期刊文献+
共找到510篇文章
< 1 2 26 >
每页显示 20 50 100
Neural stem cell-derived exosomes regulate cell proliferation,migration,and cell death of brain microvascular endothelial cells via the miR-9/Hes1 axis under hypoxia
1
作者 Xiaojun Deng Xiaoyi Hu +8 位作者 Shang Wang Hui Zhao Yaqin Wei Jiaqi Fu Wenhui Wu Jinming Liu Caicai Zhang Lili Wang Ping Yuan 《Animal Models and Experimental Medicine》 CAS CSCD 2024年第1期24-35,共12页
Background:Our previous study found that mouse embryonic neural stem cell(NSC)-derived exosomes(EXOs)regulated NSC differentiation via the miR-9/Hes1 axis.However,the effects of EXOs on brain microvascular endothelial... Background:Our previous study found that mouse embryonic neural stem cell(NSC)-derived exosomes(EXOs)regulated NSC differentiation via the miR-9/Hes1 axis.However,the effects of EXOs on brain microvascular endothelial cell(BMEC)dysfunction via the miR-9/Hes1 axis remain unknown.Therefore,the current study aimed to determine the effects of EXOs on BMEC proliferation,migration,and death via the miR-9/Hes1 axis.Methods:Immunofluorescence,quantitative real-time polymerase chain reaction,cell counting kit-8 assay,wound healing assay,calcein-acetoxymethyl/propidium iodide staining,and hematoxylin and eosin staining were used to determine the role and mechanism of EXOs on BMECs.Results:EXOs promoted BMEC proliferation and migration and reduced cell death under hypoxic conditions.The overexpression of miR-9 promoted BMEC prolifera-tion and migration and reduced cell death under hypoxic conditions.Moreover,miR-9 downregulation inhibited BMEC proliferation and migration and also promoted cell death.Hes1 silencing ameliorated the effect of amtagomiR-9 on BMEC proliferation and migration and cell death.Hyperemic structures were observed in the regions of the hippocampus and cortex in hypoxia-induced mice.Meanwhile,EXO treatment improved cerebrovascular alterations.Conclusion:NSC-derived EXOs can promote BMEC proliferation and migra-tion and reduce cell death via the miR-9/Hes1 axis under hypoxic conditions.Therefore,EXO therapeutic strategies could be considered for hypoxia-induced vascular injury. 展开更多
关键词 brain microvascular endothelial cells EXOSOMES HES1 MIR-9 neural stem cells
下载PDF
Crosstalk among Oxidative Stress,Autophagy,and Apoptosis in the Protective Effects of Ginsenoside Rb1 on Brain Microvascular Endothelial Cells:A Mixed Computational and Experimental Study
2
作者 Yi-miao LUO Shu-sen LIU +5 位作者 Ming ZHAO Wei WEI Jiu-xiu YAO Jia-hui SUN Yu CAO Hao LI 《Current Medical Science》 SCIE CAS 2024年第3期578-588,共11页
Objective Brain microvascular endothelial cells (BMECs) were found to shift from their usually inactive state to an active state in ischemic stroke (IS) and cause neuronal damage. Ginsenoside Rb1 (GRb1),a component de... Objective Brain microvascular endothelial cells (BMECs) were found to shift from their usually inactive state to an active state in ischemic stroke (IS) and cause neuronal damage. Ginsenoside Rb1 (GRb1),a component derived from medicinal plants,is known for its pharmacological benefits in IS,but its protective effects on BMECs have yet to be explored. This study aimed to investigate the potential protective effects of GRb1 on BMECs. Methods An in vitro oxygen-glucose deprivation/reperfusion (OGD/R) model was established to mimic ischemia-reperfusion (I/R) injury. Bulk RNA-sequencing data were analyzed by using the Human Autophagy Database and various bioinformatic tools,including gene set enrichment analysis (GSEA),Gene Ontology (GO) classification and enrichment analysis,Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis,protein-protein interaction network analysis,and molecular docking. Experimental validation was also performed to ensure the reliability of our findings. Results Rb1 had a protective effect on BMECs subjected to OGD/R injury. Specifically,GRb1 was found to modulate the interplay between oxidative stress,apoptosis,and autophagy in BMECs. Key targets such as sequestosome 1 (SQSTM1/p62),autophagy related 5 (ATG5),and hypoxia-inducible factor 1-alpha (HIF-1α) were identified,highlighting their potential roles in mediating the protective effects of GRb1 against IS-induced damage. Conclusion GRbl protects BMECs against OGD/R injury by influencing oxidative stress,apoptosis,and autophagy. The identification of SQSTM1/p62,ATG5,and HIF-1α as promising targets further supports the potential of GRb1 as a therapeutic agent for IS,providing a foundation for future research into its mechanisms and applications in IS treatment. 展开更多
关键词 ischemic stroke ginsenoside Rb1 brain microvascular endothelial cells oxidative stress AUTOPHAGY APOPTOSIS bioinformatic analysis
下载PDF
The role of heme-oxygenase-1 in pathogenesis of cerebral malaria in the co-culture model of human brain microvascular endothelial cell and ITG Plasmodium falciparum-infected red blood cells
3
作者 Pimwan Thongdee Kesara Na-Bangchang 《Asian Pacific Journal of Tropical Medicine》 SCIE CAS 2017年第1期20-24,共5页
