Background Human adipose tissue-derived stromal cells (hADSCs) can be induced to differentiate along an osteoblastic lineage under stimulation of dexamethasone (DEX). Recent studies, however, have questioned the e...Background Human adipose tissue-derived stromal cells (hADSCs) can be induced to differentiate along an osteoblastic lineage under stimulation of dexamethasone (DEX). Recent studies, however, have questioned the efficacy of glucocorticoids such as DEX in mediating the osteogenesis process of skeletal progenitor cells and processed lipoaspirate cells. Is it possible to find a substitute for DEX? Therefore, this study was designed to investigate osteogenic capacity and regulating mechanisms for osteoblastic differentiation of hADSCs by comparing osteogenic media (OM) containing either 1, 25-dihydroxyvitamin D3 (VD) or DEX and determine if VD was an ideal substitute for DEX as an induction agent for the osteogenesis of hADSCs. Methods Osteogenic differentiation of hADSCs was induced by osteogenic medium (OM) containing either 10 nmol/L VD or 100 nmol/L DEX. Differentiation of hADSCs into osteoblastic lineage was identified by alkaline phosphatase (ALP) staining, von Kossa staining, and reverse transcription-polymerase chain reaction assays for mRNA expression of osteogenesis-related genes such as type Ⅰ collagen (COL Ⅰ), bone sialoprotein (BSP), osteocalcin (OC), bone morphogenetic protein (BMP)-2, BMP-4, BMP-6, BMP-7, runt-related transcription factor 2/core binding factor α1 (Runx2/Cbfal), osterix (Osx), and LIM mineralization protein- 1 (LMP- 1). Results von Kossa staining revealed that the differentiated cells induced by both VD and DEX were mineralized in vitro. They also expressed osteoblast-related markers, such as ALP, COL Ⅰ, BSP, and OC. Runx2/Cbfal, Osx, BMP-6, and LMP-1 were upregulated during VD and DEX-induced hADSC osteoblastic differentiation, but BMP-4, BMP-7 were not. BMP-2 was only expressed in VD-induced differentiated cells. Conclusions VD or DEX-induced hADSCs differentiate toward the osteoblastic lineage in vitro. Runx2/Cbfal, Osx, BMP-2, BMP-6, and LMP-1 are involved in regulating osteoblastic differentiation of hADSCs, but BMP-4, BMP-7 are not. VD, but not DEX, induces expression of BMP-2 during osteogenic induction of hADSCs. VD is an ideal substitute for DEX for osteogenic induction of hADSCs.展开更多
BACKGROUND Osteoarthritis(OA)is the most common joint disorder,is associated with an increasing socioeconomic impact owing to the ageing population.AIM To analyze and compare the efficacy and safety of bone-marrow-der...BACKGROUND Osteoarthritis(OA)is the most common joint disorder,is associated with an increasing socioeconomic impact owing to the ageing population.AIM To analyze and compare the efficacy and safety of bone-marrow-derived mesenchymal stromal cells(BM-MSCs)and adipose tissue-derived MSCs(AD-MSCs)in knee OA management from published randomized controlled trials(RCTs).METHODS Independent and duplicate electronic database searches were performed,including PubMed,EMBASE,Web of Science,and Cochrane Library,until August 2021 for RCTs that analyzed the efficacy and safety of AD-MSCs and BM-MSCs in the management of knee OA.The visual analog scale(VAS)score for pain,Western Ontario McMaster Universities Osteoarthritis Index(WOMAC),Lysholm score,Tegner score,magnetic resonance observation of cartilage repair tissue score,knee osteoarthritis outcome score(KOOS),and adverse events were analyzed.Analysis was performed on the R-platform using OpenMeta(Analyst)software.Twenty-one studies,involving 936 patients,were included.Only one study compared the two MSC sources without patient randomization;hence,the results of all included studies from both sources were pooled,and a comparative critical analysis was performed.RESULTS At six months,both AD-MSCs and BM-MSCs showed significant VAS improvement(P=0.015,P=0.012);this was inconsistent at 1 year for BM-MSCs(P<0.001,P=0.539),and AD-MSCs outperformed BM-MSCs compared to controls in measures such as WOMAC(P<0.001,P=0.541),Lysholm scores(P=0.006;P=0.933),and KOOS(P=0.002;P=0.012).BM-MSC-related procedures caused significant adverse events(P=0.003)compared to AD-MSCs(P=0.673).CONCLUSION Adipose tissue is superior to bone marrow because of its safety and consistent efficacy in improving pain and functional outcomes.Future trials are urgently warranted to validate our findings and reach a consensus on the ideal source of MSCs for managing knee OA.展开更多
