Objective:To explore the mechanism of circRNA-vgll3 in osteogenic differentiation of human bone marrow mesenchymal stem cells.Methods:BMSCs cells were transfected with circRNA-vgll3,and divided into circRNA-vgll3 high...Objective:To explore the mechanism of circRNA-vgll3 in osteogenic differentiation of human bone marrow mesenchymal stem cells.Methods:BMSCs cells were transfected with circRNA-vgll3,and divided into circRNA-vgll3 high-level group,circRNA-vgll3 low-level group,and negative control group(circRNA-vgll3 not transfected)according to the amount of transfection.The proliferation and apoptosis of BMSCs osteoblasts in each group were analyzed,and the alkaline phosphatase(ALP)activity,type I collagen gray value,bone morphogenetic protein 2(BMP-2),Runx2 protein,and mRNA expression levels were detected.Results:The circRNA-vgll3 low-level group had a significant inhibitory effect on the proliferation of BMSCs osteoblasts,and the apoptosis rate of the circRNA-vgll3 low-level group was significantly higher than that of the circRNA-vgll3 high-level group(P<0.05);ALP activity,type I collagen gray value,BMP-2,Runx2 protein,and mRNA expression levels in the high-level circRNA-vgll3 group were significantly higher than those in the low-level circRNA-vgll3 group,and the difference was statistically significant(P<0.05).Conclusion:Overexpression of circRNA-vgll3 can promote the osteogenic differentiation ability of BMSCs,while low expression of circRNA-vgll3 can inhibit the osteogenic differentiation ability of BMSCs.The main mechanism of action is that circRNA-vgll3 can affect osteogenic differentiation by regulating the Runx2 protein.展开更多
Mesenchymal stromal cells (MSCs) can be obtained from several sources and the significant differences in their properties make it crucial to investigate the differentiation potential of MSCs from different sources to ...Mesenchymal stromal cells (MSCs) can be obtained from several sources and the significant differences in their properties make it crucial to investigate the differentiation potential of MSCs from different sources to determine the optimal source of MSCs. We investigated if this biological heterogeneity in MSCs from different sources results in different mechanisms for their differentiation. In this study, we compared the gene expression patterns of phenotypically defined MSCs derived from three ontogenically different sources: Embryonic stem cells (hES-MSCs), Fetal limb (Flb-MSCs) and Bone Marrow (BM-MSCs). Differentially expressed genes between differentiated cells and undifferentiated controls were compared across the three MSC sources. We found minimal overlap (5% - 16%) in differentially expressed gene sets among the three sources. Flb-MSCs were similar to BM-MSCs based on differential gene expression patterns. Pathway analysis of the differentially expressed genes using Ingenuity Pathway Analysis (IPA) revealed a large variation in the canonical pathways leading to MSC differentiation. The similar canonical pathways among the three sources were lineage specific. The Flb-MSCs showed maximum overlap of canonical pathways with the BM-MSCs, indicating that the Flb-MSCs are an intermediate source between the less specialised hES-MSC source and the more specialised BM-MSC source. The source specific pathways prove that MSCs from the three ontogenically different sources use different biological pathways to obtain similar differentiation outcomes. Thus our study advocates the understanding of biological pathways to obtain optimal sources of MSCs for various clinical applications.展开更多
AIM: To investigate the differentiation status and key factors to facilitate hepatic differentiation of human bone-marrow-derived mesenchymal stem cells (MSCs). METHODS: Human MSCs derived from bone marrow were induce...AIM: To investigate the differentiation status and key factors to facilitate hepatic differentiation of human bone-marrow-derived mesenchymal stem cells (MSCs). METHODS: Human MSCs derived from bone marrow were induced into hepatocyte-like cells following a previously published protocol. The differentiation status of the hepatocyte-like cells was compared with various human hepatoma cell lines. Overexpression of hepatocyte nuclear factor (HNF)-4α was mediated by adenovirus infection of these hepatocyte-like cells. The expression of interesting genes was then examined by either re-verse transcription-polymerase chain reaction (RT-PCR) or real-time RT-PCR methods. RESULTS: Our results demonstrated that the differentiation status of hepatocyte-like cells induced from human MSCs was relatively similar to poorly differentiated human hepatoma cell lines. Interestingly, the HNF-4 isoform in induced MSCs and poorly differentiated human hepatoma cell lines was identified as HNF4γ instead of HNF-4α. Overexpression of HNF-4α in induced MSCs significantly enhanced the expression level of hepatic-specific genes, liver-enriched transcription factors, and cytochrome P450 (P450) genes. CONCLUSION: Overexpression of HNF-4α improves the hepatic differentiation of human MSCs from bone marrow and is a simple way of providing better cell sources for clinical applications.展开更多
