In order to detect molecular markers for the epidermal growth factor inhibitor 4-(3-chloro-benzyl)- 6,7-dimethoxy-quinazoline (tyrphostin), we investigated the kinetics of p120-catenin and periplakin in the human bucc...In order to detect molecular markers for the epidermal growth factor inhibitor 4-(3-chloro-benzyl)- 6,7-dimethoxy-quinazoline (tyrphostin), we investigated the kinetics of p120-catenin and periplakin in the human buccal mucosa squamous cancer cell line BICR 10 treated with 3 nM tyrphostin. Growth of BICR 10 cells was inhibited by treatment with tyrphostin. Although changes were not observed in the expression of EGFR and p120-catenin, expression of Akt, Src and periplakin in BICR 10 treated with 3 nM tyrphostin tended to decrease. In addition, phosphorylation of EGFR, Akt and Src was inhibited by treatment with tyrphostin. On immunocytochemical staining, immunoreactions with phosphorylated EGFR, phosphorylated Akt and phosphorylated p120-catenin were weak in BICR 10 treated with tyrphostin. There was a slight immunocy to chemical reaction to periplakin in BICR 10 cells induced by tyrphostin. In conclusion, the decrease in phosphorylation in EGFR and p120-catenin by tyrphostin, following the decrease in Src or Akt phosphorylation, may inhibit expression of several growth factors associated with the proliferation and migration of cancer cells.展开更多
文摘In order to detect molecular markers for the epidermal growth factor inhibitor 4-(3-chloro-benzyl)- 6,7-dimethoxy-quinazoline (tyrphostin), we investigated the kinetics of p120-catenin and periplakin in the human buccal mucosa squamous cancer cell line BICR 10 treated with 3 nM tyrphostin. Growth of BICR 10 cells was inhibited by treatment with tyrphostin. Although changes were not observed in the expression of EGFR and p120-catenin, expression of Akt, Src and periplakin in BICR 10 treated with 3 nM tyrphostin tended to decrease. In addition, phosphorylation of EGFR, Akt and Src was inhibited by treatment with tyrphostin. On immunocytochemical staining, immunoreactions with phosphorylated EGFR, phosphorylated Akt and phosphorylated p120-catenin were weak in BICR 10 treated with tyrphostin. There was a slight immunocy to chemical reaction to periplakin in BICR 10 cells induced by tyrphostin. In conclusion, the decrease in phosphorylation in EGFR and p120-catenin by tyrphostin, following the decrease in Src or Akt phosphorylation, may inhibit expression of several growth factors associated with the proliferation and migration of cancer cells.