Objective: To investigate the role of human host heme-oxygenase-1(HO-1) in pathogenesis of cerebral malaria in the in vitro model,Methods: The effect of human host HO-1 [human brain microvascular endothelial cell(HBME... Objective: To investigate the role of human host heme-oxygenase-1(HO-1) in pathogenesis of cerebral malaria in the in vitro model,Methods: The effect of human host HO-1 [human brain microvascular endothelial cell(HBMEC)] on hemoglobin degradation in the co-culture model of HBMEC and ITG Plasmodium falciparum-infected red cells(i RBC) through measurement of the enzymatic products iron and bilirubin,Results: Following exposure to the HO-1 inducer Co PPIX at all concentrations,the HBMEC cells apoptosis occurred,which could be prominently observed at 15 μM of 3 h exposure,In contrast,there was no significant change in the morphology in the non-exposed i RBC at all concentrations and exposure time,This observation was in agreement with the levels of the enzymatic degradation products iron and bilirubin,of which the highest levels(106.03 and 1 753.54% of baseline level,respectively) were observed at 15 μM vs,20 μM at 3 h vs,24 h exposure,For the effect of the HO-1 inhibitor Zn PPIX,HBMEC cell morphology was mostly unchanged,but significant inhibitory effect on cell apoptosis was seen at 10 μM for the exposure period of 3 h(37.17% of baseline level),The degree of the inhibitory effect as reflected by the level of iron produced was not clearly observed(highest effect at 10 μM and 3 h exposure),Conclusions: Results provide at least in part,insight into the contribution of HO-1 on CM pathogenesis and need to be confirmed in animal model. 展开更多
关键词 Plasmodium falciparum Heme-oxygenase-1 Zn(Ⅱ)-protoporphyrin inhibitor Co-protoporphyrin inducer human brain microvascular endothelial cell
下载PDF
β-Estradiol 17-acetate enhances the in vitro vitality of endothelial cells isolated from the brain of patients subjected to neurosurgery 被引量:1
4
作者 Sonia Guzzo Pasquale De Bonis +1 位作者 Barbara Pavan Luciano Fadiga 《Neural Regeneration Research》 SCIE CAS CSCD 2023年第2期389-395,共7页
In the current landscape of endothelial cell isolation for building in vitro models of the blood-brain barrier,our work moves towards reproducing the features of the neurovascular unit to achieve glial compliance thro... In the current landscape of endothelial cell isolation for building in vitro models of the blood-brain barrier,our work moves towards reproducing the features of the neurovascular unit to achieve glial compliance through an innovative biomimetic coating technology for brain chronic implants.We hypothesized that the autologous origin of human brain mic rovascular endothelial cells(hBMECs)is the first requirement for the suitable coating to prevent the glial inflammato ry response trigge red by foreign neuroprosthetics.Therefo re,this study established a new procedure to preserve the in vitro viability of hBMECs isolated from gray and white matter specimens taken from neurosurge ry patients.Culturing adult hBMECs is generally considered a challenging task due to the difficult survival ex vivo and progressive reduction in proliferation of these cells.The addition of 10 nMβ-estradiol 17-acetate to the hBMEC culture medium was found to be an essential and discriminating factor promoting adhesion and proliferation both after isolation and thawing,suppo rting the well-known protective role played by estrogens on microvessels.In particular,β-estradiol 17-acetate was critical for both freshly isolated and thawed female-derived hBMECs,while it was not necessary for freshly isolated male-derived hBMECs;however,it did countera ct the decay in the viability of the latter after thawing.The tumo r-free hBMECs were thus cultured for up to 2 months and their growth efficiency was assessed befo re and after two periods of cryopreservation.Des pite the thermal stress,the hBMECs remained viable and suitable for re-freezing and storage for several months.This approach increasing in vitro viability of hBMECs opens new perspectives for the use of cryopreserved autologous hBMECs as biomimetic therapeutic tools,offering the potential to avoid additional surgical sampling for each patient. 展开更多
关键词 β-estradiol 17-acetate 17Β-ESTRADIOL CRYOPRESERVATION GENDER-SPECIFIC gray matter human brain microvascular endothelial cells surgical resections vascular protection white matter
下载PDF
Down-regulation of histone deacetylase 7 reduces biological activities of retinal microvascular endothelial cells under high glucose condition and related mechanism
5
作者 Jia-Yi Ning Han-Yi Yang +2 位作者 Ting-Ke Xie Yi-Xuan Chen Jing Han 《International Journal of Ophthalmology(English edition)》 SCIE CAS 2023年第8期1210-1217,共8页
AIM:To investigate the expression and effect of histone deacetylase 7(HDAC7)in human retinal microvascular endothelial cells(HRMECs)under high glucose condition and related mechanism,and the expression of HDAC7 in the... AIM:To investigate the expression and effect of histone deacetylase 7(HDAC7)in human retinal microvascular endothelial cells(HRMECs)under high glucose condition and related mechanism,and the expression of HDAC7 in the retinal tissue in diabetic rats.METHODS:The expression of HDAC7 in HRMECs under high glucose and the retinal tissue from normal or diabetic rats were detected with immunohistochemistry and Western blot.LV-shHDAC7 HRMECs were used to study the effect of HDAC7 on cell activities.Cell count kit-8(CCK-8),5-ethynyl2’-deoxyuridine(EdU),flow cytometry,scratch test,Transwell test and tube formation assay were used to examine the ability of cell proliferation,migration,and angiogenesis.Finally,a preliminary exploration of its mechanism was performed by Western blot.RESULTS:The expression of HDAC7 was both upregulated in retinal tissues of diabetic rats and high glucosetreated HRMECs.Down-regulation of HDAC7 expression significantly reduced the ability of proliferation,migration,and tube formation,and reversed the high glucose-induced high expression of CDK1/Cyclin B1 and vascular endothelial growth factor in high glucose-treated HRMECs.CONCLUSION:High glucose can up-regulate the expression of HDAC7 in HRMECs.Down-regulation of HDAC7 can inhibit HRMECs activities.HDAC7 is proposed to be involved in pathogenesis of diabetic retinopathy and a therapeutic target. 展开更多
