Pulmonary diseases across all ages threaten millions of people and have emerged as one of the major public health issues worldwide.For diverse disease con-ditions,the currently available approaches are focused on alle...Pulmonary diseases across all ages threaten millions of people and have emerged as one of the major public health issues worldwide.For diverse disease con-ditions,the currently available approaches are focused on alleviating clinical symptoms and delaying disease progression but have not shown significant therapeutic effects in patients with lung diseases.Human umbilical cord-derived mesenchymal stem cells(UC-MSCs)isolated from the human UC have the capacity for self-renewal and multilineage differentiation.Moreover,in recent years,these cells have been demonstrated to have unique advantages in the treatment of lung diseases.We searched the Public Clinical Trial Database and found 55 clinical trials involving UC-MSC therapy for pulmonary diseases,including coronavirus disease 2019,acute respiratory distress syndrome,bron-chopulmonary dysplasia,chronic obstructive pulmonary disease,and pulmonary fibrosis.In this review,we summarize the characteristics of these registered clinical trials and relevant published results and explore in depth the challenges and opportunitiesfaced in clinical application.Moreover,the underlying mole-cular mechanisms involved in UC-MSC-based therapy for pulmonary diseases are also analyzed in depth.In brief,this comprehensive review and detailed analysis of these clinical trials can be expected to provide a scientific reference for future large-scale clinical application.展开更多
Neonatal hypoxic-ischemic encephalopathy is often associated with permanent cerebral palsy,neurosensory impairments,and cognitive deficits,and there is no effective treatment for complications related to hypoxic-ische...Neonatal hypoxic-ischemic encephalopathy is often associated with permanent cerebral palsy,neurosensory impairments,and cognitive deficits,and there is no effective treatment for complications related to hypoxic-ischemic encephalopathy.The therapeutic potential of human placental chorionic plate-derived mesenchymal stem cells for various diseases has been explored.However,the potential use of human placental chorionic plate-derived mesenchymal stem cells for the treatment of neonatal hypoxic-ischemic encephalopathy has not yet been investigated.In this study,we injected human placental chorionic plate-derived mesenchymal stem cells into the lateral ventricle of a neonatal hypoxic-ischemic encephalopathy rat model and observed significant improvements in both cognitive and motor function.Protein chip analysis showed that interleukin-3 expression was significantly elevated in neonatal hypoxic-ischemic encephalopathy model rats.Following transplantation of human placental chorionic plate-derived mesenchymal stem cells,interleukin-3 expression was downregulated.To further investigate the role of interleukin-3 in neonatal hypoxic-ischemic encephalopathy,we established an in vitro SH-SY5Y cell model of hypoxic-ischemic injury through oxygen-glucose deprivation and silenced interleukin-3 expression using small interfering RNA.We found that the activity and proliferation of SH-SY5Y cells subjected to oxygen-glucose deprivation were further suppressed by interleukin-3 knockdown.Furthermore,interleukin-3 knockout exacerbated neuronal damage and cognitive and motor function impairment in rat models of hypoxic-ischemic encephalopathy.The findings suggest that transplantation of hpcMSCs ameliorated behavioral impairments in a rat model of hypoxic-ischemic encephalopathy,and this effect was mediated by interleukin-3-dependent neurological function.展开更多
BACKGROUND Stem cells are undifferentiated cells that possess the potential for self-renewal with the capacity to differentiate into multiple lineages.In humans,their limited numbers pose a challenge in fulfilling the...BACKGROUND Stem cells are undifferentiated cells that possess the potential for self-renewal with the capacity to differentiate into multiple lineages.In humans,their limited numbers pose a challenge in fulfilling the necessary demands for the regeneration and repair of damaged tissues or organs.Studies suggested that mesenchymal stem cells(MSCs),necessary for repair and regeneration via transplantation,require doses ranging from 10 to 400 million cells.Furthermore,the limited expansion of MSCs restricts their therapeutic application.AIM To optimize a novel protocol to achieve qualitative and quantitative expansion of MSCs to reach the targeted number of cells for cellular transplantation and minimize the limitations in stem cell therapy protocols.METHODS Human umbilical cord(hUC)tissue derived MSCs were obtained and re-cultured.These cultured cells were subjected to the following evaluation pro-cedures:Immunophenotyping,immunocytochemical staining,trilineage differentiation,population doubling time and number,gene expression markers for proliferation,cell cycle progression,senescence-associatedβ-galactosidase assay,human telomerase reverse transcriptase(hTERT)expression,mycoplasma,cytomegalovirus and endotoxin detection.RESULTS Analysis of pluripotent gene markers Oct4,Sox2,and Nanog in recultured hUC-MSC revealed no significant differences.The immunophenotypic markers CD90,CD73,CD105,CD44,vimentin,CD29,Stro-1,and Lin28 were positively expressed by these recultured expanded MSCs,and were found negative for CD34,CD11b,CD19,CD45,and HLA-DR.The recultured hUC-MSC population continued to expand through passage 15.Proliferative gene expression of Pax6,BMP2,and TGFb1 showed no significant variation between recultured hUC-MSC groups.Nevertheless,a significant increase(P<0.001)in the mitotic phase of the cell cycle was observed in recultured hUC-MSCs.Cellular senescence markers(hTERT expression andβ-galactosidase activity)did not show any negative effect on recultured hUC-MSCs.Additionally,quality control assessments consistently confirmed the absence of mycoplasma,cytomegalovirus,and endotoxin contamination.CONCLUSION This study proposes the development of a novel protocol for efficiently expanding stem cell population.This would address the growing demand for larger stem cell doses needed for cellular transplantation and will significantly improve the feasibility of stem cell based therapies.展开更多
AIM:To observe the effect of human umbilical cord mesenchymal stem cells(hUCMSCs)secretions on the relevant factors in mouse retinal astrocytes,and to investigate the effect of hUCMSCs on the expression of vascular en...AIM:To observe the effect of human umbilical cord mesenchymal stem cells(hUCMSCs)secretions on the relevant factors in mouse retinal astrocytes,and to investigate the effect of hUCMSCs on the expression of vascular endothelial growth factor-A(VEGF-A)and to observe the therapeutic effect on the mouse model of retinopathy of prematurity(ROP).METHODS:Cultured hUCMSCs and extracted exosomes from them and then retinal astrocytes were divided into control group and hypoxia group.MTT assay,flow cytometry,reverse transcription-polymerase chain reaction(RT-PCR)and Western blot were used to detect related indicators.Possible mechanisms by which hUCMSCs exosomes affect VEGF-A expression in hypoxia-induced mouse retinal astrocytes were explored.At last,the efficacy of exosomes of UCMSCs in a mouse ROP model was explored.Graphpad6 was used to comprehensively process data information.RESULTS:The secretion was successfully extracted from the culture supernatant of hUCMSCs by gradient ultracentrifugation.Reactive oxygen species(ROS)and hypoxia inducible factor-1α(HIF-1α)of mice retinal astrocytes under different hypoxia time and the expression level of VEGF-A protein and VEGF-A mRNA increased,and the ROP cell model was established after 6h of hypoxia.The secretions of medium and high concentrations of hUCMSCs can reduce ROS and HIF-1α,the expression levels of VEGF-A protein and VEGF-A mRNA are statistically significant and concentration dependent.Compared with the ROP cell model group,the expression of phosphatidylinositol 3-kinase(PI3K)/protein kinase B(AKT)/mammalian target of rapamycin(mTOR)signal pathway related factors in the hUCMSCs exocrine group is significantly decreased.The intravitreal injection of the secretions of medium and high concentrations of hUCMSCs can reduce VEGF-A and HIF-1αin ROP model tissues.HE staining shows that the number of retinal neovascularization in ROP mice decreases with the increase of the dose of hUCMSCs secretion.CONCLUSION:In a hypoxia induced mouse retinal astrocyte model,hUCMSCs exosomes are found to effectively reduce the expression of HIF-1αand VEGF-A,which are positively correlated with the concentration of hUCMSCs exosomes.HUCMSCs exosomes can effectively reduce the number of retinal neovascularization and the expression of HIF-1αand VEGF-A proteins in ROP mice,and are positively correlated with drug dosage.Besides,they can reduce the related factors on the PI3K/AKT/mTOR signaling pathway.展开更多
Human umbilical cord mesenchymal stem cells,incorporated into an amnion carrier tubes,were assessed for nerve regeneration potential in a rat nerve defect model.Damaged nerves were exposed to human amnion carriers con...Human umbilical cord mesenchymal stem cells,incorporated into an amnion carrier tubes,were assessed for nerve regeneration potential in a rat nerve defect model.Damaged nerves were exposed to human amnion carriers containing either human umbilical cord mesenchymal stem cell (cell transplantation group)or saline(control group).At 8,12,16 and 20 weeks after cell implantation,the sciatic functional index was higher in the cell transplantation group compared with the control group.Furthermore,electrophysiological examination showed that threshold stimulus and maximum stimulus intensity gradually decreased while compound action potential amplitude gradually increased.Hematoxylin-eosin staining showed that regenerating nerve fibers were arranged in nerve tracts in the cell transplantation group and connective tissue between nerve tracts and amnion tissue reduced over time.Gastrocnemius muscle cell diameter,wet weight and restoration ratio were increased.These data indicate that transplanted human umbilical cord mesenchymal stem cells,using the amnion tube connection method,promote restoration of damaged sciatic nerves in rats.展开更多