BACKGROUND Bone marrow(BM)suppression is one of the most common side effects of radiotherapy and the primary cause of death following exposure to irradiation.Despite concerted efforts,there is no definitive treatment ...BACKGROUND Bone marrow(BM)suppression is one of the most common side effects of radiotherapy and the primary cause of death following exposure to irradiation.Despite concerted efforts,there is no definitive treatment method available.Recent studies have reported using mesenchymal stromal cells(MSCs),but their therapeutic effects are contested.AIM We administered and examined the effects of various amounts of adipose-derived MSCs(ADSCs)in mice with radiation-induced BM suppression.METHODS Mice were divided into three groups:Normal control group,irradiated(RT)group,and stem cell-treated group following whole-body irradiation(WBI).Mouse ADSCs(mADSCs)were transplanted into the peritoneal cavity either once or three times at 5×10^(5) cells/200μL.The white blood cell count and the levels of,plasma cytokines,BM mRNA,and BM surface markers were compared between the three groups.Human BM-derived CD34+hematopoietic progenitor cells were co-cultured with human ADSCs(hADSCs)or incubated in the presence of hADSCs conditioned media to investigate the effect on human cells in vitro.RESULTS The survival rate of mice that received one transplant of mADSCs was higher than that of mice that received three transplants.Multiple transplantations of ADSCs delayed the repopulation of BM hematopoietic stem cells.Anti-inflammatory effects and M2 polarization by intraperitoneal ADSCs might suppress erythropoiesis and induce myelopoiesis in sub-lethally RT mice.CONCLUSION The results suggested that an optimal amount of MSCs could improve survival rates post-WBI.展开更多
β-mercaptoethanol induces in vitro adult adipose-derived stromal cells (ADSCs) to differentiate into neurons. However, the ultrastructural features of the differentiated neuronal-like cells remain unknown. In the p...β-mercaptoethanol induces in vitro adult adipose-derived stromal cells (ADSCs) to differentiate into neurons. However, the ultrastructural features of the differentiated neuronal-like cells remain unknown. In the present study, inverted phase contrast microscopy was utilized to observe β-mercaptoethanol-induced differentiation of neuronal-like cells from human ADSCs, and immunocytochemistry and real-time polymerase chain reaction were employed to detect expression of a neural stem cells marker (nestin), a neuronal marker (neuron-specific enolase), and a glial marker (glial fibrillary acidic protein). In addition, ultrastructure of neuronal-like cells was observed by transmission election microscopy. Results revealed highest expression rate of nestin and neuron-specific enolase at 3 and 5 hours following induced differentiation; cells in the 5-hour induction group exhibited a neuronal-specific structure, i.e., Nissl bodies. However, when induction solution was replaced by complete culture medium after 8-hour induction, the differentiated cells reverted to the fibroblast-like morphology from day 1. These results demonstrate that β-mercaptoethanol-induced ADSCs induced differentiation into neural stem cells, followed by morphology of neuronal-like cells. However, this differentiation state was not stable.展开更多
Human adipose tissue obtained by liposuction is easily accessible and an abundant potential source of autologous cells for regenerative medicine applications. After digestion of the tissue and removal of differentiate...Human adipose tissue obtained by liposuction is easily accessible and an abundant potential source of autologous cells for regenerative medicine applications. After digestion of the tissue and removal of differentiated adipocytes, the so-called stromal vascular fraction (SVF) of adipose, a mix of various cell types, is obtained. SVF contains mesenchymal fibroblastic cells, able to adhere to culture plastic and to generate large colonies in vitro , that closely resemble bone marrow-derived colony forming units-fibroblastic, and whose expanded progeny, adipose mesenchymal stem/stromal cells (ASC), show strong similarities with bone marrow mesenchymal stem cells. The sialomucin CD34, which is well known as a hematopoietic stem cell marker, is also expressed by ASC in native adipose tissue but its expression is gradually lost upon standard ASC expansion in vitro . Surprisingly little is known about the functional role of CD34 in the biology and tissue forming capacity of SVF cells and ASC. The present editorial provides a short introduction to the CD34 family of sialomucins and reviews the data from the literature concerning ex- pression and function of these proteins in SVF cells and their in vitro expanded progeny.展开更多