关键词 human retinal microvascular endothelial cells histone deacetylase 7 high glucose diabetic rat vascular endothelial growth factor
下载PDF
Targeting brain microvascular endothelial cells: a therapeutic approach to neuroprotection against stroke 被引量:22
6
作者 Qi-jin Yu Hong Tao +1 位作者 Xin Wang Ming-chang Li 《Neural Regeneration Research》 SCIE CAS CSCD 2015年第11期1882-1891,共10页
Brain microvascular endothelial cells form the interface between nervous tissue and circulating blood, and regulate central nervous system homeostasis. Brain microvascular endothelial cells differ from peripheral endo... Brain microvascular endothelial cells form the interface between nervous tissue and circulating blood, and regulate central nervous system homeostasis. Brain microvascular endothelial cells differ from peripheral endothelial cells with regards expression of specific ion transporters and receptors, and contain fewer fenestrations and pinocytotic vesicles. Brain microvascular endothelial cells also synthesize several factors that influence blood vessel function. This review describes the morphological characteristics and functions of brain microvascular endothelial cells, and summarizes current knowledge regarding changes in brain microvascular endothelial cells during stroke progression and therapies. Future studies should focus on identifying mechanisms underlying such changes and developing possible neuroprotective therapeutic interventions. 展开更多
关键词 nerve regeneration blood-brain barrier brain microvascular endothelial cells cerebralinfarction subarachnoid hemorrhage gap junction ENDOTHELIN thromboxane A2 neural regeneration
下载PDF
In vitro model of the blood-brain barrier established by co-culture of primary cerebral microvascular endothelial and astrocyte cells 被引量:7
7
作者 Yan Wang Ning Wang +3 位作者 Biao Cai Guang-yun Wang Jing Li Xing-xing Piao 《Neural Regeneration Research》 SCIE CAS CSCD 2015年第12期2011-2017,共7页
Drugs for the treatment and prevention of nervous system diseases must permeate the bloodbrain barrier to take effect.In vitro models of the blood-brain barrier are therefore important in the investigation of drug per... Drugs for the treatment and prevention of nervous system diseases must permeate the bloodbrain barrier to take effect.In vitro models of the blood-brain barrier are therefore important in the investigation of drug permeation mechanisms.However,to date,no unified method has been described for establishing a blood-brain barrier model.Here,we modified an in vitro model of the blood-brain barrier by seeding brain microvascular endothelial cells and astrocytes from newborn rats on a polyester Transwell cell culture membrane with 0.4-μm pores,and conducted transepithelial electrical resistance measurements,leakage tests and assays for specific bloodbrain barrier enzymes.We show that the permeability of our model is as low as that of the bloodbrain barrier in vivo.Our model will be a valuable tool in the study of the mechanisms of action of neuroprotective drugs. 展开更多
关键词 nerve regeneration blood-brain barrier ASTROCYTES brain microvascular endothelial cells permeability CO-CULTURE Transwell chamber neural regeneration
下载PDF
Hypoxia inducible factor-1alpha mediates protection of DL-3-n-butylphthalide in brain microvascular endothelial cells against oxygen glucose deprivation-induced injury 被引量:7
8
作者 Weihong Yang Ling Li +3 位作者 Ruxun Huang Zhong Pei Songjie Liao Jinsheng Zeng 《Neural Regeneration Research》 SCIE CAS CSCD 2012年第12期948-954,共7页
Studies have demonstrated that DL-3-n-butylphthalide can significantly alleviate oxygen glucose deprivation-induced injury of human umbilical vein endothelial cells at least partly associated with its enhancement on o... Studies have demonstrated that DL-3-n-butylphthalide can significantly alleviate oxygen glucose deprivation-induced injury of human umbilical vein endothelial cells at least partly associated with its enhancement on oxygen glucose deprivation-induced hypoxia inducible factor-1α expression.In this study,we hypothesized that DL-3-n-butylphthalide can protect against oxygen glucose deprivation-induced injury of newborn rat brain microvascular endothelial cells by means of upregulating hypoxia inducible factor-1α expression.MTT assay and Hoechst staining results showed that DL-3-n-butylphthalide protected brain microvascular endothelial cells against oxygen glucose deprivation-induced injury in a dose-dependent manner.Western blot and immunofluorescent staining results further confirmed that the protective effect was related to upregulation of hypoxia inducible factor-1α.Real-time RT-PCR reaction results showed that DL-3-n-butylphthalide reduced apoptosis by inhibiting downregulation of pro-apoptotic gene caspase-3 mRNA expression and upregulation of apoptosis-executive protease bcl-2 mRNA expression;however,DL-3-n-butylphthalide had no protective effects on brain microvascular endothelial cells after knockdown of hypoxia inducible factor-1α by small interfering RNA.These findings suggest that DL-3-n-butylphthalide can protect brain microvascular endothelial cells against oxygen glucose deprivation-induced injury by upregulating bcl-2 expression and downregulating caspase-3 expression though hypoxia inducible factor-1α pathway. 展开更多