BACKGROUND: Cultures from multiple portions of umbilical cord blood mesenchymal stem cells have been shown to undergo more rapid proliferation and attachment than single portions. OBJECTIVE: To observe growth of bas...BACKGROUND: Cultures from multiple portions of umbilical cord blood mesenchymal stem cells have been shown to undergo more rapid proliferation and attachment than single portions. OBJECTIVE: To observe growth of basic fibroblast growth factor (bFGF)-induced cultures of human amnion-derived mesenchymal stem cells (AMSCs) and differentiation into neuronal-like cells. DESIGN, TIME AND SETTING: Comparative observation. The study was performed at the Laboratory of Microbiology and Immunology, Basic Medical School of Zhengzhou University from January to May 2008. METHODS: Amnia from full-term, uterine-incision delivery were donated by 12 healthy women. AMSCs were obtained by cell separation and culture techniques, and were passaged and induced by bFGF. From the third passage, a total of 1 mLAMSCs, at a density of 1.0 × 10^4/mL, was separately harvested from six samples, which served as group A. A total of 1 mL AMSCs, at a density of 1.0 × 10^4/mL, was harvested separately from the remaining six samples, which served a group B. A total of 0.5 mL from the six samples of group A and 0.5 mL from the six samples of grot, B were combined to form group C. MAIN OUTCOME MEASURES: Differences in cell quantity among the three groups were compare by cell quantification and 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) analysis. Expression of a glial cell marker, neuron-specific enolase, and nestin was detected in the three groups by immunocytochemistry. RESULTS: Cell quantification and MTT analysis of live cells, as well as AMSC absorbance, were significantly greater in group C compared with groups A and B at 18 days of culture (P 〈 0.05), anc no significant difference was observed between groups A and B. Glial fibrillary acidic protein, neuron-specific enolase, and nestin were expressed in all groups following bFGF induction. CONCLUSION: Mixed AMSC cultures promoted proliferation, and bFGF-induced AMSCs differentiated into neuronal-like cells.展开更多
Complete transverse injury of peripheral nerves is challenging to treat.Exosomes secreted by human umbilical cord mesenchymal stem cells are considered to play an important role in intercellular communication and regu...Complete transverse injury of peripheral nerves is challenging to treat.Exosomes secreted by human umbilical cord mesenchymal stem cells are considered to play an important role in intercellular communication and regulate tissue regeneration.In previous studies,a collagen/hyaluronic acid sponge was shown to provide a suitable regeneration environment for Schwann cell proliferation and to promote axonal regeneration.This three-dimensional(3D)composite conduit contains a collagen/hyaluronic acid inner sponge enclosed in an electrospun hollow poly(lactic-co-glycolic acid)tube.However,whether there is a synergy between the 3D composite conduit and exosomes in the repair of peripheral nerve injury remains unknown.In this study,we tested a comprehensive strategy for repairing long-gap(10 mm)peripheral nerve injury that combined the 3D composite conduit with human umbilical cord mesenchymal stem cell-derived exosomes.Repair effectiveness was evaluated by sciatic functional index,sciatic nerve compound muscle action potential recording,recovery of muscle mass,measuring the cross-sectional area of the muscle fiber,Masson trichrome staining,and transmission electron microscopy of the regenerated nerve in rats.The results showed that transplantation of the 3D composite conduit loaded with human umbilical cord mesenchymal stem cell-derived exosomes promoted peripheral nerve regeneration and restoration of motor function,similar to autograft transplantation.More CD31-positive endothelial cells were observed in the regenerated nerve after transplantation of the loaded conduit than after transplantation of the conduit without exosomes,which may have contributed to the observed increase in axon regeneration and distal nerve reconnection.Therefore,the use of a 3D composite conduit loaded with human umbilical cord mesenchymal stem cell-derived exosomes represents a promising cell-free therapeutic option for the treatment of peripheral nerve injury.展开更多
Human umbilical cord-derived mesenchymal stem cells (hUCMSCs) represent a promising young-state stem cell source for cell-based therapy. hUCMSC transplantation into the transected sciatic nerve promotes axonal regen...Human umbilical cord-derived mesenchymal stem cells (hUCMSCs) represent a promising young-state stem cell source for cell-based therapy. hUCMSC transplantation into the transected sciatic nerve promotes axonal regeneration and functional recovery. To further clarify the para-crine effects of hUCMSCs on nerve regeneration, we performed human cytokine antibody array analysis, which revealed that hUCMSCs express 14 important neurotrophic factors. Enzyme-linked immunosorbent assay and immunohistochemistry showed that brain-derived neurotrophic factor, glial-derived neurotrophic factor, hepatocyte growth factor, neurotrophin-3, basic fibroblast growth factor, type I collagen, fibronectin and laminin were highly expressed. Treatment with hUCMSC-conditioned medium enhanced Schwann cell viability and proliferation, increased nerve growth factor and brain-derived neurotrophic factor expression in Schwann cells, and enhanced neurite growth from dorsal root ganglion explants. These ifndings suggest that paracrine action may be a key mechanism underlying the effects of hUCMSCs in peripheral nerve repair.展开更多
AIM:To investigate the effect of human umbilical cord stem cells,both mesenchymal and hematopoietic(CD34+),in the treatment of arthritis.METHODS:Mesenchymal stem cells(MSCs) and hematopoietic(CD34+) stem cells(HSC) we...AIM:To investigate the effect of human umbilical cord stem cells,both mesenchymal and hematopoietic(CD34+),in the treatment of arthritis.METHODS:Mesenchymal stem cells(MSCs) and hematopoietic(CD34+) stem cells(HSC) were isolated from human umbilical cord blood obtained from the umbilical cord of healthy pregnant donors undergoing fullterm normal vaginal delivery.MSC,HSC,methotrexate(MTX) and sterile saline were injected intra-articularly into the rat hindpaw with complete freunds adjuvant(CFA) induced arthritis after the onset of disease(day 34),when arthritis had become well established(arthritis score ≥ 2).Arthritic indices were evaluated and the levels of interleukin(IL)-1,tumor necrosis factor(TNF)-α and interferon(IFN)-γ and anti-inflammatory cytokine IL-10 in serum were determined using enzyme-linked immunosorbent assay.Animals of all groups were sacrificed 34 d after beginning treatment,except positive control(PC) which was sacrificed at 10,21 and 34 d for microscopic observation of disease progression.We used hematoxylin,eosin and Masson's trichrome stains for histopathological examination of cartilage and synovium.RESULTS:The mean arthritis scores were similar in all groups at 12 and 34 d post immunization,with no statistical significant difference.Upon the injection of stem cells(hematopoietic and mesenchymal),the overall arthritis signs were significantly improved around 21 d after receiving the injection and totally disappeared at day 34 post treatment in MSC group.Mean hindpaw diameter(mm) in the MSC rats was about half that of the PC and MTX groups(P = 0.007 and P = 0.021,respectively) and 0.6 mm less than the HSC group(P = 0.047),as indicated by paw swelling.Associated with these findings,serum levels of TNF-α,IFN-γ and IL-1 decreased significantly in HSC and MSC groups compared to PC and MTX groups(P < 0.05),while the expression of IL-10 was increased.Histopathological examination with H and E stain revealed that the MTX treated group showed significant reduction of leucocytic infiltrate and hypertrophy of the synovial tissue with moderate obliteration of the joint cavity.Stem cells treated groups(both hematopoietic CD34+ and mesenchymal),showed significant reduction in leucocytic infiltrate and hypertrophy of the synovial tissue with mild obliteration of the joint cavity.With Masson's trichrome,stain sections from the PC group showed evidence of vascular edema of almost all vessels within the synovium in nearly all arthritic rats.Vacuoles were also visible in the outer vessel wall.The vessel became hemorrhagic and finally necrotic.In addition,there was extensive fibrosis completely obliterating the joint cavity.The mean color area percentage of collagen in this group was 0.324 ± 0.096,which was significantly increased when compared to the negative control group.The mean color area percentage of collagen in hematopoietic CD34+ and mesenchymal groups was 0.176 ± 0.0137 and 0.174 ± 0.0197 respectively,which showed a marked decrement compared to the PC group,denoting a mild increase in synovial tissue collagen fibers.CONCLUSION:MSC enhance the efficacy of CFAinduced arthritis treatment,most likely through the modulation of the expression of cytokines and amelioration of pathological changes in joints.展开更多
Transplantation of human bone marrow mesenchymal stem cells(hMSCs) stands as a potent stroke therapy, but its exact mechanism remains unknown. This study investigated the anti-apoptotic mechanisms by which hMSCs exert...Transplantation of human bone marrow mesenchymal stem cells(hMSCs) stands as a potent stroke therapy, but its exact mechanism remains unknown. This study investigated the anti-apoptotic mechanisms by which hMSCs exert neuroprotective effects on cerebral ischemia. Primary mixed cultures of rat neurons and astrocytes were cultured and exposed to oxygen-glucose deprivation. A two-hour period of "reperfusion" in standard medium and normoxic conditions was allowed and immediately followed by hMSCs and/or Bcl-2 antibody treatment. Cell viability of primary rat neurons and astrocytes was determined by 3-(4,5-dimethylthianol-2-yl)-2,5 diphenyl tetrazolium bromide and trypan blue exclusion methods. hMSC survival and differentiation were characterized by immunocytochemistry, while the concentration of Bcl-2 in the supernatant was measured by enzyme-linked immunosorbent assay to reveal the secretory anti-apoptotic function of hMSCs. Cultured hMSCs expressed embryonic-like stem cell phenotypic markers CXCR4, Oct4, SSEA4, and Nanog, as well as immature neural phenotypic marker Nestin. Primary rat neurons and astrocytes were protected from oxygen-glucose deprivation by hMSCs, which was antagonized by the Bcl-2 antibody. However, Bcl-2 levels in the supernatants did not differ between hMSCand non-treated cells exposed to oxygen-glucose deprivation. Neuroprotective effects of hMSCs against cerebral ischemia were partially mediated by the anti-apoptotic mechanisms. However, further studies are warranted to fully elucidate this pathway.展开更多