In plastic and reconstructive surgery there is an increasing demand for malleable implants to repair soft tissue congenital defects, or those resulting from aging, traumatic injury and tumour resection. However, curre...In plastic and reconstructive surgery there is an increasing demand for malleable implants to repair soft tissue congenital defects, or those resulting from aging, traumatic injury and tumour resection. However, currently available methods present a number of limitations such as volume loss over time and eventual resorption of the graft. Tissue engineering techniques provide promising therapeutic solutions to these inconveniences through development of engineered equivalents that best imitate adipose tissue, both structurally and functionally. Here we review the latest achievements in the human adipose tissue engineering field, with a focus on its regenerative potential for a number of clinical applications.展开更多
In the past decade, adipose tissue became a highly interesting source of adult stem cells for plastic surgery andregenerative medicine. The isolated stromal vascular fraction (SVF) is a heterogeneous cell population i...In the past decade, adipose tissue became a highly interesting source of adult stem cells for plastic surgery andregenerative medicine. The isolated stromal vascular fraction (SVF) is a heterogeneous cell population including theadipose-derived stromal/stem cells (ASC), which showed regenerative potential in several clinical studies and trials.SVF should be provided in a safe and reproducible manner in accordance with current good manufacturing practices(cGMP). To ensure highest possible safety for patients, a precisely defined procedure with a high-quality control isrequired. Hence, an increasing number of adipose tissue-derived cell isolation systems have been developed.These systems aim for a closed, sterile, and safe isolation process limiting donor variations, risk for contaminations,and unpredictability of the cell material. To isolate SVF from adipose tissue, enzymes such as collagenase are used.Alternatively, in order to avoid enzymes, isolation systems using physical forces are available. Here, we provide anoverview of known existing enzymatic and non-enzymatic adipose tissue-derived cell isolation systems, which arepatented, published, or already on the market.展开更多
Human adipose tissue-derived stem cell(ADSC)derivatives are cell-free,with low immunogenicity and no potential tumourigenicity,making them ideal for aiding wound healing.However,variable quality has impeded their clin...Human adipose tissue-derived stem cell(ADSC)derivatives are cell-free,with low immunogenicity and no potential tumourigenicity,making them ideal for aiding wound healing.However,variable quality has impeded their clinical application.Metformin(MET)is a 5′adenosine monophosphate-activated protein kinase activator associated with autophagic activation.In this study,we assessed the potential applicability and underlying mechanisms of MET-treated ADSC derivatives in enhancing angiogenesis.We employed various scientific techniques to evaluate the influence of MET on ADSC,assess angiogenesis and autophagy in MET-treated ADSC in vitro,and examine whether MET-treated ADSC increase angiogenesis.We found that low MET concentrations exerted no appreciable effect on ADSC proliferation.However,MET was observed to enhance the angiogenic capacity and autophagy of ADSC.MET-induced autophagy was associated with increased vascular endothelial growth factor A production and release,which contributed to promoting the therapeutic efficacy of ADSC.In vivo experiments confirmed that in contrast to untreated ADSC,MET-treated ADSC promoted angiogenesis.Our findings thus indicate that the application of MET-treated ADSC would be an effective approach to accelerate wound healing by promoting angiogenesis at wound sites.展开更多
Autologous fat grafting is an increasingly popular technique in plastic surgery for volume augmentation and rejuvenation.However,the unpredictability of long-term volume retention limits its clinical application.Vario...Autologous fat grafting is an increasingly popular technique in plastic surgery for volume augmentation and rejuvenation.However,the unpredictability of long-term volume retention limits its clinical application.Various animal studies have documented the positive effects of adipose tissue-derived stem cells(ADSCs)on the acceleration of lipofilling.However,the results have been inconsistent,and there is an insufficient number of high-quality clinical studies to formulate evidence-based recommendations for ADSC-enriched fat grafts.Moreover,related technical standards,such as the final count of harvested ADSCs and the enrichment ratio,have not yet been established.This systematic review included all clinical trials on ADSC-enriched fat grafts in plastic surgery from PubMed in the past 10 years,as well as all registered clinical trials on ClinicalTrials.Gov.To examine the current landscape of ADSCs harvest,we summarize the current applications of ADSCs in the field of plastic surgery and discuss the current barriers to universal clinical use.展开更多
基金This study was supported by a grant from the National Natural Science Foundation of China (No. 30200319).