关键词 DL-3-n-butylphthalide APOPTOSIS brain microvascular endothelial cells hypoxia inducible factor-1α
下载PDF
Polylactic Acid Nanoparticles Targeted to Brain Microvascular Endothelial Cells 被引量:1
9
作者 王华芳 胡豫 +1 位作者 孙望强 谢长生 《Journal of Huazhong University of Science and Technology(Medical Sciences)》 SCIE CAS 2005年第6期642-644,共3页
In this work, blank polylactic acid (PLA) nanoparticles with unstained surface were prepared by the nano-deposition method. On the basis of the preparation, the effect of surface modification on brain microvascular ... In this work, blank polylactic acid (PLA) nanoparticles with unstained surface were prepared by the nano-deposition method. On the basis of the preparation, the effect of surface modification on brain microvascular endothelial cells (BMECs) targeting was examined by in vivo experiments and fluorescence microscopy. The results showed that PLA nanoparticles are less toxic than PACA nanoparticles but their BMECs targeting is similar to PACA nanoparticles. The experiments suggest that drugs can he loaded onto the particles and become more stable through adsorption on the surface of PLA nanoparticles with high surface activity. The surface of PLA nanoparticles was obviously modified and the hydrophilicity was increased as well in the presence of non-ionic surfactants on PLA nanoparticles. As a targeting moiety, polysobate 80 (T-80) can facilitate BMECs targeting of PLA nanoparticles. 展开更多
关键词 polylactic acid nanoparticles polysorbate brain microvascular endothelial cells TARGETING
下载PDF
Inhibitory effects of safranal on laser-induced choroidal neovascularization and human choroidal microvascular endothelial cells and related pathways analyzed with transcriptome sequencing 被引量:1
10
作者 Qin-Xiao Yao-Yao Sun +9 位作者 Zhan-Jun Lu Tian-Zi Zhang Shan-Shan Li Ting Hua Suriguga Wen-Lin Chen Lin-Lin Ran Wen-Zhen Yu Fei Yang Burenbatu 《International Journal of Ophthalmology(English edition)》 SCIE CAS 2021年第7期981-989,共9页
AIM:To determine the effects of safranal on choroidal neovascularization(CNV)and oxidative stress damage of human choroidal microvascular endothelial cells(HCVECs)and its possible mechanisms.METHODS:Forty-five rats we... AIM:To determine the effects of safranal on choroidal neovascularization(CNV)and oxidative stress damage of human choroidal microvascular endothelial cells(HCVECs)and its possible mechanisms.METHODS:Forty-five rats were used as a laser-induced CNV model for testing the efficacy and safety of safranal(0.5 mg/kg·d,intraperitoneally)on CNV.CNV leakage on fluorescein angiography(FA)and CNV thickness on histology was compared.HCVECs were used for a H_(2)O_(2)-induced oxidative stress model to test the effect of safranal in vitro.MTT essay was carried to test the inhibition rate of safranal on cell viability at different concentrations.Tube formation was used to test protective effect of safranal on angiogenesis at different concentrations.mRNA transcriptome sequencing was performed to find the possible signal pathway.The expressions of different molecules and their phosphorylation level were validated by Western blotting.RESULTS:On FA,the average CNV leakage area was 0.73±0.49 and 0.31±0.11 mm^(2)(P=0.012)in the control and safranal-treated group respectively.The average CNV thickness was 127.4±18.75 and 100.6±17.34μm(P=0.001)in control and safranal-treated group.Under the condition of oxidative stress,cell proliferation was inhibited by safranal and inhibition rates were 7.4%-35.4%at the different concentrations.For tube formation study,the number of new branches was 364 in control group and 35,42,and 17 in 20,40,and 80μg/mL safranal groups respectively(P<0.01).From the KEGG pathway bubble graph,the PI3K-AKT signaling pathway showed a high gene ratio.The protein expression was elevated of insulin receptor substrate(IRS)and the phosphorylation level of PI3K,phosphoinositide-dependent protein kinase 1/2(PDK1/2),AKT and Bcl-2 associated death promoter(BAD)was also elevated under oxidative stress condition but inhibited by safranal.CONCLUSION:Safranal can inhibit CNV both in vivo and in vitro,and the IRS-PI3K-PDK1/2-AKT-BAD signaling pathway is involved in the pathogenesis of CNV. 展开更多
关键词 choroidal neovascularization SAFRANAL human choroidal microvascular endothelial cells oxidative stress TRANSCRIPTOMICS
下载PDF
Protective effect of Cordyceps sinensis extract on rat brain microvascular endothelial cells injured by oxygen-glucose deprivation 被引量:1
11
作者 Xue Bai Yibo Tang +7 位作者 Yan Lin Yuqing Zhao Tianyang Tan Shuyan Wang Meiqi Liu Zhenghui Chang Ying Liu Zhenquan Liu 《Journal of Traditional Chinese Medical Sciences》 2018年第1期64-71,共8页
Objective:To investigate the protective effect of Cordyceps sinensis extract (CSE)on injury of primary cultured rat brain microvascular endothelial cells (rBMECs) induced by oxygen-glucose deprivation (OGD).Methods:We... Objective:To investigate the protective effect of Cordyceps sinensis extract (CSE)on injury of primary cultured rat brain microvascular endothelial cells (rBMECs) induced by oxygen-glucose deprivation (OGD).Methods:We isolated and cultured primary rBMECs in order to establish an in vitro OGD model.Cellular activity was detected using a cell counting kit to determine the appropriate dosage.The rBMECs were divided into control,model,low-,mid-,and high-dose (5,10,20 μg.mL-1) CSE groups under OGD for 6 hours.CSE was dissolved in cell culture medium to the appropriate concentration,passed through a 0.22 μm