Graph Spatial-Temporal Generative Adversarial Network(GraphSTGAN),is proposed in this paper,which uses graph neural network to model unstructured data and uses STGAN to learn the spatial-temporal dependencies and interactions.Extensive experiments show the effectiveness and robustness of the proposed method.
基金the National Natural Science Foundation of China under Grant No. U1805262
文摘Due to the rapid development of the maritime networks, there has been a growing demand for computation-intensive applications which have various energy consumption, transmission bandwidth and computing latency requirements. Mobile edge computing(MEC) can efficiently minimize computational latency by offloading computation tasks by the terrestrial access network. In this work, we introduce a space-air-ground-sea integrated network architecture with edge and cloud computing components to provide flexible hybrid computing service for maritime service. In the integrated network, satellites and unmanned aerial vehicles(UAVs) provide the users with edge computing services and network access. Based on the architecture, the joint communication and computation resource allocation problem is modelled as a complex decision process, and a deep reinforcement learning based solution is designed to solve the complex optimization problem. Finally, numerical results verify that the proposed approach can improve the communication and computing efficiency greatly.
基金supported in part by National Natural Science Foundation of China Grant 61672524the Fundamental Research Funds for the Central University+1 种基金the Research Funds of Renmin University of China, 2015030273National Key Technology Support Program 2014BAK12B06
文摘Ship.to.ship, ship.to.shore radio links empowered by Wi Fi, Wi MAX etc have been recently exploited to build maritime multi.hop mesh networks to provide internet services to on.ship users. However, because of the mobility of the vessels/ships and the large inter.ship distances, nodes in the maritime network are frequently disconnected, forcing data communication in the maritime mesh networks to be opportunistic and delay.tolerant. In this paper, we present Lane Post, an optimization approach for maritime delay.tolerant routing protocol. We exploit the shipping lane information to predict the rendezvous opportunities of the ships to optimize the route selection in delay.tolerant routing. In particular, we show that when the shipping lane information is available, an opportunistic routing graph(ORG) for each ship can be constructed to predict its multi.hop data routing opportunities to the other ships or to the shore. Based on the ORG, we develop an optimal route protocol(i.e., Lane Post) for each ship to minimize its delay of multi.hop packet delivery via dynamic programming. We discussed the ways of collecting shipping lane information by centralized method or distributed method.The proposed Lane Post protocol was evaluated by ONE, an open.source delay.tolerant network simulator, which shows its dramatic performance improvement in terms of delay reduction compared to the state.of.the.art opportunistic routing protocols.
基金supported in part by the National Natural Science Foundation of China under Grant 62001056, 61925101, U21A20444in part by the Fundamental Research Funds for the Central Universities under Grant 500421336 and Grant 505021163。
文摘With the rapid increasing of maritime activities, maritime wireless networks(MWNs) with high reliability, high energy efficiency, and low delay are required. However, the centralized networking with fixed resource scheduling is not suitable for MWNs due to the special environment. In this paper,we introduce the collaborative relay communication in distributed MWNs to improve the link reliability, and propose an orthogonal time-frequency resource block reservation based multiple access(RRMA) scheme for both one-hop direct link and two-hop collaborative relay link to reduce the interference. To further improve the network performance, we formulate an energy efficiency(EE) maximization resource allocation problem and solve it by an iterative algorithm based on the Dinkelbach method. Finally, numerical results are provided to investigate the proposed RRMA scheme and resource allocation algorithm, showing that the low outage probability and transmission delay can be attained by the proposed RRMA scheme. Moreover,the proposed resource allocation algorithm is capable of achieving high EE in distributed MWNs.
基金supported in part by the National Natural Science Foundation of China(Grant No.62001265)the Fundamental Research Funds for the Central Universities(Grant No.buctrc202124)。
文摘The hybrid satellite-UAV-terrestrial maritime networks have shown great promise for broadband coverage at sea.The existing works focused on vessels collaboratively served by UAV-enabled aerial base station(ABSs)and terrestrial base stations(TBSs)deployed along the coast,and proved that data rate could be improved by optimizing transmit power and ABS’s position.In practice,users on a vessel can be collaboratively served by an ABS and a vesselenabled base station(VBS)in different networks.In this case,how to select the network for users on a vessel is still an open issue.In this paper,a TBS and a satellite respectively provide wireless backhaul for the ABS and the VBS.The network selection is jointly optimized with transmit power of ABS and VBS,and ABS’s position for improving data rate of all users.We solve it by finding candidates for network selection and iteratively solving transmit power and ABS’s position for each candidate.Simulation results demonstrate that data rate can be improved by collaborative coverage for users on a vessel.