文摘Background Human adipose tissue-derived stromal cells (hADSCs) can be induced to differentiate along an osteoblastic lineage under stimulation of dexamethasone (DEX). Recent studies, however, have questioned the efficacy of glucocorticoids such as DEX in mediating the osteogenesis process of skeletal progenitor cells and processed lipoaspirate cells. Is it possible to find a substitute for DEX? Therefore, this study was designed to investigate osteogenic capacity and regulating mechanisms for osteoblastic differentiation of hADSCs by comparing osteogenic media (OM) containing either 1, 25-dihydroxyvitamin D3 (VD) or DEX and determine if VD was an ideal substitute for DEX as an induction agent for the osteogenesis of hADSCs. Methods Osteogenic differentiation of hADSCs was induced by osteogenic medium (OM) containing either 10 nmol/L VD or 100 nmol/L DEX. Differentiation of hADSCs into osteoblastic lineage was identified by alkaline phosphatase (ALP) staining, von Kossa staining, and reverse transcription-polymerase chain reaction assays for mRNA expression of osteogenesis-related genes such as type Ⅰ collagen (COL Ⅰ), bone sialoprotein (BSP), osteocalcin (OC), bone morphogenetic protein (BMP)-2, BMP-4, BMP-6, BMP-7, runt-related transcription factor 2/core binding factor α1 (Runx2/Cbfal), osterix (Osx), and LIM mineralization protein- 1 (LMP- 1). Results von Kossa staining revealed that the differentiated cells induced by both VD and DEX were mineralized in vitro. They also expressed osteoblast-related markers, such as ALP, COL Ⅰ, BSP, and OC. Runx2/Cbfal, Osx, BMP-6, and LMP-1 were upregulated during VD and DEX-induced hADSC osteoblastic differentiation, but BMP-4, BMP-7 were not. BMP-2 was only expressed in VD-induced differentiated cells. Conclusions VD or DEX-induced hADSCs differentiate toward the osteoblastic lineage in vitro. Runx2/Cbfal, Osx, BMP-2, BMP-6, and LMP-1 are involved in regulating osteoblastic differentiation of hADSCs, but BMP-4, BMP-7 are not. VD, but not DEX, induces expression of BMP-2 during osteogenic induction of hADSCs. VD is an ideal substitute for DEX for osteogenic induction of hADSCs.
基金Supported by the Basic Science Research Program through the National Research Foundation of Korea,NRF-2021R1I1A1A01040732 and NRF-2022R1I1A1A01068652the National Research Foundation of Korea grant funded by the Korean Government,Ministry of Science and ICT,2020R1A2C2009496.
文摘BACKGROUND Osteoarthritis(OA)is the most common joint disorder,is associated with an increasing socioeconomic impact owing to the ageing population.AIM To analyze and compare the efficacy and safety of bone-marrow-derived mesenchymal stromal cells(BM-MSCs)and adipose tissue-derived MSCs(AD-MSCs)in knee OA management from published randomized controlled trials(RCTs).METHODS Independent and duplicate electronic database searches were performed,including PubMed,EMBASE,Web of Science,and Cochrane Library,until August 2021 for RCTs that analyzed the efficacy and safety of AD-MSCs and BM-MSCs in the management of knee OA.The visual analog scale(VAS)score for pain,Western Ontario McMaster Universities Osteoarthritis Index(WOMAC),Lysholm score,Tegner score,magnetic resonance observation of cartilage repair tissue score,knee osteoarthritis outcome score(KOOS),and adverse events were analyzed.Analysis was performed on the R-platform using OpenMeta(Analyst)software.Twenty-one studies,involving 936 patients,were included.Only one study compared the two MSC sources without patient randomization;hence,the results of all included studies from both sources were pooled,and a comparative critical analysis was performed.RESULTS At six months,both AD-MSCs and BM-MSCs showed significant VAS improvement(P=0.015,P=0.012);this was inconsistent at 1 year for BM-MSCs(P<0.001,P=0.539),and AD-MSCs outperformed BM-MSCs compared to controls in measures such as WOMAC(P<0.001,P=0.541),Lysholm scores(P=0.006;P=0.933),and KOOS(P=0.002;P=0.012).BM-MSC-related procedures caused significant adverse events(P=0.003)compared to AD-MSCs(P=0.673).CONCLUSION Adipose tissue is superior to bone marrow because of its safety and consistent efficacy in improving pain and functional outcomes.Future trials are urgently warranted to validate our findings and reach a consensus on the ideal source of MSCs for managing knee OA.
基金The Basic Science Research Program Through The National Research Foundation of Korea(NRF)Grant Funded By The Korean Government To Lee S.J.,No.2021R1F1A1052084.
