Bisphenol-A(BPA) has been considered as an endocrine disrupting chemical(EDC) because it can exert estrogenic properties.For bisphenol-S(BPS) and bisphenol-F(BPF) that are BPA analogs and substitutes,their ris...Bisphenol-A(BPA) has been considered as an endocrine disrupting chemical(EDC) because it can exert estrogenic properties.For bisphenol-S(BPS) and bisphenol-F(BPF) that are BPA analogs and substitutes,their risk to estrogendependent cancer has been reported rarely compared with the numerous cases of BPA.In this study,we examined whether BPA,BPS,and BPF can lead to the proliferation,migration,and epithelial mesenchymal transition(EMT) of MCF-7 clonal variant(MCF-7 CV) breast cancer cells expressing estrogen receptors(ERs).In a cell viability assay,BPA,BPS,and BPF significantly increased proliferation of MCF-7 CV cells compared to control(DMSO) as did17β-estradiol(E2).In Western blotting assay,BPA,BPS,and BPF enhanced the protein expression of cell cycle progression genes such as cyclin D1 and E1.In addition,MCF-7 CV cells lost cell to cell contacts and acquired fibroblast-like morphology by the treatment of BPA,BPS,or BPF for 24 hours.In cell migration assay,BPA,BPS,and BPF accelerated the migration capability of MCF-7 CV cells as did E2.In relation with the EMT process,BPA,BPS,and BPF increased the protein expression of N-cadherin,while they decreased the protein expression of Ecadherin.When BPA,BPS,and BPF were co-treated with ICI 182,780,an ER antagonist,proliferation effects were reversed,the expression of cyclin D1 and cyclin E1 was downregulated,and the altered cell migration and expression of N-cadherin and E-cadherin by BPA,BPS,and BPF were restored to the control level.Thus,these results imply that BPS and BPF also have the risk of breast cancer progression as much as BPA in the induction of proliferation and migration of MCF-7 CV cells by regulating the protein expression of cell cycle-related genes and EMT markers via the ER-dependent pathway.展开更多
The quartz crystal microbalance (QCM) was used to monitor the one-day incubation of human breast cancer cells (MCF-7) on the gold electrode. In combination with an optical microscope simulation experiment, the cel...The quartz crystal microbalance (QCM) was used to monitor the one-day incubation of human breast cancer cells (MCF-7) on the gold electrode. In combination with an optical microscope simulation experiment, the cell-population pictures at various stages, the QCM responses to the cells' adhesion, spreading and proliferation on the electrode surface were discussed. The △f0 and △R1 responses were found mainly from mixed effects of viscodensity and surface stress, and in proportion to the cell coverage, rather than to the number of cells at the electrode. The significant fore-and-aft changes in cyclic voltammetry and electrochemical impedance spectroscopy of the ferri-ferrocyanide redox couple also proved that the cells were adhesion to the gold surface.展开更多
The effects of human EGFR to the malignant phenotype of human breast cancer cell line MDA-MB-231 were investigated experimentally. A retroviral vector containing a 5'1350bp fragment of the human EGFR cDNA in the a...The effects of human EGFR to the malignant phenotype of human breast cancer cell line MDA-MB-231 were investigated experimentally. A retroviral vector containing a 5'1350bp fragment of the human EGFR cDNA in the antisense orientation was transfected into targeted cells by lipofectamine. The effects on cell proliferation, cell cycle and adherent ability to extracellular matrix (ECM) components were studied after the expression of antisense transcripts to EGFR 5'1350bp fragment in target cells. In vitro studies showed that the growth ability of the transfected cells was partialy inhibited in comparison to parental cells and to cells transfected with the plasmid containing the neomycin resistance gene only. It was found that EGF (10ng/ml) had an augmenation effect on the growth of transfected MDA-AS10 cells but not MDA-MB-231 cells.Flow cytometric analysis showed that the cell cycle of the transfected cells was abnormal with a decrease of cells in G2/M and S phases and an increase of cells in G1 phase,indicating a blockage in phase G1. Immunofluorescence of EGFR expression in transfectants stained with an antiEGFR antibody was decreased and their growth in soft agarose was also severely impaired. The transfected cells showed less adherence to laminin (LN) and fibronectin (FN). In short, EGFR antisense RNA decreases the expression of EGFR on MDA-MB-231 cells and partially reverses their malignant phenotype as well.Effects of antisense EGFR on human breast cancer MDA-MB-231 cells展开更多