Aim: To investigate whether the biological process of superparamagnetic iron oxide (SPIO)-labeled human mesenchymal stem cells (hMSCs) may be monitored non-invasively by using in vivo magnetic resonance (MR) im...Aim: To investigate whether the biological process of superparamagnetic iron oxide (SPIO)-labeled human mesenchymal stem cells (hMSCs) may be monitored non-invasively by using in vivo magnetic resonance (MR) imaging with conventional 1.5-T system examinations in corpus cavernosa of rats and rabbits. Methods: The labeling efficiency and viability of SP10-labeled hMSCs were examined with Prussian blue and Tripan blue, respectively. After SPIO-labeled hMSCs were transplanted to the corpus cavernosa of rats and rabbits, serial T2-weighted MR images were taken and histological examinations were carried out over a 4-week period. Results: hMSCs loaded with SPIO compared to unlabeled cells had a similar viability. For SPIO-labeled hMSCs more than lx 105 concentration in vitro, MR images showed a decrease in signal intensity. MR signal intensity at the areas of SPIO-labeled hMSCs in the rat and rabbit corpus cavernosa decreased and was confined locally. After injection of SPIO-labeled hMSCs into the corpus cavernosum, MR imaging demonstrated that hMSCs could be seen for at least 12 weeks after injection. The presence of iron was confirmed with Prussian blue staining in histological sections. Conclusion: SP10-labeled hMSCs in corpus cavernosa of rats and rabbits can be evaluated non-invasively by molecular MR imaging. Our findings suggest that MR imaging has the ability to test the long-term therapeutic potential of hMSCs in animals in the setting of erectile dysfunction.展开更多
AIM:To investigate whether umbilical cord human mesenchymal stem cell(UC-MSC)was able to differentiate into neural stem cell and neuron.·METHODS:The umbilical cords were o btained from pregnant women with the...AIM:To investigate whether umbilical cord human mesenchymal stem cell(UC-MSC)was able to differentiate into neural stem cell and neuron.·METHODS:The umbilical cords were o btained from pregnant women with their written consent and the approval of the Clinic Ethnics Committee.UC-MSC were isolated by adherent culture in the medium contains 20%fetal bovine serum(FBS),then they were maintained in the medium contain 10%FBS and induced to neural cells in neural differentiation medium.We investigated whether UC-MSC was able to differentiate into neural stem cell and neuron by using flow cytometry,reverse transcriptase-polymerase chain reaction(RT-PCR)and immunofluorescence(IF)analyzes.·R ESULTS:A substantial number of UC-MSC was harvested using the tissue explants adherent method at about 2wk.Flow cytometric study revealed that these cells expressed common markers of MSCs,such as CD105(SH2),CD73(SH3)and CD90.After induction of differentiation of neural stem cells,the cells began to form clusters;RT-PCR and IF showed that the neuron specific enolase(NSE)and neurogenic differentiation 1-positive cells reached 87.3%±14.7%and 72.6%±11.8%,respectively.Cells showed neuronal cell differentiation after induced,including neuron-like protrusions,plump cell body,obviously and stronger refraction.RT-PCR and IF analysis showed that microtubule-associated protein 2(MAP2)and nuclear factor-M-positive cells reached 43.1%±10.3%and 69.4%±19.5%,respectively.·CONCLUSION:Human umbilical cord derived MSCs can be cultured and proliferated and differentiate into neural stem cells,which may be a valuable source for cell therapy of neurodegenerative eye diseases.展开更多
Objective:To evaluate of the curative effect of human umbilical cord mesenchymal stem cells(hUC-MSCs)on rat acute radiation pneumonitis.Methods:Fourty rats were randomly divided into control group,radiation group,stem...Objective:To evaluate of the curative effect of human umbilical cord mesenchymal stem cells(hUC-MSCs)on rat acute radiation pneumonitis.Methods:Fourty rats were randomly divided into control group,radiation group,stem cell prevention group,stem cell treatment group and prednisone treatment group.All rats except those in the control group were radiated with X ray to establish the acute radiation pneumonitis damage model.The hUC-MSCs cultured in vitro was administrated to the rats of the prevention group via tail vein(1×10~6 cells/kg BW)24 h before the radiation,while the same administration was performed in the rats of the treatment group 24 h after the radiation.After 24 h post the radiation,the rats in tbe radiation group were given 0.4 mL physiological saline,and those in the prednisone group were given 1 mg/kg prednisone.All rats were,observed and executed 72 h after the radiation to defect lung histological changes.Results:After the administration of hUC-MSCs,the survival status of the rats in the prevention group and treatment group was obviously better than that in the control group.As shown by the histological staining,the morphology,proliferation activity aad bronchial state of lung tissues were better in the prevention group and treatment group than in the control group.Conclusion:The hUC-MSCs have definite therapeutic effects on acute radiation pneumonitis in rats.展开更多
Objective:To test the curative effect of human umbilical cord-derived mesenchymal stem cells on rat acute radioactive enteritis and thus in provide clinical therapeutic basis for radiation sickness.Methods:Human umbil...Objective:To test the curative effect of human umbilical cord-derived mesenchymal stem cells on rat acute radioactive enteritis and thus in provide clinical therapeutic basis for radiation sickness.Methods:Human umbilical cord-derived mesenchymal stem cells were cultivated in vitro and the model of acute radioactive enteritis of rats was established.Then,the umbilical cord mesenchymal stem cells were injected into the rats via tail vein.Visual and histopathiological changes of the experimental rats were observed.Results:After the injection,the rats in the prevention group and treatment group had remarkably better survival status than those in the control group.The histological observations revealed that the former also had better intestinal mucosa structure,more regenerative cells and stronger proliferation activity than the latter.Conclusions:Human umbilical cord-derived mesenchymal stem cells have a definite therapeutic effect on acute radioactive enteritis in rats.展开更多
Human placenta-derived mononuclear cells (MNC) were isolated by a Percoll density gradient and cultured in mesenchymal stem cell (MSC) maintenance medium. The homogenous layer of adherent cells exhibited a typical...Human placenta-derived mononuclear cells (MNC) were isolated by a Percoll density gradient and cultured in mesenchymal stem cell (MSC) maintenance medium. The homogenous layer of adherent cells exhibited a typical fibroblastlike morphology, a large expansive potential, and cell cycle characteristics including a subset of quiescent cells. In vitro differentiation assays showed the tripotential differentiation capacity of these cells toward adipogenic, osteogenic and chondrogenic lineages. Flow cytometry analyses and immunocytochemistry stain showed that placental MSC was a homogeneous cell population devoid of hematopoietic cells, which uniformly expressed CD29, CD44, CD73, CD105, CD166, laminin, fibronectin and vimentin while being negative for expression of CD31, CD34, CD45 and m-smooth muscle actin. Most importantly, immuno-phenotypic analyses demonstrated that these cells expressed class Ⅰ major histocompatibility complex (MHC-I), but they did not express MHC-Ⅱ molecules. Additionally these cells could suppress umbilical cord blood (UCB) lymphocytes proliferation induced by cellular or nonspecific mitogenic stimuli. This strongly implies that they may have potential application in allograft transplantation. Since placenta and UCB are homogeneous, the MSC derived from human placenta can be transplanted combined with hematopoietic stem cells (HSC) from UCB to reduce the potential graft-versus-host disease (GVHD) in recipients.展开更多
Liver fibrosis is a wound-healing response to chronic injuries, characterized by the excessive accumulation of extracellular matrix or scar tissue within the liver;in addition, its formation is associated with multipl...Liver fibrosis is a wound-healing response to chronic injuries, characterized by the excessive accumulation of extracellular matrix or scar tissue within the liver;in addition, its formation is associated with multiple cytokines as well as several cell types and a variety of signaling pathways. When liver fibrosis is not well controlled, it can progress to liver cirrhosis, but it is reversible in principle. Thus far, no efficient therapy is available for treatment of liver fibrosis. Although liver transplantation is the preferred strategy, there are many challenges remaining in this approach, such as shortage of donor organs, immunological rejection, and surgical complications. Hence, there is a great need for an alternative therapeutic strategy. Currently, mesenchymal stem cell (MSC) therapy is considered a promising therapeutic strategy for the treatment of liver fibrosis;advantageously, the characteristics of MSCs are continuous self-renewal, proliferation, multipotent differentiation, and immunomodulatory activities. The human umbilical cord-derived (hUC)-MSCs possess not only the common attributes of MSCs but also more stable biological characteristics, relatively easy accessibility, abundant source, and no ethical issues (e.g., bone marrow being the adult source), making hUC-MSCs a good choice for treatment of liver fibrosis. In this review, we summarize the biological characteristics of hUC-MSCs and their paracrine effects, exerted by secretion of various cytokines, which ultimately promote liver repair through several signaling pathways. Additionally, we discuss the capacity of hUC-MSCs to differentiate into hepatocyte-like cells for compensating the function of existing hepatocytes, which may aid in amelioration of liver fibrosis. Finally, we discuss the current status of the research field and its future prospects.展开更多