文摘BACKGROUND Bone marrow(BM)suppression is one of the most common side effects of radiotherapy and the primary cause of death following exposure to irradiation.Despite concerted efforts,there is no definitive treatment method available.Recent studies have reported using mesenchymal stromal cells(MSCs),but their therapeutic effects are contested.AIM We administered and examined the effects of various amounts of adipose-derived MSCs(ADSCs)in mice with radiation-induced BM suppression.METHODS Mice were divided into three groups:Normal control group,irradiated(RT)group,and stem cell-treated group following whole-body irradiation(WBI).Mouse ADSCs(mADSCs)were transplanted into the peritoneal cavity either once or three times at 5×10^(5) cells/200μL.The white blood cell count and the levels of,plasma cytokines,BM mRNA,and BM surface markers were compared between the three groups.Human BM-derived CD34+hematopoietic progenitor cells were co-cultured with human ADSCs(hADSCs)or incubated in the presence of hADSCs conditioned media to investigate the effect on human cells in vitro.RESULTS The survival rate of mice that received one transplant of mADSCs was higher than that of mice that received three transplants.Multiple transplantations of ADSCs delayed the repopulation of BM hematopoietic stem cells.Anti-inflammatory effects and M2 polarization by intraperitoneal ADSCs might suppress erythropoiesis and induce myelopoiesis in sub-lethally RT mice.CONCLUSION The results suggested that an optimal amount of MSCs could improve survival rates post-WBI.
文摘β-mercaptoethanol induces in vitro adult adipose-derived stromal cells (ADSCs) to differentiate into neurons. However, the ultrastructural features of the differentiated neuronal-like cells remain unknown. In the present study, inverted phase contrast microscopy was utilized to observe β-mercaptoethanol-induced differentiation of neuronal-like cells from human ADSCs, and immunocytochemistry and real-time polymerase chain reaction were employed to detect expression of a neural stem cells marker (nestin), a neuronal marker (neuron-specific enolase), and a glial marker (glial fibrillary acidic protein). In addition, ultrastructure of neuronal-like cells was observed by transmission election microscopy. Results revealed highest expression rate of nestin and neuron-specific enolase at 3 and 5 hours following induced differentiation; cells in the 5-hour induction group exhibited a neuronal-specific structure, i.e., Nissl bodies. However, when induction solution was replaced by complete culture medium after 8-hour induction, the differentiated cells reverted to the fibroblast-like morphology from day 1. These results demonstrate that β-mercaptoethanol-induced ADSCs induced differentiation into neural stem cells, followed by morphology of neuronal-like cells. However, this differentiation state was not stable.
基金Supported by The Swiss National Science Foundation, SNF grants No. 310030-120432 and No. 310030-138519, to Scherberich Agrants from The AllerGen NCE, The Canadian Institutes for Health Research and The Heart and Stroke Foundation of BC and Yukon, to McNagny KM
文摘Human adipose tissue obtained by liposuction is easily accessible and an abundant potential source of autologous cells for regenerative medicine applications. After digestion of the tissue and removal of differentiated adipocytes, the so-called stromal vascular fraction (SVF) of adipose, a mix of various cell types, is obtained. SVF contains mesenchymal fibroblastic cells, able to adhere to culture plastic and to generate large colonies in vitro , that closely resemble bone marrow-derived colony forming units-fibroblastic, and whose expanded progeny, adipose mesenchymal stem/stromal cells (ASC), show strong similarities with bone marrow mesenchymal stem cells. The sialomucin CD34, which is well known as a hematopoietic stem cell marker, is also expressed by ASC in native adipose tissue but its expression is gradually lost upon standard ASC expansion in vitro . Surprisingly little is known about the functional role of CD34 in the biology and tissue forming capacity of SVF cells and ASC. The present editorial provides a short introduction to the CD34 family of sialomucins and reviews the data from the literature concerning ex- pression and function of these proteins in SVF cells and their in vitro expanded progeny.
文摘In plastic and reconstructive surgery there is an increasing demand for malleable implants to repair soft tissue congenital defects, or those resulting from aging, traumatic injury and tumour resection. However, currently available methods present a number of limitations such as volume loss over time and eventual resorption of the graft. Tissue engineering techniques provide promising therapeutic solutions to these inconveniences through development of engineered equivalents that best imitate adipose tissue, both structurally and functionally. Here we review the latest achievements in the human adipose tissue engineering field, with a focus on its regenerative potential for a number of clinical applications.
