The water-drop-shaped pressure hull has a good streamline,which has good application prospect in the underwater observatory.Therefore,this study conducted analytical,experimental and numerical investigation of the buc...The water-drop-shaped pressure hull has a good streamline,which has good application prospect in the underwater observatory.Therefore,this study conducted analytical,experimental and numerical investigation of the buckling properties of water-drop-shaped pressure hulls under hydrostatic pressure.A water-drop experiment was conducted to design water-drop-shaped pressure hulls with various shape indices.The critical loads for the water-drop-shaped pressure hulls were resolved by using Mushtari’s formula.Several numerical simulations including linear buckling analysis and nonlinear buckling analysis including eigenmode imperfections were performed.The results indicated that the critical loads resolved by Mushtari's formula were in good agreement with the linear buckling loads from the numerical simulations.This formula can be extended to estimate the buckling capacity of water-drop-shaped pressure hulls.In addition,three groups of pressure hulls were fabricated by using stereolithography,a rapid prototyping technique.Subsequently,three groups of the pressure hulls were subjected to ultrasonic measurements,optical scanning,hydrostatic testing and numerical analysis.The experimental results were consistent with the numerical results.The results indicate that the sharp end of the water-drop-shaped pressure hulls exhibited instability compared with the blunt end.This paper provides a new solution to the limitations of experimental studies on the water-drop-shaped pressure hulls as well as a new configuration and evaluation method for underwater observatories.展开更多
In this paper,an improved spatio-temporal alignment measurement method is presented to address the inertial matching measurement of hull deformation under the coexistence of time delay and large misalignment angle.Lar...In this paper,an improved spatio-temporal alignment measurement method is presented to address the inertial matching measurement of hull deformation under the coexistence of time delay and large misalignment angle.Large misalignment angle and time delay often occur simultaneously and bring great challenges to the accurate measurement of hull deformation in space and time.The proposed method utilizes coarse alignment with large misalignment angle and time delay estimation of inertial measurement unit modeling to establish a brand-new spatiotemporal aligned hull deformation measurement model.In addition,two-step loop control is designed to ensure the accurate description of dynamic deformation angle and static deformation angle by the time-space alignment method of hull deformation.The experiments illustrate that the proposed method can effectively measure the hull deformation angle when time delay and large misalignment angle coexist.展开更多
In the context of the recovery of agricultural waste, many researches have focused on the preparation of adsorbents from natural waste from fruit trees, egg shells, palm waste or sawdust. This work aims to optimize th...In the context of the recovery of agricultural waste, many researches have focused on the preparation of adsorbents from natural waste from fruit trees, egg shells, palm waste or sawdust. This work aims to optimize the preparation of a biosorbent from rubber hulls by studying its ability to adsorb small and medium molecules. The influence of parameters such as drying temperature (X1), particle size (X2), stirring time (X3) and sodium hypochloride mass (X4) was studied. The results indicate that the model used for biosorbent optimization on methylene blue and iodine index is significant. In addition, this model has greater adsorption capabilities on small molecules than with large molecules. Statistical analysis of the data shows that temperature is the most influential factor in the adsorption of small molecules. On the other hand, particle size has a significant influence on the adsorption of large molecules. The optimum biosorbent preparation values are 1.0 for drying temperature (X1), −1.0 for biosorbent grain size (X2), 1.0 for stirring time (X3) and 1.0 for sodium hypochloride mass (X4).展开更多