Summary: The purpose of this study was to verify that a combination of mild hyperthermia and do- cetaxel chemotherapy produces synergistic antitumor effects and to explore the action mechanisms of this treatment appr...Summary: The purpose of this study was to verify that a combination of mild hyperthermia and do- cetaxel chemotherapy produces synergistic antitumor effects and to explore the action mechanisms of this treatment approach. The effects of docetaxel on the proliferation of cells from the estrogen receptor (ER)-positive human breast cancer cell line MCF-7 and the ER-negative human breast cancer cell line MDA-MB-453 were examined by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay, and effective experimental concentrations of docetaxel were determined. The effects of mild hy- perthermia plus docetaxel therapy on apoptosis rate in the MCF-7 and MDA-MB-453 human breast cancer cell lines were analyzed by using flow cytometry with Annexin-V fluorescein isothiocyanate (FITC)/propidium iodide (PI) staining. The effects of these combined treatments on cell cycle progres- sion in the MCF-7 and MDA-MB-453 human breast cancer cell lines were examined by using flow cy- tometry. The effects of these combined treatments on the expression of apoptosis-related proteins and proteins in the mitogen-activated protein kinase (MAPK) pathways were analyzed by using Western blotting. The effects of these combined treatments on the expression of the heat shock protein 70 (HSP70) and the multi-drug resistance (MDR) gene product P-glycoprotein (Pgp) were examined by using Western blotting. The results showed that the half-maximal inhibitory concentration (IC50) of do- cetaxel for MCF-7 and MDA-MB-453 cells was 19.57±1.12 and 21.64±2.31 gmol/L respectively. Mild hyperthermia with docetaxel therapy could increase apoptosis rate in the MCF-7 and MDA-MB-453 cells. Apoptosis rate in MCF-7 and MDA-MB-453 cells was increased from (23.66±3.59)% and (18.51±3.17)% in docetaxel treatment group to (47.12±6.73)% and (55.16±7.42)% in mild hyperthermia plus docetaxel group, indicating that the mild hyperthermia and docetaxel therapeutic approaches exhib- ited significant synergistic antitumor effects. Treatments of mild hyperthermia plus docetaxel induced G2/M cell cycle arrest in the MCF-7 and MDA-MB-453 cells. Western blotting demonstrated that pro- teins in the MAPK pathway were expressed at higher levels in docetaxel-treated cells following mild hypothermia than those in cells treated with docetaxel alone. As compared with blank control group, cells from the mild hyperthermia plus docetaxel group exhibited significantly decreased B-cell lym- phoma 2 (Bcl-2) protein expression but slightly increased Bcl-2-associated X protein (Bax) expression. Western blotting results revealed that HSP70 and Pgp expression levels were significantly increased following mild hypothermia. It was concluded that treatments of mild hyperthermia plus docetaxel in- hibited the proliferation of human breast cancer cells, promoted apoptosis of breast cancer cells, and produced synergistic antitumor effects.展开更多
Vitamin D co-regulates cell proliferation, differentiation and apoptosis in numerous tissues, including cancers. The known anti-proliferative and pro-apoptotic actions of the active metabolite of vitamin D, 1,25-dihyd...Vitamin D co-regulates cell proliferation, differentiation and apoptosis in numerous tissues, including cancers. The known anti-proliferative and pro-apoptotic actions of the active metabolite of vitamin D, 1,25-dihydroxy-vitamin D [1,25(OH)2D] are mediated through binding to the vitamin D receptor (VDR). Here, we report on the unexpected finding that stable knockdown of VDR expression in the human breast and prostate cancer cell lines, MDA-MB-231 and PC3, strongly induces cell apoptosis and inhibits cell proliferation in vitro. Implantation of these VDR knockdown cells into the mammary fat pad (MDA-MB-231), subcutaneously (PC3) or intra-tibially (both cell lines) in immune-incompetent nude mice resulted in reduced tumor growth associated with increased apoptosis and reduced cell proliferation compared with controls. These growth-retarding effects of VDR knockdown occur in the presence and absence of vitamin D and are independent of whether cells