基金the National Key Research and Development Program of China(No.2017YFE0112600)the National Science Foundation of China[No.61971454,No.91438101&No.61771499]the National Science Foundation of Guangdong,China[No.2016A030308008].
文摘As an alternative to satellite communications,multi-hop relay networks can be deployed for maritime long-distance communications.Distinct from terrestrial environment,marine radio signals are affected by many factors,e.g.,weather conditions,evaporation ducting,and ship rocking caused by waves.To ensure the data transmission reliability,the block Markov superposition transmission(BMST)codes,which are easily configurable and have predictable performance,are applied in this study.Meanwhile,the physical-layer network coding(PNC)scheme with spatial modulation(SM)is adopted to improve the spectrum utilization.For the BMST-SMPNC system,we propose an iterative algorithm,which utilizes the channel observations and the a priori information from BMST decoder,to compute the soft information corresponding to the XORed bits constructed by the relay node.The results indicate that the proposed scheme outperforms the convolutional coded SM-PNC over fast-fading Rician channels.Especially,the performance can be easily improved in high spatial correlation maritime channel by increasing the memory m.
文摘With the rapid development of maritime activities,there has been a growing demand for high data rate and ultra-reliable maritime communications.Traditionally,this is provided by maritime satellites.Besides,shore and island-based base stations(BSs)can be built to extend the coverage of terrestrial networks providing the fourth-generation(4G)or even the fifth-generation(5G)services.Unmanned aerial vehicles(UAVs)-aided and ship-borne BSs can also be exploited to serve as relaying nodes in maritime mesh/ad-hoc networks.Despite all these approaches,there are still open issues towards the establishment of an agile maritime communication network(MCN).
文摘With the rapid development of maritime activities, there has been a growing demand for high data rate and ultra-reliable maritime communications. Traditionally, this is provided by maritime satellites. Besides, shore and island-based base stations (BSs) can be built to extend the coverage of terrestrial networks providing the fourth-generation (4G) or even the fifth-generation (5G) services. Unmanned aerial vehicles (UAVs)-aided and ship-borne BSs can also be exploited to serve as relaying nodes in maritime mesh/ad-hoc networks. Despite all these approaches, there are still open issues towards the establishment of an agile maritime communication network (MCN). Different from terrestrial communications for urban or suburban coverage, the MCN faces several challenges due to the complicated electromagnetic propagation environment, the limited geometrically available BS sites, and rigorous service demands from mission-critical applications. To address all these challenges, conventional communications and networking theories and methods need to be tailored for maritime application scenarios or new ones should be explored. The goal of this feature topic is to present the state-of-the-art original research, and the latest advances and innovations in key theories, technologies, and innovative applications for agile MCNs, as well as identify emerging research topics and point out the future research directions. Extended versions of papers published in conferences, symposiums, or workshop proceedings are encouraged for consideration.
文摘With the rapid development of maritime activities, there has been a growing demand for high data rate and ultra-reliable maritime communications. Traditionally,this is provided by maritime satellites. Besides, shore and island-based base stations (BSs) can be built to extend the coverage of terrestrial networks providing the fourth-generation (4G) or even the fifth-generation (5G) services.
基金supported by Natural Science Foundation of China(NSFC)under Grant no.61801248,62171240by the Key Research and Development Program of Jiangsu Province of China under Grant BE2021013-1+2 种基金by Science and Technology Program of Nantong under JC2021121by State Key Laboratory of Advanced Optical Communication Systems and Networks under Grant 2021GZKF006by the Postgraduate Research&Practice Innovation Program of Jiangsu Province KYCX223346。
文摘The maritime communication network(MCN)plays an important role in the 6th generation(6G)system development.In MCNs,packet transport over long-distance lossy links will be ubiquitous.Transmission control protocol(TCP),the dominant transport protocol in the past decades,have had performance issues in such links.In this paper,we propose a novel transport approach which uses user datagram protocol(UDP)along with a simple yet effective bandwidth estimator for congestion control,and with a proactive packet-level forward erasure correction(FEC)code called streaming code to provide low-delay loss recovery without data retransmissions at all.We show that the approach can effectively address two issues of the state-of-the-art TCP variants in the long-distance lossy links,namely 1)the low bandwidth utilization caused by the slow increase of the congestion window(CWND)due to long roundtrip time(RTT)and the frequent CWND drop due to random and congestion losses,and 2)the high endto-end in-order delivery delay when re-transmissions are incurred to recover lost packets.In addition,we show that the scheme’s goodput has good smoothness and short-term intra-protocol fairness properties,which are beneficial for multimedia streaming and interactive applications that are prominent parts of today’s wireless traffic.
基金supported by the National Key Research and Development Program of China (2021YFE0105500)the National Natural Science Foundation of China (61801166).