基金This work was funded by grant from the Austrian Research Promotion Agency(FFG)(Bridge1 program,grant no.4694564).
文摘In the past decade, adipose tissue became a highly interesting source of adult stem cells for plastic surgery andregenerative medicine. The isolated stromal vascular fraction (SVF) is a heterogeneous cell population including theadipose-derived stromal/stem cells (ASC), which showed regenerative potential in several clinical studies and trials.SVF should be provided in a safe and reproducible manner in accordance with current good manufacturing practices(cGMP). To ensure highest possible safety for patients, a precisely defined procedure with a high-quality control isrequired. Hence, an increasing number of adipose tissue-derived cell isolation systems have been developed.These systems aim for a closed, sterile, and safe isolation process limiting donor variations, risk for contaminations,and unpredictability of the cell material. To isolate SVF from adipose tissue, enzymes such as collagenase are used.Alternatively, in order to avoid enzymes, isolation systems using physical forces are available. Here, we provide anoverview of known existing enzymatic and non-enzymatic adipose tissue-derived cell isolation systems, which arepatented, published, or already on the market.
基金the National Natural Science Foundation of China(grant no.81871578)the Naval Military Medical University Basic Research Project(2022MS010)the Shanghai Municipal Commission of Health and Family Planning Clinical Research Program(20184Y0113).
文摘Human adipose tissue-derived stem cell(ADSC)derivatives are cell-free,with low immunogenicity and no potential tumourigenicity,making them ideal for aiding wound healing.However,variable quality has impeded their clinical application.Metformin(MET)is a 5′adenosine monophosphate-activated protein kinase activator associated with autophagic activation.In this study,we assessed the potential applicability and underlying mechanisms of MET-treated ADSC derivatives in enhancing angiogenesis.We employed various scientific techniques to evaluate the influence of MET on ADSC,assess angiogenesis and autophagy in MET-treated ADSC in vitro,and examine whether MET-treated ADSC increase angiogenesis.We found that low MET concentrations exerted no appreciable effect on ADSC proliferation.However,MET was observed to enhance the angiogenic capacity and autophagy of ADSC.MET-induced autophagy was associated with increased vascular endothelial growth factor A production and release,which contributed to promoting the therapeutic efficacy of ADSC.In vivo experiments confirmed that in contrast to untreated ADSC,MET-treated ADSC promoted angiogenesis.Our findings thus indicate that the application of MET-treated ADSC would be an effective approach to accelerate wound healing by promoting angiogenesis at wound sites.
文摘Autologous fat grafting is an increasingly popular technique in plastic surgery for volume augmentation and rejuvenation.However,the unpredictability of long-term volume retention limits its clinical application.Various animal studies have documented the positive effects of adipose tissue-derived stem cells(ADSCs)on the acceleration of lipofilling.However,the results have been inconsistent,and there is an insufficient number of high-quality clinical studies to formulate evidence-based recommendations for ADSC-enriched fat grafts.Moreover,related technical standards,such as the final count of harvested ADSCs and the enrichment ratio,have not yet been established.This systematic review included all clinical trials on ADSC-enriched fat grafts in plastic surgery from PubMed in the past 10 years,as well as all registered clinical trials on ClinicalTrials.Gov.To examine the current landscape of ADSCs harvest,we summarize the current applications of ADSCs in the field of plastic surgery and discuss the current barriers to universal clinical use.
文摘目的分离培养人脂肪间充质干细胞(h ADSCs),探讨h ADSCs生长特性及分化为脂肪细胞的能力。方法采用Ⅰ型胶原酶消化和贴壁筛选联合培养方法,从人腹部吸脂术所抽取的脂肪组织中分离培养间充质干细胞,传代,绘制其生长曲线,免疫细胞化学染色检测细胞表面标志物以鉴定所分离细胞;利用三联诱导法诱导人脂肪间充质干细胞向脂肪细胞分化,并进行油红O染色鉴定,显微镜下观察。结果原代人脂肪源间充质干细胞贴壁生长,为形态相对均一的梭形细胞,呈平行排列生长,生长曲线呈"s"型分布,间充质干细胞相关标志物CD44、CD49d高表达,而CD34、CD106则呈阴性。三联诱导法成功诱导人脂肪源间充质干细胞向脂肪细胞分化,诱导7d后镜下可见脂滴的出现,12d后最为显著,油红O染色脂滴着红色。结论 h ADSCs经过体外扩增及成脂诱导成功分化为脂肪细胞,可成为组织工程理想种子细胞。