BACKGROUND Premature ovarian failure(POF)affects many adult women less than 40 years of age and leads to infertility.According to previous reports,various tissue-specific stem cells can restore ovarian function and fo...BACKGROUND Premature ovarian failure(POF)affects many adult women less than 40 years of age and leads to infertility.According to previous reports,various tissue-specific stem cells can restore ovarian function and folliculogenesis in mice with chemotherapy-induced POF.Human embryonic stem cells(ES)provide an alternative source for mesenchymal stem cells(MSCs)because of their similarities in phenotype and immunomodulatory and anti-inflammatory characteristics.Embryonic stem cell-derived mesenchymal stem cells(ES-MSCs)are attractive candidates for regenerative medicine because of their high proliferation and lack of barriers for harvesting tissue-specific MSCs.However,possible therapeutic effects and underlying mechanisms of transplanted ES-MSCs on cyclophosphamide and busulfan-induced mouse ovarian damage have not been evaluated.AIM To evaluate ES-MSCs vs bone marrow-derived mesenchymal stem cells(BMMSCs)in restoring ovarian function in a mouse model of chemotherapy-induced premature ovarian failure.METHODS Female mice received intraperitoneal injections of different doses of cyclophosphamide and busulfan to induce POF.Either human ES-MSCs or BMMSCs were transplanted into these mice.Ten days after the mice were injected with cyclophosphamide and busulfan and 4 wk after transplantation of the ESMSCs and/or BM-MSCs,we evaluated body weight,estrous cyclicity,folliclestimulating hormone and estradiol hormone concentrations and follicle count were used to evaluate the POF model and cell transplantation.Moreover,terminal deoxynucleotidyl transferase mediated 2-deoxyuridine 5-triphosphate nick end labeling,real-time PCR,Western blot analysis and immunohistochemistry and mating was used to evaluate cell transplantation.Enzyme-linked immunosorbent assay was used to analyze vascular endothelial growth factor,insulin-like growth factor 2 and hepatocyte growth factor levels in ES-MSC condition medium in order to investigate the mechanisms that underlie their function.RESULTS The human ES-MSCs significantly restored hormone secretion,survival rate and reproductive function in POF mice,which was similar to the results obtained with BM-MSCs.Gene expression analysis and the terminal deoxynucleotidyl transferase mediated 2-deoxyuridine 5-triphosphate nick end labeling assay results indicated that the ES-MSCs and/or BM-MSCs reduced apoptosis in the follicles.Notably,the transplanted mice generated new offspring.The results of different analyses showed increases in antiapoptotic and trophic proteins and genes.CONCLUSION These results suggested that transplantation of human ES-MSCs were similar to BM-MSCs in that they could restore the structure of the injured ovarian tissue and its function in chemotherapy-induced damaged POF mice and rescue fertility.The possible mechanisms of human ES-MSC were related to promotion of follicular development,ovarian secretion,fertility via a paracrine effect and ovarian cell survival.展开更多
Human umbilical cord mesenchymal stem cells(hUC-MSCs)support revascularization,inhibition of inflammation,regulation of apoptosis,and promotion of the release of beneficial factors.Thus,they are regarded as a promisin...Human umbilical cord mesenchymal stem cells(hUC-MSCs)support revascularization,inhibition of inflammation,regulation of apoptosis,and promotion of the release of beneficial factors.Thus,they are regarded as a promising candidate for the treatment of intractable spinal cord injury(SCI).Clinical studies on patients with early chronic SCI(from 2 months to 1 year post-injury),which is clinically common,are rare;therefore,we will conduct a prospective,multicenter,randomized,placebo-controlled,single-blinded clinical trial at the Third Affiliated Hospital of Sun Yat-sen University,West China Hospital of Sichuan University,and Shanghai East Hospital,Tongji University School of Medicine,China.The trial plans to recruit 66 early chronic SCI patients.Eligible patients will undergo randomization at a 2:1 ratio to two arms:the observation group and the control group.Subjects in the observation group will receive four intrathecal transplantations of stem cells,with a dosage of 1×106/kg,at one calendar month intervals.Subjects in the control group will receive intrathecal administrations of 10 mL sterile normal saline in place of the stem cell transplantations.Clinical safety will be assessed by the analysis of adverse events and laboratory tests.The American Spinal Injury Association(ASIA)total score will be the primary efficacy endpoint,and the secondary efficacy outcomes will be the following:ASIA impairment scale,International Association of Neural Restoration-Spinal Cord Injury Functional Rating Scale,muscle tension,electromyogram,cortical motor and cortical sensory evoked potentials,residual urine volume,magnetic resonance imaging–diffusion tensor imaging,T cell subtypes in serum,neurotrophic factors and inflammatory factors in both serum and cerebrospinal fluid.All evaluations will be performed at 1,3,6,and 12 months following the final intrathecal administration.During the entire study procedure,all adverse events will be reported as soon as they are noted.This trial is designed to evaluate the clinical safety and efficacy of subarachnoid transplantation of hUC-MSCs to treat early chronic SCI.Moreover,it will establish whether cytotherapy can ameliorate local hostile microenvironments,promote tracking fiber regeneration,and strengthen spinal conduction ability,thus improving overall motor,sensory,and micturition/defecation function in patients with early chronic SCI.This study was approved by the Stem Cell Research Ethics Committee of the Third Affiliated Hospital of Sun Yat-sen University,China(approval No.[2018]-02)on March 30,2018,and was registered with ClinicalTrials.gov(registration No.NCT03521323)on April 12,2018.The revised trial protocol(protocol version 4.0)was approved by the Stem Cell Research Ethics Committee of the Third Affiliated Hospital of Sun Yat-sen University,China(approval No.[2019]-10)on February 25,2019,and released on ClinicalTrials.gov on April 29,2019.展开更多
AIM: To investigate the differentiation status and key factors to facilitate hepatic differentiation of human bone-marrow-derived mesenchymal stem cells (MSCs). METHODS: Human MSCs derived from bone marrow were induce...AIM: To investigate the differentiation status and key factors to facilitate hepatic differentiation of human bone-marrow-derived mesenchymal stem cells (MSCs). METHODS: Human MSCs derived from bone marrow were induced into hepatocyte-like cells following a previously published protocol. The differentiation status of the hepatocyte-like cells was compared with various human hepatoma cell lines. Overexpression of hepatocyte nuclear factor (HNF)-4α was mediated by adenovirus infection of these hepatocyte-like cells. The expression of interesting genes was then examined by either re-verse transcription-polymerase chain reaction (RT-PCR) or real-time RT-PCR methods. RESULTS: Our results demonstrated that the differentiation status of hepatocyte-like cells induced from human MSCs was relatively similar to poorly differentiated human hepatoma cell lines. Interestingly, the HNF-4 isoform in induced MSCs and poorly differentiated human hepatoma cell lines was identified as HNF4γ instead of HNF-4α. Overexpression of HNF-4α in induced MSCs significantly enhanced the expression level of hepatic-specific genes, liver-enriched transcription factors, and cytochrome P450 (P450) genes. CONCLUSION: Overexpression of HNF-4α improves the hepatic differentiation of human MSCs from bone marrow and is a simple way of providing better cell sources for clinical applications.展开更多
Previously, mouse bone marrow-derived stem cells (MSC) treated with the unspecific DNA methyltransferase inhibitor 5-azacytidine were reported to differentiate into cardiomyocytes. The aim of the present study was t...Previously, mouse bone marrow-derived stem cells (MSC) treated with the unspecific DNA methyltransferase inhibitor 5-azacytidine were reported to differentiate into cardiomyocytes. The aim of the present study was to investigate the efficiency of a similar differentiation strategy in human mononuclear cells obtained from healthy bone marrow donors. After 1-3 passages, cultures were exposed for 24 h to 5-azacytidine (3 μM) followed by 6 weeks of further culture. Drug treatment did not induce expression of myogenic marker MyoD or cardiac markers Nkx2.5 and GATA-4 and did not yield beating cells during follow-up. In patch clamp experiments, approximately 10-15% of treated and untreated cells exhibited L-type Ca^2+ currents. Almost all cells showed outwardly rectifying K^+ currents of rapid or slow activation kinetics. Mean current amplitude at +60 mV doubled after 6 weeks of treatment compared with time-matched controls. Membrane capacitance of treated cells was significantly larger than in controls 2 weeks after treatment and remained high after 6 weeks, Expression levels of mRNAs for the K^+ channels Kv 1,1, Kv 1,5, Kv2,1, Kv4,3 and KCNMA 1 and for the Ca^2+ channel Cav 1.2 were not affected by 5-azacytidine. Treatment with potassium channel blockers tetraethylammonium and clofilium at concentrations shown previously to inhibit rapid or slowly activating K^+ currents of hMSC inhibited proliferation of these cells. Our results suggest that despite the absence of differentiation ofhMSC into cardiomyocytes, treatme.nt with 5-azacytidine caused profound changes in current density.展开更多
文摘Pulmonary diseases across all ages threaten millions of people and have emerged as one of the major public health issues worldwide.For diverse disease con-ditions,the currently available approaches are focused on alleviating clinical symptoms and delaying disease progression but have not shown significant therapeutic effects in patients with lung diseases.Human umbilical cord-derived mesenchymal stem cells(UC-MSCs)isolated from the human UC have the capacity for self-renewal and multilineage differentiation.Moreover,in recent years,these cells have been demonstrated to have unique advantages in the treatment of lung diseases.We searched the Public Clinical Trial Database and found 55 clinical trials involving UC-MSC therapy for pulmonary diseases,including coronavirus disease 2019,acute respiratory distress syndrome,bron-chopulmonary dysplasia,chronic obstructive pulmonary disease,and pulmonary fibrosis.In this review,we summarize the characteristics of these registered clinical trials and relevant published results and explore in depth the challenges and opportunitiesfaced in clinical application.Moreover,the underlying mole-cular mechanisms involved in UC-MSC-based therapy for pulmonary diseases are also analyzed in depth.In brief,this comprehensive review and detailed analysis of these clinical trials can be expected to provide a scientific reference for future large-scale clinical application.