were grown in bone or soft tissues. Transcriptome analysis of VDR knockdown and non-target control cell lines demonstrated that loss of the VDR was associated with significant attenuation in the Wnt/0-catenin signaling pathway. In particular, cytoplasmic and nuclear β-catenin protein levels were reduced with a corresponding downregulation of downstream genes such as Axin2, Cyclin D1, interleukin-6 (IL-6), and IL-8. Stabilization of 0-catenin using the GSK-3β inhibitor BIO partly reversed the growth-retarding effects of VDR knockdown. Our results indicate that the unliganded VDR possesses hitherto unknown functions to promote breast and prostate cancer growth, which appear to be operational not only within but also outside the bone environment. These novel functions contrast with the known anti-proliferative nuclear actions of the liganded VDR and may represent targets for new diagnostic and therapeutic approaches in breast and prostate cancer.展开更多
Objective: The aim of the study was to explore the activities of cis9, trans11-CLA (C9, t11-CLA) and transl0, cis12-CLA (t10, c12-CLA) inhibiting tumor, and investigate their relationships with PPARy and apoptoti...Objective: The aim of the study was to explore the activities of cis9, trans11-CLA (C9, t11-CLA) and transl0, cis12-CLA (t10, c12-CLA) inhibiting tumor, and investigate their relationships with PPARy and apoptotic proteins, and mechanism of anti-cancer. Methods: The inhibitory rate, cell growth curve and apoptotic morphological observation of MCF-7 cells were obtained by MTT assay, trypan blue staining and Hoechst33342 fluorescence staining. The apoptotic rate and cell cycle were detected with flow cytometry. Transcriptional level of genes was detected with RT-PCR semi-quantitative method, and Western blot was performed to detect proteins levels. Results: The two CLA isomers could reduce cell proliferation (P 〈 0.05), increase apoptotic rate (P 〈 0.05), and increase obviously the transcriptional and protein levels of PPARy (P 〈 0.01). The synchronism and correlation between the effects of CLA to PPARy and apoptotic proteins Bax, Bcl-2, Caspase 3 changes were found with the dose- and time-dependent manners. There was cooperative relation between the levels of PPARy and the rates of Bax/Bcl-2, Caspase 3 (small fragment) by experiments of PPARy inhibitor GW9662 and ligand Rosiglitazone. Conclusion: The apoptotic pathway of PPARy-Bcl-2-Caspase 3 signaling was found. The C9, t11-CLA and tl0, c12-CLA could inhibit MCF-7 cell proliferation and promote apoptosis via activating PPARy-Bcl-2-Caspase 3 pathway. CLA may be a kind of activator of PPARv.展开更多
To investigate exogenous PTEN gene transfected human breast cancer cell line MDA-MD-468.Methods Using the lipofectamine 2000 transfection technique,wild type PTEN gene was transducted into an in vitro cultured highly ...To investigate exogenous PTEN gene transfected human breast cancer cell line MDA-MD-468.Methods Using the lipofectamine 2000 transfection technique,wild type PTEN gene was transducted into an in vitro cultured highly metastatic breast cancer cell line MDA-MD-468.After transfection,the cells were selected by G418.The resistant clones were chosen and expanded in DMEM culture medium.RT-PCR,immunohistochemical method and western blot were used to determine the expression of target genes.Results An anti-G418 cell clone was established and expanded in culture.The transfected PTEN gene MDA-MD-468 cells showed expression of PTEN mRNA and PTEN protein.Conclusion Human breast cancer cell line MDA-MB-468 established in this study expresses consistently exogenous PTEN genes.4 refs,6 figs.展开更多
A hammerhead ribozyme which site-specifically cleaved the GUC position in canon 880 of the mdr1 mRNA was designed. The target site was chosen between the two ATP binding sites, which may be important for the function ...A hammerhead ribozyme which site-specifically cleaved the GUC position in canon 880 of the mdr1 mRNA was designed. The target site was chosen between the two ATP binding sites, which may be important for the function of the P-Gp as an ATP-dependent pump. A DNA sequence encoding the ribozyme gene was then incorporated into a eukaryotic expression vector (pH Apr-1 neo) and transfected into the breast cancer cell line MCF-7/Adr, which is resistant to adriamycin and expresses the MDR phenotype. The ribozyme was stably expressed in the cell line by the RNA dot blotting assay. The result of Northern blot assay showed that the expressed ribozyme could decrease the level of mdrl mRNA expression by 83. 5 %; and the expressed ribozyme could inhibite the formation of p-glycoprotein detected by immuno- cy-tochemistry assay and could reduce the cell’s resistance to adrimycin; this means that the resistant cells were 1 000-fold more resistant than the parental cell line(MCF-7), whereas those cell clones that showed ribozyme expression were only 6-fold more resistant than the parental cell line. These results show that a potentially useful tool is at hand which may inactivate MDR1 mRNA and revert the multidrug resistance phenotype.展开更多