文摘Mobile Edge Computing(MEC)can support various high-reliability and low-delay applications in Maritime Networks(MNs).However,security risks in computing task offloading exist.In this study,the location privacy leakage risk of Maritime Mobile Terminals(MMTs)is quantified during task offloading and relevant Location Privacy Protection(LPP)schemes of MMT are considered under two kinds of task offloading scenarios.In single-MMT and single-time offloading scenario,a dynamic cache and spatial cloaking-based LPP(DS-CLP)algorithm is proposed;and under the multi-MMTs and multi-time offloading scenario,a pseudonym and alterable silent period-based LPP(PA-SLP)strategy is proposed.Simulation results show that the DS-CLP can save the response time and communication cost compared with traditional algorithms while protecting the MMT location privacy.Meanwhile,extending the alterable silent period,increasing the number of MMTs in the maritime area or improving the pseudonym update probability can enhance the LPP effect of MMTs in PA-SLP.Furthermore,the study results can be effectively applied to MNs with poor communication environments and relatively insufficient computing resources.
基金supported by the Six Categories Talent Peak of Jiangsu Province(No.KTHY-039)the Future Network Scientific Research Fund Project(No.FNSRFP-2021-YB-42)+1 种基金the Science and Technology Program of Nantong(No.JC2021016)the Key Research and Development Program of Jiangsu Province of China(No.BE2021013-1)。
文摘This paper investigates an unmanned aerial vehicle(UAV)-enabled maritime secure communication network,where the UAV aims to provide the communication service to a legitimate mobile vessel in the presence of multiple eavesdroppers.In this maritime communication networks(MCNs),it is challenging for the UAV to determine its trajectory on the ocean,since it cannot land or replenish energy on the sea surface,the trajectory should be pre-designed before the UAV takes off.Furthermore,the take-off location of the UAV and the sea lane of the vessel may be random,which leads to a highly dynamic environment.To address these issues,we propose two reinforcement learning schemes,Q-learning and deep deterministic policy gradient(DDPG)algorithms,to solve the discrete and continuous UAV trajectory design problem,respectively.Simulation results are provided to validate the effectiveness and superior performance of the proposed reinforcement learning schemes versus the existing schemes in the literature.Additionally,the proposed DDPG algorithm converges faster and achieves higher utilities for the UAV,compared to the Q-learning algorithm.
文摘It is very important to establish cooperative mechanism to guarantee allmembers to develop their e-conomies in the Yellow Sea Rim. In this paper, the development strategiesof shipping centers and transportation network are discussed based on economic globalizationtendency. The results argue that a united transportation network should be built in order to promotethe economic competition of Northeast Asia in the world. As a key component of the economiccooperation, a hierarchical shipping centers network should be established with Hong Kong, Shanghai,Pusan, Kobe, and Tokyo as cores. The authorities of China, Japan, R. 0. Korea and D. P. R. Koreashould make more efforts to build a set of cooperation institutions based on raising thetransportation efficiency.
文摘In recent years,with the prosperity of world trade,the water transport industry has developed rapidly,the number of ships has surged,and ship safety accidents in busy waters and complex waterways have become more frequent.Predicting the movement of the ship and analyzing the trajectory of the ship are of great significance for improving the safety level of the ship.Aiming at the multi-dimensional characteristics of ship navigation behavior and the accuracy and real-time requirements of ship traffic service system for ship trajectory prediction,a ship navigation trajectory prediction method combining ship automatic identification system information and Back Propagation(BP)neural network are proposed.According to the basic principle of BP neural network structure,the BP neural network is trained by taking the characteristic values of ship navigation behavior at three consecutive moments as input and the characteristic values of ship navigation behavior at the fourth moment as output to predict the future ship navigation trajectory.Based on the Automatic Identification System(AIS)information of the waters near the Nanpu Bridge in Pudong New Area,Shanghai,the results show that the method is used to predict the ship's navigational behavior eigenvalues accurately and in real time.Compared with the traditional kinematics prediction trajectory method,the model can effectively predict ship navigation.The trajectory improves the accuracy of the ship's motion situation prediction,and has the advantages of high computational efficiency and strong versatility,and the error is within an acceptable range.
文摘The mega-size containership viability was analyzed by considering different service networks for different ship sizes:hub-and-spoke and multi-port-calling (MPC) networks for mega-size containerships and conventional ships.A model was proposed,which quantifies the economies of scale in operating large con- tainerships and constructs models for ship routing under different service networks.A sensitivity analysis was conducted to test the effect of feeder costs and the results analyzed to determine optimal containership size with respect to different operational scenarios.Throughout model applications for Asia-Europe and Asia-North America trades,the mega-size containership is competitive in all scenarios for Asia-Europe,while it is viable for Asia-North America only when the feeder costs are low.