基金supported by the National Natural Science Foundation of China,No.82001604Guizhou Provincial Higher Education Science and Technology Innovation Team,No.[2023]072+1 种基金Guizhou Province Distinguished Young Scientific and Technological Talent Program,No.YQK[2023]040Guizhou Provincial Basic Research Program(Natural Science),No.ZK[2021]-368(all to LXiong),and Zunyi City Innovative Talent Team Training Plan,No.[2022]-2.
文摘Neonatal hypoxic-ischemic encephalopathy is often associated with permanent cerebral palsy,neurosensory impairments,and cognitive deficits,and there is no effective treatment for complications related to hypoxic-ischemic encephalopathy.The therapeutic potential of human placental chorionic plate-derived mesenchymal stem cells for various diseases has been explored.However,the potential use of human placental chorionic plate-derived mesenchymal stem cells for the treatment of neonatal hypoxic-ischemic encephalopathy has not yet been investigated.In this study,we injected human placental chorionic plate-derived mesenchymal stem cells into the lateral ventricle of a neonatal hypoxic-ischemic encephalopathy rat model and observed significant improvements in both cognitive and motor function.Protein chip analysis showed that interleukin-3 expression was significantly elevated in neonatal hypoxic-ischemic encephalopathy model rats.Following transplantation of human placental chorionic plate-derived mesenchymal stem cells,interleukin-3 expression was downregulated.To further investigate the role of interleukin-3 in neonatal hypoxic-ischemic encephalopathy,we established an in vitro SH-SY5Y cell model of hypoxic-ischemic injury through oxygen-glucose deprivation and silenced interleukin-3 expression using small interfering RNA.We found that the activity and proliferation of SH-SY5Y cells subjected to oxygen-glucose deprivation were further suppressed by interleukin-3 knockdown.Furthermore,interleukin-3 knockout exacerbated neuronal damage and cognitive and motor function impairment in rat models of hypoxic-ischemic encephalopathy.The findings suggest that transplantation of hpcMSCs ameliorated behavioral impairments in a rat model of hypoxic-ischemic encephalopathy,and this effect was mediated by interleukin-3-dependent neurological function.
基金Supported by Higher Education Commission,Islamabad,Pakistan grant,No.20-17590/NRPU/R&D/HEC/20212021.
文摘BACKGROUND Stem cells are undifferentiated cells that possess the potential for self-renewal with the capacity to differentiate into multiple lineages.In humans,their limited numbers pose a challenge in fulfilling the necessary demands for the regeneration and repair of damaged tissues or organs.Studies suggested that mesenchymal stem cells(MSCs),necessary for repair and regeneration via transplantation,require doses ranging from 10 to 400 million cells.Furthermore,the limited expansion of MSCs restricts their therapeutic application.AIM To optimize a novel protocol to achieve qualitative and quantitative expansion of MSCs to reach the targeted number of cells for cellular transplantation and minimize the limitations in stem cell therapy protocols.METHODS Human umbilical cord(hUC)tissue derived MSCs were obtained and re-cultured.These cultured cells were subjected to the following evaluation pro-cedures:Immunophenotyping,immunocytochemical staining,trilineage differentiation,population doubling time and number,gene expression markers for proliferation,cell cycle progression,senescence-associatedβ-galactosidase assay,human telomerase reverse transcriptase(hTERT)expression,mycoplasma,cytomegalovirus and endotoxin detection.RESULTS Analysis of pluripotent gene markers Oct4,Sox2,and Nanog in recultured hUC-MSC revealed no significant differences.The immunophenotypic markers CD90,CD73,CD105,CD44,vimentin,CD29,Stro-1,and Lin28 were positively expressed by these recultured expanded MSCs,and were found negative for CD34,CD11b,CD19,CD45,and HLA-DR.The recultured hUC-MSC population continued to expand through passage 15.Proliferative gene expression of Pax6,BMP2,and TGFb1 showed no significant variation between recultured hUC-MSC groups.Nevertheless,a significant increase(P<0.001)in the mitotic phase of the cell cycle was observed in recultured hUC-MSCs.Cellular senescence markers(hTERT expression andβ-galactosidase activity)did not show any negative effect on recultured hUC-MSCs.Additionally,quality control assessments consistently confirmed the absence of mycoplasma,cytomegalovirus,and endotoxin contamination.CONCLUSION This study proposes the development of a novel protocol for efficiently expanding stem cell population.This would address the growing demand for larger stem cell doses needed for cellular transplantation and will significantly improve the feasibility of stem cell based therapies.
基金Supported by Tianjin Key Medical Discipline Specialty Construction Project(No.TJXZDXK-016A)Science Foundation of Tianjin Eye Hospital(No.YKZD1901).
文摘AIM:To observe the effect of human umbilical cord mesenchymal stem cells(hUCMSCs)secretions on the relevant factors in mouse retinal astrocytes,and to investigate the effect of hUCMSCs on the expression of vascular endothelial growth factor-A(VEGF-A)and to observe the therapeutic effect on the mouse model of retinopathy of prematurity(ROP).METHODS:Cultured hUCMSCs and extracted exosomes from them and then retinal astrocytes were divided into control group and hypoxia group.MTT assay,flow cytometry,reverse transcription-polymerase chain reaction(RT-PCR)and Western blot were used to detect related indicators.Possible mechanisms by which hUCMSCs exosomes affect VEGF-A expression in hypoxia-induced mouse retinal astrocytes were explored.At last,the efficacy of exosomes of UCMSCs in a mouse ROP model was explored.Graphpad6 was used to comprehensively process data information.RESULTS:The secretion was successfully extracted from the culture supernatant of hUCMSCs by gradient ultracentrifugation.Reactive oxygen species(ROS)and hypoxia inducible factor-1α(HIF-1α)of mice retinal astrocytes under different hypoxia time and the expression level of VEGF-A protein and VEGF-A mRNA increased,and the ROP cell model was established after 6h of hypoxia.The secretions of medium and high concentrations of hUCMSCs can reduce ROS and HIF-1α,the expression levels of VEGF-A protein and VEGF-A mRNA are statistically significant and concentration dependent.Compared with the ROP cell model group,the expression of phosphatidylinositol 3-kinase(PI3K)/protein kinase B(AKT)/mammalian target of rapamycin(mTOR)signal pathway related factors in the hUCMSCs exocrine group is significantly decreased.The intravitreal injection of the secretions of medium and high concentrations of hUCMSCs can reduce VEGF-A and HIF-1αin ROP model tissues.HE staining shows that the number of retinal neovascularization in ROP mice decreases with the increase of the dose of hUCMSCs secretion.CONCLUSION:In a hypoxia induced mouse retinal astrocyte model,hUCMSCs exosomes are found to effectively reduce the expression of HIF-1αand VEGF-A,which are positively correlated with the concentration of hUCMSCs exosomes.HUCMSCs exosomes can effectively reduce the number of retinal neovascularization and the expression of HIF-1αand VEGF-A proteins in ROP mice,and are positively correlated with drug dosage.Besides,they can reduce the related factors on the PI3K/AKT/mTOR signaling pathway.
基金financially sponsored by the Natural Science Foundation of Liaoning Province,No.20102138
文摘Human umbilical cord mesenchymal stem cells,incorporated into an amnion carrier tubes,were assessed for nerve regeneration potential in a rat nerve defect model.Damaged nerves were exposed to human amnion carriers containing either human umbilical cord mesenchymal stem cell (cell transplantation group)or saline(control group).At 8,12,16 and 20 weeks after cell implantation,the sciatic functional index was higher in the cell transplantation group compared with the control group.Furthermore,electrophysiological examination showed that threshold stimulus and maximum stimulus intensity gradually decreased while compound action potential amplitude gradually increased.Hematoxylin-eosin staining showed that regenerating nerve fibers were arranged in nerve tracts in the cell transplantation group and connective tissue between nerve tracts and amnion tissue reduced over time.Gastrocnemius muscle cell diameter,wet weight and restoration ratio were increased.These data indicate that transplanted human umbilical cord mesenchymal stem cells,using the amnion tube connection method,promote restoration of damaged sciatic nerves in rats.