Salinomycin(SAL),a polyether antibiotic isolated from Streptomyces albus,is widely used as an anticoccidial drug in poultry and other livestock and is furthermore fed to ruminescent animals to improve nutrient absor...Salinomycin(SAL),a polyether antibiotic isolated from Streptomyces albus,is widely used as an anticoccidial drug in poultry and other livestock and is furthermore fed to ruminescent animals to improve nutrient absorption and feed efficiency.It has recently been shown to act as a specific inhibitor of cancer stem cells.At present,the price of salinomycin sodium(SAL-Na) is 10 fold lower than that of salinomycin,however,there is no report about the comparison of the inhibitory effects of SAL and SAL-Na on cancer stem cells as well as cancer cells.In the present study,side population cells(SP cells)and non-SP cells (NSP cells)sorted from human breast cancer cell line MCF-7 were chosen as the models of cancer stem cells and cancer cells, respectively.SRB assay was performed to compare the cytotoxicity of SAL and SAL-Na.First of all,SP cells were sorted from MCF-7 cells via FACSDiva flow cytometry.Secondly,the sorted SP cells were identified with the surface makers(CD44~+/CD24^-) of breast cancer stem cells.Finally,the inhibitory effects of SAL and SAL-Na were evaluated on the sorted SP cells and NSP cells.Results showed that,as compared to breast cancer cells,the inhibitory effect of free SAL or free SAL-Na was more potent in breast cancer stem cells.Furthermore,the inhibitory effects of free SAL and free SAL-Na had no significant difference for the SP cells as well as the NSP cells when they were in the same concentration.Thus,it suggested that salinomycin sodium should be considered as a potential candidate to take the place of salinomycin in cancer stem cells research,due to their similar inhibitory effects on cancer stem cells.展开更多
基金supported by a grant from the NextGeneration BioGreen 21 Program(no.PJ011355-2015)supported by Priority Research Centers Program through NRF funded by the Ministry of Education,Science and Technology (2015R1A6A1A04020885)
文摘Bisphenol-A(BPA) has been considered as an endocrine disrupting chemical(EDC) because it can exert estrogenic properties.For bisphenol-S(BPS) and bisphenol-F(BPF) that are BPA analogs and substitutes,their risk to estrogendependent cancer has been reported rarely compared with the numerous cases of BPA.In this study,we examined whether BPA,BPS,and BPF can lead to the proliferation,migration,and epithelial mesenchymal transition(EMT) of MCF-7 clonal variant(MCF-7 CV) breast cancer cells expressing estrogen receptors(ERs).In a cell viability assay,BPA,BPS,and BPF significantly increased proliferation of MCF-7 CV cells compared to control(DMSO) as did17β-estradiol(E2).In Western blotting assay,BPA,BPS,and BPF enhanced the protein expression of cell cycle progression genes such as cyclin D1 and E1.In addition,MCF-7 CV cells lost cell to cell contacts and acquired fibroblast-like morphology by the treatment of BPA,BPS,or BPF for 24 hours.In cell migration assay,BPA,BPS,and BPF accelerated the migration capability of MCF-7 CV cells as did E2.In relation with the EMT process,BPA,BPS,and BPF increased the protein expression of N-cadherin,while they decreased the protein expression of Ecadherin.When BPA,BPS,and BPF were co-treated with ICI 182,780,an ER antagonist,proliferation effects were reversed,the expression of cyclin D1 and cyclin E1 was downregulated,and the altered cell migration and expression of N-cadherin and E-cadherin by BPA,BPS,and BPF were restored to the control level.Thus,these results imply that BPS and BPF also have the risk of breast cancer progression as much as BPA in the induction of proliferation and migration of MCF-7 CV cells by regulating the protein expression of cell cycle-related genes and EMT markers via the ER-dependent pathway.