Suitability of S-Glass/carbon fiber reinforced polymer composite for submarine hull subjected to hydrostatic pressure has been investigated in the present study.Metallic materials have raised concerns owing to their d...Suitability of S-Glass/carbon fiber reinforced polymer composite for submarine hull subjected to hydrostatic pressure has been investigated in the present study.Metallic materials have raised concerns owing to their decomposition due to low resistance towards salinity and hence polymer composites have been explored to showcase their mechanical stability to withstand transverse and impact loads.To this end,the mechanical properties of S-Glass/carbon fiber reinforced polymer composite were experimentally investigated and higher specific strength and stiffness of the composite in comparison to many metallic materials used for submarine hull were reported.The obtained experimental values were used for the static and dynamic crash analysis of the bow,stern and foil through Finite Element Analysis(FEA);where depth of travel was varied from sea surface level of 0-7000 m.Submarine assembly was later developed with the optimum shape and thickness of each part.We also report the nonlinear crash analysis upon impact at velocity ranging from 3 to 21 m/s.Besides,kinetic energy,acceleration peak and internal energy in struck submarine revealed that travel depth 1750 m and 3500 m is recommendable,more particularly,crash safety factor of the submarine is found to be within limit when submarine encounters crash at 1750 m.展开更多
Soybean hulls, an abundant byproduct of soybean processing, contain rich phytochemicals, fibers, proteins, and minerals. Currently soybean hulls are primarily used as animal feeds. For value-added soybean hull utiliza...Soybean hulls, an abundant byproduct of soybean processing, contain rich phytochemicals, fibers, proteins, and minerals. Currently soybean hulls are primarily used as animal feeds. For value-added soybean hull utilization, 25% soybean hulls were substituted for amaranth or whole oat flour (WOF) in novel gluten-free cookies. Composition, nutritional values, water-holding capacities, correlation between properties, and pasting and rheological properties of soybean hulls, amaranth, and WOF were appraised in comparison to wheat flour. Water loss, cookie texture, and geometrical properties of the cookies were examined. The results disclosed that soybean hulls, amaranth and WOF contain higher protein content, minerals, fiber, special amino acids, and critical vitamins (C and K) than wheat flour. Considerably higher total amino acid content was found in soybean hulls (18.33%) than wheat flour (12.77%). Water-holding capacities increased by replacing amaranth and WOF with soybean hulls. Soybean hulls exhibited higher rheological elastic properties than amaranth, WOF and wheat flours. The soybean hulls utilized in amaranth or WOF cookies greatly improved their nutritional value, the water retention and moisture content along with acceptable physical properties when compared to wheat flour cookies. This study explored the feasibility and potential of utilizing soybean hulls with amaranth and WOF in gluten-free bakery products and other food applications.展开更多
Samples of ground nut hull were converted to biosorbents using microwave assisted method [groundnut hull treated with hydrogen peroxide (HP-GH), groundnut hull treated with distilled water (W-GH) and raw groundnut hul...Samples of ground nut hull were converted to biosorbents using microwave assisted method [groundnut hull treated with hydrogen peroxide (HP-GH), groundnut hull treated with distilled water (W-GH) and raw groundnut hull (R-GH)]. The biosorbents were further characterized using physicochemical procedures (pH dependence, bulk density, surface area, ash content, and volatile matter, moisture content). The results show that HP-GH has pH = 8.9, W-GH pH = 8.4 and R-GH pH = 8.5 which is an indication that all the biosorbents have the appropriate pH values for the uptake of cationic species within aqueous systems. Surface area analysis revealed that HP-GH has the largest surface area (74.20 m<sup>2</sup>·g<sup>-1</sup>) while W-GH and R-GH have surface area values of 29.40 m<sup>2</sup>·g<sup>-1</sup> and 21.40 m<sup>2</sup>·g<sup>-1</sup> respectively. This suggests that modification of raw groundnut hull biomass with hydrogen peroxide possibly instigated delignification of the biomass which resulted in increased surface area for HP-GH. Results from Bulk density analysis also confirm the data obtained from surface area analysis. Accordingly, R-GH displayed the highest bulk density followed by W-GH with HP-GH showing the least bulk density. The variation in pH values among the biomass used in this study may be explained by the variation in their ash content as well because pH and ash content are positively correlated. Hence, HP-GH with a pH = 8.9 has high ash content (117.31%), W-GH with pH = 8.4 has 97.93% ash content and R-GH with pH = 8.5 has 94.26% ash content. Results from moisture content analysis show that HP-GH (99.95%), W-GH (99.97%) and R-GH (99.89%) may necessitate exposure of the biosorbents to moderate heat before use. The results obtained from this study suggest that modification of ground nut hull with either distilled water or Hydrogen peroxide by means of microwave irradiation improves physicochemical properties which may perhaps increase the adsorption capacity of the biomass.展开更多
基金financially supported by the National Natural Science Foundation of China(Grant Nos.52071160 and 52071203)the 333-Key-Industry Talent Project of Jiangsu Scientific Committee(Grant No.JTO 2022-21).