sterile filter,and administered for 12 hours before and during OGD.Cellular morphology was observed under a microscope.Lactate dehydrogenase level in cultural supernatant,superoxide dismutase activity,and the content of nitric oxide and malondialdehyde in cells were tested by colorimetric methods.Levels of tumor necrosis factor-α and interleukin-1 beta in cells were determined by enzyme-linked immunosorbent assay.Results:After 12-hour administration of CSE at the concentration of 5,10,20 iμg.mL-1 before and during OGD,compared with the model group,the CSE groups obviously alleviated the damage of rBMECs induced by OGD,inhibited the apoptosis and the necrosis of the cells,and improved cellular morphology of rBMECs.Additionally,compared with the model group,CSE also restrained lactate dehydrogenase leakage in hypoxic cells (P <.01),significantly increased superoxide dismutase activity (P <.05),and reduced the levels of nitric oxide,malondialdehyde,tumor necrosis factor-α,and interleukin-1 beta (P <.05).Conclusion:C.sinensis extract plays a significant role in protecting injured primary cultured rBMECs induced by OGD.The mechanism may be related with the increase of cellular antioxidative capacity and anti-inflammatory effect. 展开更多
关键词 CORDYCEPS sinensis EXTRACT brain microvascular endothelial cells Oxygen-glucose DEPRIVATION ANTI-OXIDATION Anti-inflammation
下载PDF
Primary culture and identification about brain microvascular endothelial cells of rabbits
12
作者 MA Hua-gen LIU Zhao-de +1 位作者 LIU Hai-qin TANG Yuan-yu 《Journal of Hainan Medical University》 2022年第19期6-10,共5页
Objective:To establish a simple and efficient culture method of primary rabbit brain microvascular endothelial cells,provide important carriers and tool cells for the research of related cerebrovascular diseases.Metho... Objective:To establish a simple and efficient culture method of primary rabbit brain microvascular endothelial cells,provide important carriers and tool cells for the research of related cerebrovascular diseases.Methods:The cerebral cortexes of rabbits were collected aseptic and inoculated after cutting,passing through cell sieve,bovine serum albumin density gradient centrifugation,typeⅡcollagenase digestion,finally inoculated and cultured.The cultured cells were identified by cell morphological observation and angiogenesis experiment.Results:Under the inverted microscope,the cells were short fusiform or polygonal,and grew in clusters and adhere to the wall.After the cells were densely fused,they would be in a typical monolayer flat,“pebbled"mosaic arrangement.Tube formation test had the ability to form tubes structure.Conclusion:This method can successfully separate and cultivate primary rabbit brain microvascular endothelial cells. 展开更多
关键词 RABBIT brain microvascular endothelial cells Primary culture Morphologic observation Tube formation test
下载PDF
Shuxuetong injection protects cerebral microvascular endothelial cells against oxygen-glucose deprivation reperfusion 被引量:13
13
作者 Zuo-Yan Sun Fu-Jiang Wang +6 位作者 Hong Guo Lu Chen Li-Juan Chai Rui-Lin Li Li-Min Hu Hong Wang Shao-Xia Wang 《Neural Regeneration Research》 SCIE CAS CSCD 2019年第5期783-793,共11页
Shuxuetong injection composed of leech(Hirudo nipponica Whitman) and earthworm(Pheretima aspergillum) has been used for the clinical treatment of acute stroke for many years in China. However, the precise neuroprotect... Shuxuetong injection composed of leech(Hirudo nipponica Whitman) and earthworm(Pheretima aspergillum) has been used for the clinical treatment of acute stroke for many years in China. However, the precise neuroprotective mechanism of Shuxuetong injection remains poorly understood. Here, cerebral microvascular endothelial cells(bEnd.3) were incubated in glucose-free Dulbecco's modified Eagle's medium containing 95% N_2/5% CO_2 for 6 hours, followed by high-glucose medium containing 95% O_2 and 5% CO_2 for 18 hours to establish an oxygen-glucose deprivation/reperfusion model. This in vitro cell model was administered Shuxuetong injection at 1/32, 1/64, and 1/128 concentrations(diluted 32-, 64-, and 128-times). Cell Counting Kit-8 assay was used to evaluate cell viability. A fluorescence method was used to measure lactate dehydrogenase, and a fluorescence microplate reader used to detect intracellular reactive oxygen species. A fluorescent probe was also used to measure mitochondrial superoxide production. A cell resistance meter was used to measure transepithelial resistance and examine integrity of monolayer cells. The fluorescein isothiocyanate-dextran test was performed to examine blood-brain barrier permeability. Real-time reverse transcription polymerase chain reaction was performed to analyze mRNA expression levels of tumor necrosis factor alpha, interleukin-1β, interleukin-6, and inducible nitric oxide synthase. Western blot assay was performed to analyze expression of caspase-3, intercellular adhesion molecule 1, vascular cell adhesion molecule 1, occludin, vascular endothelial growth factor, cleaved caspase-3, B-cell lymphoma 2, phosphorylated extracellular signal-regulated protein kinase, extracellular signal-regulated protein kinase, nuclear factor-κB p65, I kappa B alpha, phosphorylated I kappa B alpha, I kappa B kinase, phosphorylated I kappa B kinase, claudin-5, and zonula occludens-1. Our results show that Shuxuetong injection increases bEnd.3 cell viability and B-cell lymphoma 2 expression, reduces cleaved caspase-3 expression, inhibits production of reactive oxygen species and