基金This work was supported by the National Natural Science Foundation of China(20275010,20335020)the Basic Research Special Program of the Ministry of Science and Technology of China(2003CCC00700)the Foundation of the Ministry of Education(M0E)of China(jiaorensi[2000]26,jiaojisi[2000]65).
文摘The quartz crystal microbalance (QCM) was used to monitor the one-day incubation of human breast cancer cells (MCF-7) on the gold electrode. In combination with an optical microscope simulation experiment, the cell-population pictures at various stages, the QCM responses to the cells' adhesion, spreading and proliferation on the electrode surface were discussed. The △f0 and △R1 responses were found mainly from mixed effects of viscodensity and surface stress, and in proportion to the cell coverage, rather than to the number of cells at the electrode. The significant fore-and-aft changes in cyclic voltammetry and electrochemical impedance spectroscopy of the ferri-ferrocyanide redox couple also proved that the cells were adhesion to the gold surface.
文摘The effects of human EGFR to the malignant phenotype of human breast cancer cell line MDA-MB-231 were investigated experimentally. A retroviral vector containing a 5'1350bp fragment of the human EGFR cDNA in the antisense orientation was transfected into targeted cells by lipofectamine. The effects on cell proliferation, cell cycle and adherent ability to extracellular matrix (ECM) components were studied after the expression of antisense transcripts to EGFR 5'1350bp fragment in target cells. In vitro studies showed that the growth ability of the transfected cells was partialy inhibited in comparison to parental cells and to cells transfected with the plasmid containing the neomycin resistance gene only. It was found that EGF (10ng/ml) had an augmenation effect on the growth of transfected MDA-AS10 cells but not MDA-MB-231 cells.Flow cytometric analysis showed that the cell cycle of the transfected cells was abnormal with a decrease of cells in G2/M and S phases and an increase of cells in G1 phase,indicating a blockage in phase G1. Immunofluorescence of EGFR expression in transfectants stained with an antiEGFR antibody was decreased and their growth in soft agarose was also severely impaired. The transfected cells showed less adherence to laminin (LN) and fibronectin (FN). In short, EGFR antisense RNA decreases the expression of EGFR on MDA-MB-231 cells and partially reverses their malignant phenotype as well.Effects of antisense EGFR on human breast cancer MDA-MB-231 cells
文摘Summary: The purpose of this study was to verify that a combination of mild hyperthermia and do- cetaxel chemotherapy produces synergistic antitumor effects and to explore the action mechanisms of this treatment approach. The effects of docetaxel on the proliferation of cells from the estrogen receptor (ER)-positive human breast cancer cell line MCF-7 and the ER-negative human breast cancer cell line MDA-MB-453 were examined by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay, and effective experimental concentrations of docetaxel were determined. The effects of mild hy- perthermia plus docetaxel therapy on apoptosis rate in the MCF-7 and MDA-MB-453 human breast cancer cell lines were analyzed by using flow cytometry with Annexin-V fluorescein isothiocyanate (FITC)/propidium iodide (PI) staining. The effects of these combined treatments on cell cycle progres- sion in the MCF-7 and MDA-MB-453 human breast cancer cell lines were examined by using flow cy- tometry. The effects of these combined treatments on the expression of apoptosis-related proteins and proteins in the mitogen-activated protein kinase (MAPK) pathways were analyzed by using Western blotting. The effects of these combined treatments on the expression of the heat shock protein 70 (HSP70) and the multi-drug resistance (MDR) gene product P-glycoprotein (Pgp) were examined by using Western blotting. The results showed that the half-maximal inhibitory concentration (IC50) of do- cetaxel for MCF-7 and MDA-MB-453 cells was 19.57±1.12 and 21.64±2.31 gmol/L respectively. Mild hyperthermia with docetaxel therapy could increase apoptosis rate in the MCF-7 and MDA-MB-453 cells. Apoptosis rate in MCF-7 and MDA-MB-453 cells was increased from (23.66±3.59)% and (18.51±3.17)% in docetaxel treatment group to (47.12±6.73)% and (55.16±7.42)% in mild hyperthermia plus docetaxel group, indicating that the mild hyperthermia and docetaxel therapeutic approaches exhib- ited significant synergistic antitumor effects. Treatments of mild hyperthermia plus docetaxel induced G2/M cell cycle arrest in the MCF-7 and MDA-MB-453 cells. Western blotting demonstrated that pro- teins in the MAPK pathway were expressed at higher levels in docetaxel-treated cells following mild hypothermia than those in cells treated with docetaxel alone. As compared with blank control group, cells from the mild hyperthermia plus docetaxel group exhibited significantly decreased B-cell lym- phoma 2 (Bcl-2) protein expression but slightly increased Bcl-2-associated X protein (Bax) expression. Western blotting results revealed that HSP70 and Pgp expression levels were significantly increased following mild hypothermia. It was concluded that treatments of mild hyperthermia plus docetaxel in- hibited the proliferation of human breast cancer cells, promoted apoptosis of breast cancer cells, and produced synergistic antitumor effects.