基金the Medical Science and Technology Innovation Talent Project of Henan Province,No. 2005018the Jiangsu Public Technology Service Platform of Infrastructure Development,No. SBM200810039
文摘BACKGROUND: Cultures from multiple portions of umbilical cord blood mesenchymal stem cells have been shown to undergo more rapid proliferation and attachment than single portions. OBJECTIVE: To observe growth of basic fibroblast growth factor (bFGF)-induced cultures of human amnion-derived mesenchymal stem cells (AMSCs) and differentiation into neuronal-like cells. DESIGN, TIME AND SETTING: Comparative observation. The study was performed at the Laboratory of Microbiology and Immunology, Basic Medical School of Zhengzhou University from January to May 2008. METHODS: Amnia from full-term, uterine-incision delivery were donated by 12 healthy women. AMSCs were obtained by cell separation and culture techniques, and were passaged and induced by bFGF. From the third passage, a total of 1 mLAMSCs, at a density of 1.0 × 10^4/mL, was separately harvested from six samples, which served as group A. A total of 1 mL AMSCs, at a density of 1.0 × 10^4/mL, was harvested separately from the remaining six samples, which served a group B. A total of 0.5 mL from the six samples of group A and 0.5 mL from the six samples of grot, B were combined to form group C. MAIN OUTCOME MEASURES: Differences in cell quantity among the three groups were compare by cell quantification and 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) analysis. Expression of a glial cell marker, neuron-specific enolase, and nestin was detected in the three groups by immunocytochemistry. RESULTS: Cell quantification and MTT analysis of live cells, as well as AMSC absorbance, were significantly greater in group C compared with groups A and B at 18 days of culture (P 〈 0.05), anc no significant difference was observed between groups A and B. Glial fibrillary acidic protein, neuron-specific enolase, and nestin were expressed in all groups following bFGF induction. CONCLUSION: Mixed AMSC cultures promoted proliferation, and bFGF-induced AMSCs differentiated into neuronal-like cells.
基金supported by the National Key Research and Development Project of Stem Cell and Transformation Research,No.2019YFA0112100(to SF)the National Natural Science Foundation of China No.81930070(to SF)+1 种基金Multi-fund Investment Key Projects,No.21JCZDJC01100(to ZW)the Tianjin Science and Technology Planning Project,No.22JRRCRC00010(to SF)。
文摘Complete transverse injury of peripheral nerves is challenging to treat.Exosomes secreted by human umbilical cord mesenchymal stem cells are considered to play an important role in intercellular communication and regulate tissue regeneration.In previous studies,a collagen/hyaluronic acid sponge was shown to provide a suitable regeneration environment for Schwann cell proliferation and to promote axonal regeneration.This three-dimensional(3D)composite conduit contains a collagen/hyaluronic acid inner sponge enclosed in an electrospun hollow poly(lactic-co-glycolic acid)tube.However,whether there is a synergy between the 3D composite conduit and exosomes in the repair of peripheral nerve injury remains unknown.In this study,we tested a comprehensive strategy for repairing long-gap(10 mm)peripheral nerve injury that combined the 3D composite conduit with human umbilical cord mesenchymal stem cell-derived exosomes.Repair effectiveness was evaluated by sciatic functional index,sciatic nerve compound muscle action potential recording,recovery of muscle mass,measuring the cross-sectional area of the muscle fiber,Masson trichrome staining,and transmission electron microscopy of the regenerated nerve in rats.The results showed that transplantation of the 3D composite conduit loaded with human umbilical cord mesenchymal stem cell-derived exosomes promoted peripheral nerve regeneration and restoration of motor function,similar to autograft transplantation.More CD31-positive endothelial cells were observed in the regenerated nerve after transplantation of the loaded conduit than after transplantation of the conduit without exosomes,which may have contributed to the observed increase in axon regeneration and distal nerve reconnection.Therefore,the use of a 3D composite conduit loaded with human umbilical cord mesenchymal stem cell-derived exosomes represents a promising cell-free therapeutic option for the treatment of peripheral nerve injury.
基金supported by the National Natural Science Foundation of China,No.31100696,31170946a grant from the National High Technology Research and Development Program of China(863 Program),No.2012AA020502+1 种基金a grant from the National Program on Key Basic Research Project of China(973 Program),No.2014CB542201a grant from Beijing Metropolis Beijing Nova Program,No.2011115
文摘Human umbilical cord-derived mesenchymal stem cells (hUCMSCs) represent a promising young-state stem cell source for cell-based therapy. hUCMSC transplantation into the transected sciatic nerve promotes axonal regeneration and functional recovery. To further clarify the para-crine effects of hUCMSCs on nerve regeneration, we performed human cytokine antibody array analysis, which revealed that hUCMSCs express 14 important neurotrophic factors. Enzyme-linked immunosorbent assay and immunohistochemistry showed that brain-derived neurotrophic factor, glial-derived neurotrophic factor, hepatocyte growth factor, neurotrophin-3, basic fibroblast growth factor, type I collagen, fibronectin and laminin were highly expressed. Treatment with hUCMSC-conditioned medium enhanced Schwann cell viability and proliferation, increased nerve growth factor and brain-derived neurotrophic factor expression in Schwann cells, and enhanced neurite growth from dorsal root ganglion explants. These ifndings suggest that paracrine action may be a key mechanism underlying the effects of hUCMSCs in peripheral nerve repair.
文摘AIM:To investigate the effect of human umbilical cord stem cells,both mesenchymal and hematopoietic(CD34+),in the treatment of arthritis.METHODS:Mesenchymal stem cells(MSCs) and hematopoietic(CD34+) stem cells(HSC) were isolated from human umbilical cord blood obtained from the umbilical cord of healthy pregnant donors undergoing fullterm normal vaginal delivery.MSC,HSC,methotrexate(MTX) and sterile saline were injected intra-articularly into the rat hindpaw with complete freunds adjuvant(CFA) induced arthritis after the onset of disease(day 34),when arthritis had become well established(arthritis score ≥ 2).Arthritic indices were evaluated and the levels of interleukin(IL)-1,tumor necrosis factor(TNF)-α and interferon(IFN)-γ and anti-inflammatory cytokine IL-10 in serum were determined using enzyme-linked immunosorbent assay.Animals of all groups were sacrificed 34 d after beginning treatment,except positive control(PC) which was sacrificed at 10,21 and 34 d for microscopic observation of disease progression.We used hematoxylin,eosin and Masson's trichrome stains for histopathological examination of cartilage and synovium.RESULTS:The mean arthritis scores were similar in all groups at 12 and 34 d post immunization,with no statistical significant difference.Upon the injection of stem cells(hematopoietic and mesenchymal),the overall arthritis signs were significantly improved around 21 d after receiving the injection and totally disappeared at day 34 post treatment in MSC group.Mean hindpaw diameter(mm) in the MSC rats was about half that of the PC and MTX groups(P = 0.007 and P = 0.021,respectively) and 0.6 mm less than the HSC group(P = 0.047),as indicated by paw swelling.Associated with these findings,serum levels of TNF-α,IFN-γ and IL-1 decreased significantly in HSC and MSC groups compared to PC and MTX groups(P < 0.05),while the expression of IL-10 was increased.Histopathological examination with H and E stain revealed that the MTX treated group showed significant reduction of leucocytic infiltrate and hypertrophy of the synovial tissue with moderate obliteration of the joint cavity.Stem cells treated groups(both hematopoietic CD34+ and mesenchymal),showed significant reduction in leucocytic infiltrate and hypertrophy of the synovial tissue with mild obliteration of the joint cavity.With Masson's trichrome,stain sections from the PC group showed evidence of vascular edema of almost all vessels within the synovium in nearly all arthritic rats.Vacuoles were also visible in the outer vessel wall.The vessel became hemorrhagic and finally necrotic.In addition,there was extensive fibrosis completely obliterating the joint cavity.The mean color area percentage of collagen in this group was 0.324 ± 0.096,which was significantly increased when compared to the negative control group.The mean color area percentage of collagen in hematopoietic CD34+ and mesenchymal groups was 0.176 ± 0.0137 and 0.174 ± 0.0197 respectively,which showed a marked decrement compared to the PC group,denoting a mild increase in synovial tissue collagen fibers.CONCLUSION:MSC enhance the efficacy of CFAinduced arthritis treatment,most likely through the modulation of the expression of cytokines and amelioration of pathological changes in joints.