文摘The water-drop-shaped pressure hull has a good streamline,which has good application prospect in the underwater observatory.Therefore,this study conducted analytical,experimental and numerical investigation of the buckling properties of water-drop-shaped pressure hulls under hydrostatic pressure.A water-drop experiment was conducted to design water-drop-shaped pressure hulls with various shape indices.The critical loads for the water-drop-shaped pressure hulls were resolved by using Mushtari’s formula.Several numerical simulations including linear buckling analysis and nonlinear buckling analysis including eigenmode imperfections were performed.The results indicated that the critical loads resolved by Mushtari's formula were in good agreement with the linear buckling loads from the numerical simulations.This formula can be extended to estimate the buckling capacity of water-drop-shaped pressure hulls.In addition,three groups of pressure hulls were fabricated by using stereolithography,a rapid prototyping technique.Subsequently,three groups of the pressure hulls were subjected to ultrasonic measurements,optical scanning,hydrostatic testing and numerical analysis.The experimental results were consistent with the numerical results.The results indicate that the sharp end of the water-drop-shaped pressure hulls exhibited instability compared with the blunt end.This paper provides a new solution to the limitations of experimental studies on the water-drop-shaped pressure hulls as well as a new configuration and evaluation method for underwater observatories.
基金supported by Beijing Insititute of Technology Research Fund Program for Young Scholars(2020X04104)。
文摘In this paper,an improved spatio-temporal alignment measurement method is presented to address the inertial matching measurement of hull deformation under the coexistence of time delay and large misalignment angle.Large misalignment angle and time delay often occur simultaneously and bring great challenges to the accurate measurement of hull deformation in space and time.The proposed method utilizes coarse alignment with large misalignment angle and time delay estimation of inertial measurement unit modeling to establish a brand-new spatiotemporal aligned hull deformation measurement model.In addition,two-step loop control is designed to ensure the accurate description of dynamic deformation angle and static deformation angle by the time-space alignment method of hull deformation.The experiments illustrate that the proposed method can effectively measure the hull deformation angle when time delay and large misalignment angle coexist.
文摘In the context of the recovery of agricultural waste, many researches have focused on the preparation of adsorbents from natural waste from fruit trees, egg shells, palm waste or sawdust. This work aims to optimize the preparation of a biosorbent from rubber hulls by studying its ability to adsorb small and medium molecules. The influence of parameters such as drying temperature (X1), particle size (X2), stirring time (X3) and sodium hypochloride mass (X4) was studied. The results indicate that the model used for biosorbent optimization on methylene blue and iodine index is significant. In addition, this model has greater adsorption capabilities on small molecules than with large molecules. Statistical analysis of the data shows that temperature is the most influential factor in the adsorption of small molecules. On the other hand, particle size has a significant influence on the adsorption of large molecules. The optimum biosorbent preparation values are 1.0 for drying temperature (X1), −1.0 for biosorbent grain size (X2), 1.0 for stirring time (X3) and 1.0 for sodium hypochloride mass (X4).