mitochondrial superoxide, suppresses expression of tumor necrosis factor alpha, interleukin-1β, interleukin-6, inducible nitric oxide synthase mRNA, intercellular adhesion molecule-1, and vascular cell adhesion molecule-1, markedly increases transepithelial resistance, decreases blood-brain barrier permeability, upregulates claudin-5, occludin, and zonula occludens-1 expression, reduces nuclear factor-κB p65 and vascular endothelial growth factor expression, and reduces I kappa B alpha, extracellular signal-regulated protein kinase 1/2, and I kappa B kinase phosphorylation levels. Overall, these findings suggest that Shuxuetong injection has protective effects on brain microvascular endothelial cells after oxygen-glucose deprivation/reperfusion. Moreover, its protective effect is associated with reduction of mitochondrial superoxide production, inhibition of the inflammatory response, and inhibition of vascular endothelial growth factor, extracellular signal-regulated protein kinase 1/2, and the nuclear factor-κB p65 signaling pathway. 展开更多
关键词 nerve REGENERATION SHUXUETONG injection brain microvascular endothelial cells oxygen-glucose deprivation/reperfusion tight junction proteins mitochondrial function inflammatory factors blood-brain barrier neuroprotection neural REGENERATION
下载PDF
LncRNA SNHG12 ameliorates brain microvascular endothelial cell injury by targeting miR-199a 被引量:21
14
作者 Fa-Qing Long Qing-Jie Su +4 位作者 Jing-Xia Zhou De-Sheng Wang Peng-Xiang Li Chao-Sheng Zeng, Yi Cai 《Neural Regeneration Research》 SCIE CAS CSCD 2018年第11期1919-1926,共8页
Long non-coding RNAs regulate brain microvascular endothelial cell death, the inflammatory response and angiogenesis during and after ischemia/reperfusion and oxygen-glucose deprivation/reoxygenation(OGD/R) insults.... Long non-coding RNAs regulate brain microvascular endothelial cell death, the inflammatory response and angiogenesis during and after ischemia/reperfusion and oxygen-glucose deprivation/reoxygenation(OGD/R) insults. The long non-coding RNA, SNHG12, is upregulated after ischemia/reperfusion and OGD/R in microvascular endothelial cells of the mouse brain. However, its role in ischemic stroke has not been studied. We hypothesized that SNHG12 positively regulates ischemic stroke, and therefore we investigated its mechanism of action. We established an OGD/R mouse cell model to mimic ischemic stroke by exposing brain microvascular endothelial cells to OGD for 0, 2, 4, 8, 16 or 24 hours and reoxygenation for 4 hours. Quantitative real-time polymerase chain reaction showed that SNHG12 levels in brain microvascular endothelial cells increased with respect to OGD exposure time. Brain microvascular endothelial cells were transfected with pc DNA-control, pc DNA-SNHG12, si-control, or si-SNHG12. After exposure to OGD for 16 hours, these cells were then analyzed by 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2-H-tetrazolium bromide, trypan blue exclusion, western blot, and capillary-like tube formation assays. Overexpression of SNHG12 inhibited brain microvascular endothelial cell death and the inflammatory response but promoted angiogenesis after OGD/R, while SNHG12 knockdown had the opposite effects. miR-199a was identified as a target of SNHG12, and SNHG12 overexpression reversed the effect of miR-199a on brain microvascular endothelial cell death, the inflammatory response, and angiogenesis. These findings suggest that SNHG12 suppresses endothelial cell injury induced by OGD/R by targeting miR-199a. 展开更多
关键词 nerve regeneration ischemic stroke microRNA brain microvascular endothelial cell death inflammatory response ANGIOGENESIS oxygen-glucose deprivation/reoxygenation ISCHEMIA/REPERFUSION therapeutic targets neural regeneration gene regulation neural regeneration
下载PDF
Sustained release of vascular endothelial growth factor A and basic fibroblast growth factor from nanofiber membranes reduces oxygen/glucose deprivation-induced injury to neurovascular units 被引量:2
15
作者 Yifang Wu Jun Sun +2 位作者 Qi Lin Dapeng Wang Jian Hai 《Neural Regeneration Research》 SCIE CAS CSCD 2024年第4期887-894,共8页
Upregulation of vascular endothelial growth factor A/basic fibroblast growth factor(VEGFA/b FGF)expression in the penumbra of cerebral ischemia can increase vascular volume,reduce lesion volume,and enhance neural cell... Upregulation of vascular endothelial growth factor A/basic fibroblast growth factor(VEGFA/b FGF)expression in the penumbra of cerebral ischemia can increase vascular volume,reduce lesion volume,and enhance neural cell proliferation and differentiation,thereby exerting neuroprotective effects.However,the beneficial effects of endogenous VEGFA/b FGF are limited as their expression is only transiently increased.In this study,we generated multilayered nanofiber membranes loaded with VEGFA/b FGF using layer-by-layer self-assembly and electrospinning techniques.We found that a membrane containing 10 layers had an ideal ultrastructure and could efficiently and stably release growth factors for more than 1 month.This 10-layered nanofiber membrane promoted brain microvascular endothelial cell tube formation and proliferation,inhibited neuronal apoptosis,upregulated the expression of tight junction proteins,and improved the viability of various cellular components of neurovascular units under conditions of oxygen/glucose deprivation.Furthermore,this nanofiber membrane decreased the expression of Janus kinase-2/signal transducer and activator of transcription-3(JAK2/STAT3),Bax/Bcl-2,and cleaved caspase-3.Therefore,this nanofiber membrane exhibits a neuroprotective effect on oxygen/glucose-deprived neurovascular units by inhibiting the JAK2/STAT3 pathway. 展开更多