基金Cesar V.Borlongan was funded by NIH R01NS071956,NIH R01 NS090962,NIH R21NS089851,NIH R21 NS094087VA Merit Review I01 BX001407
文摘Transplantation of human bone marrow mesenchymal stem cells(hMSCs) stands as a potent stroke therapy, but its exact mechanism remains unknown. This study investigated the anti-apoptotic mechanisms by which hMSCs exert neuroprotective effects on cerebral ischemia. Primary mixed cultures of rat neurons and astrocytes were cultured and exposed to oxygen-glucose deprivation. A two-hour period of "reperfusion" in standard medium and normoxic conditions was allowed and immediately followed by hMSCs and/or Bcl-2 antibody treatment. Cell viability of primary rat neurons and astrocytes was determined by 3-(4,5-dimethylthianol-2-yl)-2,5 diphenyl tetrazolium bromide and trypan blue exclusion methods. hMSC survival and differentiation were characterized by immunocytochemistry, while the concentration of Bcl-2 in the supernatant was measured by enzyme-linked immunosorbent assay to reveal the secretory anti-apoptotic function of hMSCs. Cultured hMSCs expressed embryonic-like stem cell phenotypic markers CXCR4, Oct4, SSEA4, and Nanog, as well as immature neural phenotypic marker Nestin. Primary rat neurons and astrocytes were protected from oxygen-glucose deprivation by hMSCs, which was antagonized by the Bcl-2 antibody. However, Bcl-2 levels in the supernatants did not differ between hMSCand non-treated cells exposed to oxygen-glucose deprivation. Neuroprotective effects of hMSCs against cerebral ischemia were partially mediated by the anti-apoptotic mechanisms. However, further studies are warranted to fully elucidate this pathway.
文摘Aim: To investigate whether the biological process of superparamagnetic iron oxide (SPIO)-labeled human mesenchymal stem cells (hMSCs) may be monitored non-invasively by using in vivo magnetic resonance (MR) imaging with conventional 1.5-T system examinations in corpus cavernosa of rats and rabbits. Methods: The labeling efficiency and viability of SP10-labeled hMSCs were examined with Prussian blue and Tripan blue, respectively. After SPIO-labeled hMSCs were transplanted to the corpus cavernosa of rats and rabbits, serial T2-weighted MR images were taken and histological examinations were carried out over a 4-week period. Results: hMSCs loaded with SPIO compared to unlabeled cells had a similar viability. For SPIO-labeled hMSCs more than lx 105 concentration in vitro, MR images showed a decrease in signal intensity. MR signal intensity at the areas of SPIO-labeled hMSCs in the rat and rabbit corpus cavernosa decreased and was confined locally. After injection of SPIO-labeled hMSCs into the corpus cavernosum, MR imaging demonstrated that hMSCs could be seen for at least 12 weeks after injection. The presence of iron was confirmed with Prussian blue staining in histological sections. Conclusion: SP10-labeled hMSCs in corpus cavernosa of rats and rabbits can be evaluated non-invasively by molecular MR imaging. Our findings suggest that MR imaging has the ability to test the long-term therapeutic potential of hMSCs in animals in the setting of erectile dysfunction.
基金Supported by Tianjin Science and Technology Project of China(13ZCZDSY01500)
文摘AIM:To investigate whether umbilical cord human mesenchymal stem cell(UC-MSC)was able to differentiate into neural stem cell and neuron.·METHODS:The umbilical cords were o btained from pregnant women with their written consent and the approval of the Clinic Ethnics Committee.UC-MSC were isolated by adherent culture in the medium contains 20%fetal bovine serum(FBS),then they were maintained in the medium contain 10%FBS and induced to neural cells in neural differentiation medium.We investigated whether UC-MSC was able to differentiate into neural stem cell and neuron by using flow cytometry,reverse transcriptase-polymerase chain reaction(RT-PCR)and immunofluorescence(IF)analyzes.·R ESULTS:A substantial number of UC-MSC was harvested using the tissue explants adherent method at about 2wk.Flow cytometric study revealed that these cells expressed common markers of MSCs,such as CD105(SH2),CD73(SH3)and CD90.After induction of differentiation of neural stem cells,the cells began to form clusters;RT-PCR and IF showed that the neuron specific enolase(NSE)and neurogenic differentiation 1-positive cells reached 87.3%±14.7%and 72.6%±11.8%,respectively.Cells showed neuronal cell differentiation after induced,including neuron-like protrusions,plump cell body,obviously and stronger refraction.RT-PCR and IF analysis showed that microtubule-associated protein 2(MAP2)and nuclear factor-M-positive cells reached 43.1%±10.3%and 69.4%±19.5%,respectively.·CONCLUSION:Human umbilical cord derived MSCs can be cultured and proliferated and differentiate into neural stem cells,which may be a valuable source for cell therapy of neurodegenerative eye diseases.
基金supported by Wu Zuze Science and Technology Development Foundation of Beijing
文摘Objective:To evaluate of the curative effect of human umbilical cord mesenchymal stem cells(hUC-MSCs)on rat acute radiation pneumonitis.Methods:Fourty rats were randomly divided into control group,radiation group,stem cell prevention group,stem cell treatment group and prednisone treatment group.All rats except those in the control group were radiated with X ray to establish the acute radiation pneumonitis damage model.The hUC-MSCs cultured in vitro was administrated to the rats of the prevention group via tail vein(1×10~6 cells/kg BW)24 h before the radiation,while the same administration was performed in the rats of the treatment group 24 h after the radiation.After 24 h post the radiation,the rats in tbe radiation group were given 0.4 mL physiological saline,and those in the prednisone group were given 1 mg/kg prednisone.All rats were,observed and executed 72 h after the radiation to defect lung histological changes.Results:After the administration of hUC-MSCs,the survival status of the rats in the prevention group and treatment group was obviously better than that in the control group.As shown by the histological staining,the morphology,proliferation activity aad bronchial state of lung tissues were better in the prevention group and treatment group than in the control group.Conclusion:The hUC-MSCs have definite therapeutic effects on acute radiation pneumonitis in rats.
基金supported by Wu Zuze Science and Technology Development Foundation of Beijing
文摘Objective:To test the curative effect of human umbilical cord-derived mesenchymal stem cells on rat acute radioactive enteritis and thus in provide clinical therapeutic basis for radiation sickness.Methods:Human umbilical cord-derived mesenchymal stem cells were cultivated in vitro and the model of acute radioactive enteritis of rats was established.Then,the umbilical cord mesenchymal stem cells were injected into the rats via tail vein.Visual and histopathiological changes of the experimental rats were observed.Results:After the injection,the rats in the prevention group and treatment group had remarkably better survival status than those in the control group.The histological observations revealed that the former also had better intestinal mucosa structure,more regenerative cells and stronger proliferation activity than the latter.Conclusions:Human umbilical cord-derived mesenchymal stem cells have a definite therapeutic effect on acute radioactive enteritis in rats.
基金This study was supported by a grant from National Natural Science Foundation of China(No.30271245)Hi-Tech Research and Development Program of China(863 Program)(No.2003AA205170)+1 种基金National Basic Research Program of China(973 Program)(No.G 1999054302)a grant from Bejing Gynecology and Obstetrics Hospital Affiliate of Capital University of Medical Sciences.
文摘Human placenta-derived mononuclear cells (MNC) were isolated by a Percoll density gradient and cultured in mesenchymal stem cell (MSC) maintenance medium. The homogenous layer of adherent cells exhibited a typical fibroblastlike morphology, a large expansive potential, and cell cycle characteristics including a subset of quiescent cells. In vitro differentiation assays showed the tripotential differentiation capacity of these cells toward adipogenic, osteogenic and chondrogenic lineages. Flow cytometry analyses and immunocytochemistry stain showed that placental MSC was a homogeneous cell population devoid of hematopoietic cells, which uniformly expressed CD29, CD44, CD73, CD105, CD166, laminin, fibronectin and vimentin while being negative for expression of CD31, CD34, CD45 and m-smooth muscle actin. Most importantly, immuno-phenotypic analyses demonstrated that these cells expressed class Ⅰ major histocompatibility complex (MHC-I), but they did not express MHC-Ⅱ molecules. Additionally these cells could suppress umbilical cord blood (UCB) lymphocytes proliferation induced by cellular or nonspecific mitogenic stimuli. This strongly implies that they may have potential application in allograft transplantation. Since placenta and UCB are homogeneous, the MSC derived from human placenta can be transplanted combined with hematopoietic stem cells (HSC) from UCB to reduce the potential graft-versus-host disease (GVHD) in recipients.
基金Supported by the Natural Science Foundation of Jilin Province of China,No.20190201010JC
文摘Liver fibrosis is a wound-healing response to chronic injuries, characterized by the excessive accumulation of extracellular matrix or scar tissue within the liver;in addition, its formation is associated with multiple cytokines as well as several cell types and a variety of signaling pathways. When liver fibrosis is not well controlled, it can progress to liver cirrhosis, but it is reversible in principle. Thus far, no efficient therapy is available for treatment of liver fibrosis. Although liver transplantation is the preferred strategy, there are many challenges remaining in this approach, such as shortage of donor organs, immunological rejection, and surgical complications. Hence, there is a great need for an alternative therapeutic strategy. Currently, mesenchymal stem cell (MSC) therapy is considered a promising therapeutic strategy for the treatment of liver fibrosis;advantageously, the characteristics of MSCs are continuous self-renewal, proliferation, multipotent differentiation, and immunomodulatory activities. The human umbilical cord-derived (hUC)-MSCs possess not only the common attributes of MSCs but also more stable biological characteristics, relatively easy accessibility, abundant source, and no ethical issues (e.g., bone marrow being the adult source), making hUC-MSCs a good choice for treatment of liver fibrosis. In this review, we summarize the biological characteristics of hUC-MSCs and their paracrine effects, exerted by secretion of various cytokines, which ultimately promote liver repair through several signaling pathways. Additionally, we discuss the capacity of hUC-MSCs to differentiate into hepatocyte-like cells for compensating the function of existing hepatocytes, which may aid in amelioration of liver fibrosis. Finally, we discuss the current status of the research field and its future prospects.