文摘Suitability of S-Glass/carbon fiber reinforced polymer composite for submarine hull subjected to hydrostatic pressure has been investigated in the present study.Metallic materials have raised concerns owing to their decomposition due to low resistance towards salinity and hence polymer composites have been explored to showcase their mechanical stability to withstand transverse and impact loads.To this end,the mechanical properties of S-Glass/carbon fiber reinforced polymer composite were experimentally investigated and higher specific strength and stiffness of the composite in comparison to many metallic materials used for submarine hull were reported.The obtained experimental values were used for the static and dynamic crash analysis of the bow,stern and foil through Finite Element Analysis(FEA);where depth of travel was varied from sea surface level of 0-7000 m.Submarine assembly was later developed with the optimum shape and thickness of each part.We also report the nonlinear crash analysis upon impact at velocity ranging from 3 to 21 m/s.Besides,kinetic energy,acceleration peak and internal energy in struck submarine revealed that travel depth 1750 m and 3500 m is recommendable,more particularly,crash safety factor of the submarine is found to be within limit when submarine encounters crash at 1750 m.
文摘Soybean hulls, an abundant byproduct of soybean processing, contain rich phytochemicals, fibers, proteins, and minerals. Currently soybean hulls are primarily used as animal feeds. For value-added soybean hull utilization, 25% soybean hulls were substituted for amaranth or whole oat flour (WOF) in novel gluten-free cookies. Composition, nutritional values, water-holding capacities, correlation between properties, and pasting and rheological properties of soybean hulls, amaranth, and WOF were appraised in comparison to wheat flour. Water loss, cookie texture, and geometrical properties of the cookies were examined. The results disclosed that soybean hulls, amaranth and WOF contain higher protein content, minerals, fiber, special amino acids, and critical vitamins (C and K) than wheat flour. Considerably higher total amino acid content was found in soybean hulls (18.33%) than wheat flour (12.77%). Water-holding capacities increased by replacing amaranth and WOF with soybean hulls. Soybean hulls exhibited higher rheological elastic properties than amaranth, WOF and wheat flours. The soybean hulls utilized in amaranth or WOF cookies greatly improved their nutritional value, the water retention and moisture content along with acceptable physical properties when compared to wheat flour cookies. This study explored the feasibility and potential of utilizing soybean hulls with amaranth and WOF in gluten-free bakery products and other food applications.
文摘Samples of ground nut hull were converted to biosorbents using microwave assisted method [groundnut hull treated with hydrogen peroxide (HP-GH), groundnut hull treated with distilled water (W-GH) and raw groundnut hull (R-GH)]. The biosorbents were further characterized using physicochemical procedures (pH dependence, bulk density, surface area, ash content, and volatile matter, moisture content). The results show that HP-GH has pH = 8.9, W-GH pH = 8.4 and R-GH pH = 8.5 which is an indication that all the biosorbents have the appropriate pH values for the uptake of cationic species within aqueous systems. Surface area analysis revealed that HP-GH has the largest surface area (74.20 m<sup>2</sup>·g<sup>-1</sup>) while W-GH and R-GH have surface area values of 29.40 m<sup>2</sup>·g<sup>-1</sup> and 21.40 m<sup>2</sup>·g<sup>-1</sup> respectively. This suggests that modification of raw groundnut hull biomass with hydrogen peroxide possibly instigated delignification of the biomass which resulted in increased surface area for HP-GH. Results from Bulk density analysis also confirm the data obtained from surface area analysis. Accordingly, R-GH displayed the highest bulk density followed by W-GH with HP-GH showing the least bulk density. The variation in pH values among the biomass used in this study may be explained by the variation in their ash content as well because pH and ash content are positively correlated. Hence, HP-GH with a pH = 8.9 has high ash content (117.31%), W-GH with pH = 8.4 has 97.93% ash content and R-GH with pH = 8.5 has 94.26% ash content. Results from moisture content analysis show that HP-GH (99.95%), W-GH (99.97%) and R-GH (99.89%) may necessitate exposure of the biosorbents to moderate heat before use. The results obtained from this study suggest that modification of ground nut hull with either distilled water or Hydrogen peroxide by means of microwave irradiation improves physicochemical properties which may perhaps increase the adsorption capacity of the biomass.