基金supported by Cancer Institute NSW CDF fellowship (YZ)Cure Cancer Foundation of Australia (YZ)+3 种基金Cancer Council New South Wales (MJS, YZ, HZ, and CRD)Prostate Cancer Foundation of Australia (MJS, YZ, HZ, and CRD)NH and MRC Early Career Fellowship 596870 (YZ)German Research Foundation HO 5109/2-1 and HO 5109/2-2 (KH)
文摘Vitamin D co-regulates cell proliferation, differentiation and apoptosis in numerous tissues, including cancers. The known anti-proliferative and pro-apoptotic actions of the active metabolite of vitamin D, 1,25-dihydroxy-vitamin D [1,25(OH)2D] are mediated through binding to the vitamin D receptor (VDR). Here, we report on the unexpected finding that stable knockdown of VDR expression in the human breast and prostate cancer cell lines, MDA-MB-231 and PC3, strongly induces cell apoptosis and inhibits cell proliferation in vitro. Implantation of these VDR knockdown cells into the mammary fat pad (MDA-MB-231), subcutaneously (PC3) or intra-tibially (both cell lines) in immune-incompetent nude mice resulted in reduced tumor growth associated with increased apoptosis and reduced cell proliferation compared with controls. These growth-retarding effects of VDR knockdown occur in the presence and absence of vitamin D and are independent of whether cells were grown in bone or soft tissues. Transcriptome analysis of VDR knockdown and non-target control cell lines demonstrated that loss of the VDR was associated with significant attenuation in the Wnt/0-catenin signaling pathway. In particular, cytoplasmic and nuclear β-catenin protein levels were reduced with a corresponding downregulation of downstream genes such as Axin2, Cyclin D1, interleukin-6 (IL-6), and IL-8. Stabilization of 0-catenin using the GSK-3β inhibitor BIO partly reversed the growth-retarding effects of VDR knockdown. Our results indicate that the unliganded VDR possesses hitherto unknown functions to promote breast and prostate cancer growth, which appear to be operational not only within but also outside the bone environment. These novel functions contrast with the known anti-proliferative nuclear actions of the liganded VDR and may represent targets for new diagnostic and therapeutic approaches in breast and prostate cancer.
基金Supported by grants from the National Natural Science Foundation of China (No.30873457)the Scientific Technology Project of Guang-dong Province of China (No.2008A060202010)
文摘Objective: The aim of the study was to explore the activities of cis9, trans11-CLA (C9, t11-CLA) and transl0, cis12-CLA (t10, c12-CLA) inhibiting tumor, and investigate their relationships with PPARy and apoptotic proteins, and mechanism of anti-cancer. Methods: The inhibitory rate, cell growth curve and apoptotic morphological observation of MCF-7 cells were obtained by MTT assay, trypan blue staining and Hoechst33342 fluorescence staining. The apoptotic rate and cell cycle were detected with flow cytometry. Transcriptional level of genes was detected with RT-PCR semi-quantitative method, and Western blot was performed to detect proteins levels. Results: The two CLA isomers could reduce cell proliferation (P 〈 0.05), increase apoptotic rate (P 〈 0.05), and increase obviously the transcriptional and protein levels of PPARy (P 〈 0.01). The synchronism and correlation between the effects of CLA to PPARy and apoptotic proteins Bax, Bcl-2, Caspase 3 changes were found with the dose- and time-dependent manners. There was cooperative relation between the levels of PPARy and the rates of Bax/Bcl-2, Caspase 3 (small fragment) by experiments of PPARy inhibitor GW9662 and ligand Rosiglitazone. Conclusion: The apoptotic pathway of PPARy-Bcl-2-Caspase 3 signaling was found. The C9, t11-CLA and tl0, c12-CLA could inhibit MCF-7 cell proliferation and promote apoptosis via activating PPARy-Bcl-2-Caspase 3 pathway. CLA may be a kind of activator of PPARv.