文摘BACKGROUND Premature ovarian failure(POF)affects many adult women less than 40 years of age and leads to infertility.According to previous reports,various tissue-specific stem cells can restore ovarian function and folliculogenesis in mice with chemotherapy-induced POF.Human embryonic stem cells(ES)provide an alternative source for mesenchymal stem cells(MSCs)because of their similarities in phenotype and immunomodulatory and anti-inflammatory characteristics.Embryonic stem cell-derived mesenchymal stem cells(ES-MSCs)are attractive candidates for regenerative medicine because of their high proliferation and lack of barriers for harvesting tissue-specific MSCs.However,possible therapeutic effects and underlying mechanisms of transplanted ES-MSCs on cyclophosphamide and busulfan-induced mouse ovarian damage have not been evaluated.AIM To evaluate ES-MSCs vs bone marrow-derived mesenchymal stem cells(BMMSCs)in restoring ovarian function in a mouse model of chemotherapy-induced premature ovarian failure.METHODS Female mice received intraperitoneal injections of different doses of cyclophosphamide and busulfan to induce POF.Either human ES-MSCs or BMMSCs were transplanted into these mice.Ten days after the mice were injected with cyclophosphamide and busulfan and 4 wk after transplantation of the ESMSCs and/or BM-MSCs,we evaluated body weight,estrous cyclicity,folliclestimulating hormone and estradiol hormone concentrations and follicle count were used to evaluate the POF model and cell transplantation.Moreover,terminal deoxynucleotidyl transferase mediated 2-deoxyuridine 5-triphosphate nick end labeling,real-time PCR,Western blot analysis and immunohistochemistry and mating was used to evaluate cell transplantation.Enzyme-linked immunosorbent assay was used to analyze vascular endothelial growth factor,insulin-like growth factor 2 and hepatocyte growth factor levels in ES-MSC condition medium in order to investigate the mechanisms that underlie their function.RESULTS The human ES-MSCs significantly restored hormone secretion,survival rate and reproductive function in POF mice,which was similar to the results obtained with BM-MSCs.Gene expression analysis and the terminal deoxynucleotidyl transferase mediated 2-deoxyuridine 5-triphosphate nick end labeling assay results indicated that the ES-MSCs and/or BM-MSCs reduced apoptosis in the follicles.Notably,the transplanted mice generated new offspring.The results of different analyses showed increases in antiapoptotic and trophic proteins and genes.CONCLUSION These results suggested that transplantation of human ES-MSCs were similar to BM-MSCs in that they could restore the structure of the injured ovarian tissue and its function in chemotherapy-induced damaged POF mice and rescue fertility.The possible mechanisms of human ES-MSC were related to promotion of follicular development,ovarian secretion,fertility via a paracrine effect and ovarian cell survival.
基金supported by the National Key Research and Development Program of China,No.2017YFA0105403(to LMR)the Key Research and Development Program of Guangdong Province of China,No.2019B020236002(to LMR)+4 种基金The Clinical Innovation Research Program of Guangzhou Regenerative Medicine and Health Guangdong Laboratory of China,No.2018GZR0201006(to LMR)the National Natural Science Foundation of China,Nos.81772349(to BL),31470949(to BL)the Guangzhou Science and Technology Project of China,Nos.201704020221(to LMR),201707010115(to BL)the Natural Science Foundation of Guangdong Province of China,No.2017A030313594(to BL)the Medical Scientific Research Foundation of Guangdong Province of China,No.A2018547(to MP)
文摘Human umbilical cord mesenchymal stem cells(hUC-MSCs)support revascularization,inhibition of inflammation,regulation of apoptosis,and promotion of the release of beneficial factors.Thus,they are regarded as a promising candidate for the treatment of intractable spinal cord injury(SCI).Clinical studies on patients with early chronic SCI(from 2 months to 1 year post-injury),which is clinically common,are rare;therefore,we will conduct a prospective,multicenter,randomized,placebo-controlled,single-blinded clinical trial at the Third Affiliated Hospital of Sun Yat-sen University,West China Hospital of Sichuan University,and Shanghai East Hospital,Tongji University School of Medicine,China.The trial plans to recruit 66 early chronic SCI patients.Eligible patients will undergo randomization at a 2:1 ratio to two arms:the observation group and the control group.Subjects in the observation group will receive four intrathecal transplantations of stem cells,with a dosage of 1×106/kg,at one calendar month intervals.Subjects in the control group will receive intrathecal administrations of 10 mL sterile normal saline in place of the stem cell transplantations.Clinical safety will be assessed by the analysis of adverse events and laboratory tests.The American Spinal Injury Association(ASIA)total score will be the primary efficacy endpoint,and the secondary efficacy outcomes will be the following:ASIA impairment scale,International Association of Neural Restoration-Spinal Cord Injury Functional Rating Scale,muscle tension,electromyogram,cortical motor and cortical sensory evoked potentials,residual urine volume,magnetic resonance imaging–diffusion tensor imaging,T cell subtypes in serum,neurotrophic factors and inflammatory factors in both serum and cerebrospinal fluid.All evaluations will be performed at 1,3,6,and 12 months following the final intrathecal administration.During the entire study procedure,all adverse events will be reported as soon as they are noted.This trial is designed to evaluate the clinical safety and efficacy of subarachnoid transplantation of hUC-MSCs to treat early chronic SCI.Moreover,it will establish whether cytotherapy can ameliorate local hostile microenvironments,promote tracking fiber regeneration,and strengthen spinal conduction ability,thus improving overall motor,sensory,and micturition/defecation function in patients with early chronic SCI.This study was approved by the Stem Cell Research Ethics Committee of the Third Affiliated Hospital of Sun Yat-sen University,China(approval No.[2018]-02)on March 30,2018,and was registered with ClinicalTrials.gov(registration No.NCT03521323)on April 12,2018.The revised trial protocol(protocol version 4.0)was approved by the Stem Cell Research Ethics Committee of the Third Affiliated Hospital of Sun Yat-sen University,China(approval No.[2019]-10)on February 25,2019,and released on ClinicalTrials.gov on April 29,2019.
基金Supported by Grant MG-098-PP-08 from the National Health Research Institutes, Taiwan
文摘AIM: To investigate the differentiation status and key factors to facilitate hepatic differentiation of human bone-marrow-derived mesenchymal stem cells (MSCs). METHODS: Human MSCs derived from bone marrow were induced into hepatocyte-like cells following a previously published protocol. The differentiation status of the hepatocyte-like cells was compared with various human hepatoma cell lines. Overexpression of hepatocyte nuclear factor (HNF)-4α was mediated by adenovirus infection of these hepatocyte-like cells. The expression of interesting genes was then examined by either re-verse transcription-polymerase chain reaction (RT-PCR) or real-time RT-PCR methods. RESULTS: Our results demonstrated that the differentiation status of hepatocyte-like cells induced from human MSCs was relatively similar to poorly differentiated human hepatoma cell lines. Interestingly, the HNF-4 isoform in induced MSCs and poorly differentiated human hepatoma cell lines was identified as HNF4γ instead of HNF-4α. Overexpression of HNF-4α in induced MSCs significantly enhanced the expression level of hepatic-specific genes, liver-enriched transcription factors, and cytochrome P450 (P450) genes. CONCLUSION: Overexpression of HNF-4α improves the hepatic differentiation of human MSCs from bone marrow and is a simple way of providing better cell sources for clinical applications.
文摘Previously, mouse bone marrow-derived stem cells (MSC) treated with the unspecific DNA methyltransferase inhibitor 5-azacytidine were reported to differentiate into cardiomyocytes. The aim of the present study was to investigate the efficiency of a similar differentiation strategy in human mononuclear cells obtained from healthy bone marrow donors. After 1-3 passages, cultures were exposed for 24 h to 5-azacytidine (3 μM) followed by 6 weeks of further culture. Drug treatment did not induce expression of myogenic marker MyoD or cardiac markers Nkx2.5 and GATA-4 and did not yield beating cells during follow-up. In patch clamp experiments, approximately 10-15% of treated and untreated cells exhibited L-type Ca^2+ currents. Almost all cells showed outwardly rectifying K^+ currents of rapid or slow activation kinetics. Mean current amplitude at +60 mV doubled after 6 weeks of treatment compared with time-matched controls. Membrane capacitance of treated cells was significantly larger than in controls 2 weeks after treatment and remained high after 6 weeks, Expression levels of mRNAs for the K^+ channels Kv 1,1, Kv 1,5, Kv2,1, Kv4,3 and KCNMA 1 and for the Ca^2+ channel Cav 1.2 were not affected by 5-azacytidine. Treatment with potassium channel blockers tetraethylammonium and clofilium at concentrations shown previously to inhibit rapid or slowly activating K^+ currents of hMSC inhibited proliferation of these cells. Our results suggest that despite the absence of differentiation ofhMSC into cardiomyocytes, treatme.nt with 5-azacytidine caused profound changes in current density.