关键词 brain ischemia brain microvascular endothelial cell nanofiber membrane neurovascular unit
下载PDF
Transplantation of human umbilical cord blood mesenchymal stem cells to treat a rat model of traumatic brain injury 被引量:5
16
作者 Junjian Zhao Naiyao Chen +7 位作者 Na Shen Hui Zhao Dali Wang Jun Shi Yang Wang Xiufeng Cui Zhenyu Yan Hui Xue 《Neural Regeneration Research》 SCIE CAS CSCD 2012年第10期741-748,共8页
In the present study, human umbilical cord blood mesenchymal stem cells were injected into a rat model of traumatic brain injury via the tail vein. Results showed that 5-bromodeoxyuridine-labeled cells aggregated arou... In the present study, human umbilical cord blood mesenchymal stem cells were injected into a rat model of traumatic brain injury via the tail vein. Results showed that 5-bromodeoxyuridine-labeled cells aggregated around the injury site, surviving up to 4 weeks post-transplantation. In addition, transplantation-related death did not occur, and neurological functions significantly improved. Histological detection revealed attenuated pathological injury in rat brain tissues following human umbilical cord blood mesenchymal stem cell transplantation. In addition, the number of apoptotic cells decreased. Immunohistochemistry and in situ hybridization showed increased expression of brain-derived neurotrophic factor, nerve growth factor, basic fibroblast growth factor, and vascular endothelial growth factor, along with increased microvessel density in surrounding areas of brain injury. Results demonstrated migration of transplanted human umbilical cord blood mesenchymal stem cells into the lesioned boundary zone of rats, as well as increased angiogenesis and expression of related neurotrophic factors in the lesioned boundary zone. 展开更多
关键词 ANGIOGENESIS basic fibroblast growth factor brain-derived neurotrophic factor human umbilical cord blood mesenchymal stem cells nerve growth factor traumatic brain injury vascular endothelial growth factor
下载PDF
Integrin binding peptides facilitate growth and interconnected vascular-like network formation of rat primary cortical vascular endothelial cells in vitro
17
作者 Ram Kuwar Xuejun Wen +1 位作者 Ning Zhang Dong Sun 《Neural Regeneration Research》 SCIE CAS CSCD 2023年第5期1052-1056,共5页
Neovascularization and angiogenesis in the brain are important physiological processes for normal brain development and repair/regeneration following insults. Integrins are cell surface adhesion receptors mediating im... Neovascularization and angiogenesis in the brain are important physiological processes for normal brain development and repair/regeneration following insults. Integrins are cell surface adhesion receptors mediating important function of cells such as survival, growth and development during tissue organization, differentiation and organogenesis. In this study, we used an integrin-binding array platform to identify the important types of integrins and their binding peptides that facilitate adhesion, growth, development, and vascular-like network formation of rat primary brain microvascular endothelial cells. Brain microvascular endothelial cells were isolated from rat brain on post-natal day 7. Cells were cultured in a custom-designed integrin array system containing short synthetic peptides binding to 16 types of integrins commonly expressed on cells in vertebrates. After 7 days of culture, the brain microvascular endothelial cells were processed for immunostaining with markers for endothelial cells including von Willibrand factor and platelet endothelial cell adhesion molecule. 5-Bromo-2′-dexoyuridine was added to the culture at 48 hours prior to fixation to assess cell proliferation. Among 16 integrins tested, we found that α5β1, αvβ5 and αvβ8 greatly promoted proliferation of endothelial cells in culture. To investigate the effect of integrin-binding peptides in promoting neovascularization and angiogenesis, the binding peptides to the above three types of integrins were immobilized to our custom-designed hydrogel in three-dimensional(3 D) culture of brain microvascular endothelial cells with the addition of vascular endothelial growth factor. Following a 7-day 3 D culture, the culture was fixed and processed for double labeling of phalloidin with von Willibrand factor or platelet endothelial cell adhesion molecule and assessed under confocal microscopy. In the 3 D culture in hydrogels conjugated with the integrin-binding peptide, brain microvascular endothelial cells formed interconnected vascular-like network with clearly discernable lumens, which is reminiscent of brain microvascular network in vivo. With the novel integrin-binding array system, we identified the specific types of integrins on brain microvascular endothelial cells that mediate cell adhesion and growth followed by functionalizing a 3 D hydrogel culture system using the binding peptides that specifically bind to the identified integrins, leading to robust growth and lumenized microvascular-like network formation of brain microvascular endothelial cells in 3 D culture. This technology can be used for in vitro and in vivo vascularization of transplants or brain lesions to promote brain tissue regeneration following neurological insults. 展开更多
关键词 3D culture angiogenesis brain microvascular endothelial cells hydrogel INTEGRINS platelet endothelial cell adhesion molecule(PECAM-1) vascular endothelial growth factor(VEGF) VASCULARIZATION