文摘To investigate exogenous PTEN gene transfected human breast cancer cell line MDA-MD-468.Methods Using the lipofectamine 2000 transfection technique,wild type PTEN gene was transducted into an in vitro cultured highly metastatic breast cancer cell line MDA-MD-468.After transfection,the cells were selected by G418.The resistant clones were chosen and expanded in DMEM culture medium.RT-PCR,immunohistochemical method and western blot were used to determine the expression of target genes.Results An anti-G418 cell clone was established and expanded in culture.The transfected PTEN gene MDA-MD-468 cells showed expression of PTEN mRNA and PTEN protein.Conclusion Human breast cancer cell line MDA-MB-468 established in this study expresses consistently exogenous PTEN genes.4 refs,6 figs.
基金This research was supported by the National Natural ScienceYouth Grant.
文摘A hammerhead ribozyme which site-specifically cleaved the GUC position in canon 880 of the mdr1 mRNA was designed. The target site was chosen between the two ATP binding sites, which may be important for the function of the P-Gp as an ATP-dependent pump. A DNA sequence encoding the ribozyme gene was then incorporated into a eukaryotic expression vector (pH Apr-1 neo) and transfected into the breast cancer cell line MCF-7/Adr, which is resistant to adriamycin and expresses the MDR phenotype. The ribozyme was stably expressed in the cell line by the RNA dot blotting assay. The result of Northern blot assay showed that the expressed ribozyme could decrease the level of mdrl mRNA expression by 83. 5 %; and the expressed ribozyme could inhibite the formation of p-glycoprotein detected by immuno- cy-tochemistry assay and could reduce the cell’s resistance to adrimycin; this means that the resistant cells were 1 000-fold more resistant than the parental cell line(MCF-7), whereas those cell clones that showed ribozyme expression were only 6-fold more resistant than the parental cell line. These results show that a potentially useful tool is at hand which may inactivate MDR1 mRNA and revert the multidrug resistance phenotype.
基金National Basic Research Program of China(Grant No 2009CB930300)State Key Projects(Grant No 2009ZX093 10- 001)the 863 Project(GrantNo 2007AA021811)
文摘Salinomycin(SAL),a polyether antibiotic isolated from Streptomyces albus,is widely used as an anticoccidial drug in poultry and other livestock and is furthermore fed to ruminescent animals to improve nutrient absorption and feed efficiency.It has recently been shown to act as a specific inhibitor of cancer stem cells.At present,the price of salinomycin sodium(SAL-Na) is 10 fold lower than that of salinomycin,however,there is no report about the comparison of the inhibitory effects of SAL and SAL-Na on cancer stem cells as well as cancer cells.In the present study,side population cells(SP cells)and non-SP cells (NSP cells)sorted from human breast cancer cell line MCF-7 were chosen as the models of cancer stem cells and cancer cells, respectively.SRB assay was performed to compare the cytotoxicity of SAL and SAL-Na.First of all,SP cells were sorted from MCF-7 cells via FACSDiva flow cytometry.Secondly,the sorted SP cells were identified with the surface makers(CD44~+/CD24^-) of breast cancer stem cells.Finally,the inhibitory effects of SAL and SAL-Na were evaluated on the sorted SP cells and NSP cells.Results showed that,as compared to breast cancer cells,the inhibitory effect of free SAL or free SAL-Na was more potent in breast cancer stem cells.Furthermore,the inhibitory effects of free SAL and free SAL-Na had no significant difference for the SP cells as well as the NSP cells when they were in the same concentration.Thus,it suggested that salinomycin sodium should be considered as a potential candidate to take the place of salinomycin in cancer stem cells research,due to their similar inhibitory effects on cancer stem cells.