下载PDF
Secretion of nerve growth factor,brain-derived neurotrophic factor,and glial cell-line derived neurotrophic factor in co-culture of four cell types in cerebrospinal fluid-containing medium 被引量:1
18
作者 Sanjiang Feng Minghua Zhuang Rui Wu 《Neural Regeneration Research》 SCIE CAS CSCD 2012年第36期2907-2914,共8页
The present study co-cultured human embryonic olfactory ensheathJng cells, human Schwann cells, human amniotic epithelial cells and human vascular endothelial cells in complete culture medium- containing cerebrospinal... The present study co-cultured human embryonic olfactory ensheathJng cells, human Schwann cells, human amniotic epithelial cells and human vascular endothelial cells in complete culture medium- containing cerebrospinal fluid. Enzyme linked immunosorbent assay was used to detect nerve growth factor, brain-derived neurotrophic factor, and glial cell line-derived neurotrophic factor secretion in the supernatant of co-cultured cells. Results showed that the number of all cell types reached a peak at 7-10 days, and the expression of nerve growth factor, brain-derived neurotrophic factor, and glial cell line-derived neurotrophic factor peaked at 9 days. Levels of secreted nerve growth factor were four-fold higher than brain-derived neurotrophic factor, which was three-fold higher than glial cell line-derived neurotrophic factor. Increasing concentrations of cerebrospinal fluid (10%, 20% and 30%) in the growth medium caused a decrease of neurotrophic factor secretion Results indicated co-culture of human embryonic olfactory ensheathing cells, human Schwann cells human amniotic epithelial cells and human vascular endothelial cells improved the expression of nerve growth factor, brain-derived neurotrophic factor, and glial cell line-derived neurotrophic factor. The reduction of cerebrospinal fluid extravasation at the transplant site after spinal cord injury is beneficial for the survival and secretion of neurotrophic factors from transplanted cells. 展开更多
关键词 olfactory ensheathing cells Schwann cells amniotic epithelial cells vascular endothelial cells nerve growth factor brain-derived neurotrophic factor glial cell line-derived neurotrophic factor cerebrospinal fluid REGENERATION neural regeneration
下载PDF
A neurovascular unit-on-a-chip:culture and differentiation of human neural stem cells in a three-dimensional microfluidic environment
19
作者 Wen-Juan Wei Ya-Chen Wang +2 位作者 Xin Guan Wei-Gong Chen Jing Liu 《Neural Regeneration Research》 SCIE CAS CSCD 2022年第10期2260-2266,共7页
Biological studies typically rely on a simple monolayer cell culture,which does not reflect the complex functional characteristics of human tissues and organs,or their real response to external stimuli.Microfluidic te... Biological studies typically rely on a simple monolayer cell culture,which does not reflect the complex functional characteristics of human tissues and organs,or their real response to external stimuli.Microfluidic technology has advantages of high-throughput screening,accurate control of the fluid velocity,low cell consumption,long-term culture,and high integration.By combining the multipotential differentiation of neural stem cells with high throughput and the integrated characteristics of microfluidic technology,an in vitro model of a functionalized neurovascular unit was established using human neural stem cell-derived neurons,astrocytes,oligodendrocytes,and a functional microvascular barrier.The model comprises a multi-layer vertical neural module and vascular module,both of which were connected with a syringe pump.This provides controllable conditions for cell inoculation and nutrient supply,and simultaneously simulates the process of ischemic/hypoxic injury and the process of inflammatory factors in the circulatory system passing through the blood-brain barrier and then acting on the nerve tissue in the brain.The in vitro functionalized neurovascular unit model will be conducive to central nervous system disease research,drug screening,and new drug development. 展开更多
关键词 (neural)differentiation ASTROCYTE blood-brain barrier brain microvascular endothelial cells central nervous system microfluidics neural stem cells NEURON neurovascular unit OLIGODENDROCYTE organ-on-a-chip
下载PDF
常压高浓度氧对新生大鼠脑微血管内皮细胞损伤与Nrf2/HO-1信号通路的影响分析
20
作者 张占伟 谭焱 +2 位作者 田桂湘 范瑶 王佳怡 《临床和实验医学杂志》 2024年第3期233-237,共5页
目的探究常压高浓度氧(NBO)对新生大鼠脑微血管内皮细胞损伤及核因子E2相关因子2/血红素氧合酶-1(Nrf2/HO-1)信号通路的影响。方法取新生SD大鼠45只,采用随机数字表法分为常氧组、NBO组和NBO+Nrf2激活剂组,每组各15只。常氧组大鼠置于... 目的探究常压高浓度氧(NBO)对新生大鼠脑微血管内皮细胞损伤及核因子E2相关因子2/血红素氧合酶-1(Nrf2/HO-1)信号通路的影响。方法取新生SD大鼠45只,采用随机数字表法分为常氧组、NBO组和NBO+Nrf2激活剂组,每组各15只。常氧组大鼠置于普通空气(21%氧气)中饲养,NBO组和NBO+Nrf2激活剂组大鼠置于90%常压氧气饲养,NBO+Nrf2激活剂组每日灌胃5 mg/kg Nrf2激动剂莱菔硫烷。测定脑组织伊文思蓝(EB)含量,采用酶联免疫法检测血管内皮生长因子(VEGF)和基质金属蛋白酶9(MMP-9)含量,干湿重法检测脑组织含水量,HE染色和TUNEL染色观察脑组织病理变化,蛋白质印迹法检测海马组织Nrf2/HO-1信号通路蛋白表达,水迷宫检测大鼠认知功能。结果与常氧组比较,NBO组脑组织EB、VEGF、MMP-9含量及脑组织含水量升高,差异均有统计学意义(P<0.05);与NBO组比较,NBO+Nrf2激活剂组脑组织EB、VEGF、MMP-9含量及脑组织含水量降低,差异均有统计学意义(P<0.05)。病理染色结果显示,常氧组大鼠神经细胞形态及结构完整,未见明显病理变化和细胞凋亡;NBO组神经细胞形态及结构不规则,出现明显的水肿和空泡,并伴有大量的凋亡细胞;NBO+Nrf2激活剂组脑组织病理损伤较NBO组明显减轻。与常氧组比较,NBO组脑组织Nrf2、HO-1蛋白相对表达量降低,差异均有统计学意义(P<0.05);与NBO组比较,NBO+Nrf2激活剂组Nrf2、HO-1蛋白相对表达量升高,差异均有统计学意义(P<0.05)。与常氧组比较,NBO组第2~4天逃避潜伏期延长,穿越平台次数减少,差异均有统计学意义(P<0.05);与NBO组比较,NBO+Nrf2激活剂组第2~4天逃避潜伏期缩短,穿越平台次数增多,差异均有统计学意义(P<0.05)。结论NBO可诱导新生大鼠脑微血管内皮细胞损伤,导致远期认知功能障碍,可能与下调Nrf2/HO-1信号通路表达有关。 展开更多
关键词 常压高浓度氧 新生大鼠 微血管内皮细胞损伤 血脑屏障功能 认知功能障碍 核因子E2相关因子2/血红素氧合酶-1信号通路
下载PDF
上一页 1 2 26 下一页 到第
使用帮助 返回顶部