Objective To investigate the potential of adult mesenchymal stem cells (MSCs) derived from human bone marrow to undergo cardiomyogenic differentiation after exposure to 5-azacytidine (5-aza) in vitro. Methods A small ...Objective To investigate the potential of adult mesenchymal stem cells (MSCs) derived from human bone marrow to undergo cardiomyogenic differentiation after exposure to 5-azacytidine (5-aza) in vitro. Methods A small bone marrow aspirate was taken from the iliac crest of human volunteers, and hMSCs were isolated by 1.073g/mL Percoll and propagated in the right cell culturing medium as previously described. The phenotypes of hMSCs were characterized with the use of flow cytometry. The hMSCs were cultured in cell culture medium (as control) and medium mixed with 5-aza for cellular differentiation. We examined by immunohistochemistry at 21 days the inducement of desmin, cardiac-specific cardiac troponin I (cTnI), GATA 4 and connexin-43 respectively. Results The hMSCs are fibroblast-like morphology and express CD44+ CD29+ CD90+ / CD34- CD45- CD31- CD11a. After 5-aza treatment, 20-30% hMSCs connected with adjoining cells and coalesced into myotube structures after 14days. Twenty-one days after 5-aza treatment, immunofluorescence showed that some cells expressed desmin,GATA4, cTnI and connexin-43 in 5,10 μmol/L 5-aza groups, but no cardiac specific protein was found in neither 3μmol/L 5-aza group nor in the control group. The ratio of cTnI positively stained cells in 10 μmol/L group was higher than that in 5 μmol/L group (65.3 ± 4.7% vs 48.2 ± 5.4%, P < 0.05). Electron microscopy revealed that myofilaments were formed. The induced cells expressed cardiac-myosin heavy chain (MyHC) gene by reverse transcription-polymerase chain reaction (RT-PCR). Conclusions Theses findings suggest that hMSCs from adult bone marrow can be differentiated into cardiac-like muscle cells with 5-aza inducement in vitro and the differentiation is in line with the 5-aza concentration. (J Geriatr Cardiol 2004;1(2) :101-107. )展开更多
Mesenchymal stem cells (MSCs) of nonembryonic origins possess the proliferation and multi-lineage differentiation potentials. It has been established that epigenetic mechanisms could be critical for determining the ...Mesenchymal stem cells (MSCs) of nonembryonic origins possess the proliferation and multi-lineage differentiation potentials. It has been established that epigenetic mechanisms could be critical for determining the fate of stem cells, and MSCs derived from different origins exhibited different expression profiles individually to a certain extent. In this study, ChiP-on-chip was used to generate genome-wide histone H3-Lys9 acetylation and dimethylation profiles at gene promoters in human bone marrow MSCs. We showed that modifications of histone H3-Lys9 at gene promoters correlated well with mRNA expression in human bone marrow MSCs. Functional analysis revealed that many key cellular pathways in human bone marrow MSC self-renewal, such as the canonical signaling pathways, cell cycle pathways and cytokine related pathways may be regulated by H3-Lys9 modifications. These data suggest that gene activation and silencing affected by H3-Lys9 acetylation and dimethylation, respectively, may be essential to the maintenance of human bone marrow MSC self-renewal and multi-potency.展开更多
Human-induced neural stem cells(iNSCs)transplantation is a potential treatment of neurodegeneration diseases.However,whether the reprogrammed cells have the same characterizations as human fetal neural stem cells need...Human-induced neural stem cells(iNSCs)transplantation is a potential treatment of neurodegeneration diseases.However,whether the reprogrammed cells have the same characterizations as human fetal neural stem cells needs further exploration.Here we isolated human fetal neural stem cells from aborted 12-week fetal brains and compared with iNSCs reprogrammed from human peripheral blood mononuclear cells in gene expression,proliferation ability,differentiation capacity,and the responses to tumor necrosis factor-α.We found that iNSCs and NSCs both expressed neural stem cell markers Nestin,SOX1,and SOX2.However,only iNSCs can be patterned into dopaminergic neurons and motor neurons.Furthermore,both iNSCs and NSCs can differentiate into oligodendrocyte progenitor cells.In addition,a low dose of tumor necrosis factor-αdid not inhibit the proliferation and differentiation of iNSCs and NSCs.In conclusion,iNSCs have properties similar to,and even better than,fetal neural stem cells and may be suitable for disease modeling and transplantation.展开更多
Objective:To investigate the effects of astragalus polysaccharides(APS)on bone marrow suppression and hematopoietic stem cells during chemotherapy in elderly patients with lung cancer.Methods:120 elderly patients with...Objective:To investigate the effects of astragalus polysaccharides(APS)on bone marrow suppression and hematopoietic stem cells during chemotherapy in elderly patients with lung cancer.Methods:120 elderly patients with lung cancer treated in the first hospital of Xingtai city from January 2019 to early December 2019 were divided into the treatment group and the control group by the random number table method,all of whom received pemetrexed+carboplatin chemotherapy,and the treatment group was treated with APS at the same time.The efficacy was evaluated after 2 cycles of chemotherapy,bone marrow suppression was observed,and levels of TCM symptoms score,peripheral blood T lymphocyte subgroup index,L-selectin(CD62L)and macrophage differentiation antigen-1(Mac-1)were measured before and after 2 cycles of chemotherapy.Results:The response rate(RR)was 56.67%in the treatment group and 45.00%in the control group,with no statistically significant difference(P>0.05);The disease control rate(DCR)in the treatment group was 81.67%,which was significantly higher than 65.00%in the control group(P<0.05);The reduction degree of leukopenia in the treatment group was significantly lower than that in the control group(P<0.05);The treatment group had a platelet reduction of grade 1+2 at a rate of 40.00%,and hemoglobin reduction of grade 1+2 at a rate of 28.33%,which were significantly lower than the control group at 65.00%and 58.33%(P<0.05);Compared with those before chemotherapy,the total score of TCM symptoms,serum CD62L and Mac-1 levels in the two groups all decreased significantly after chemotherapy,and they were significantly lower in the treatment group than in the control group(P<0.05);After chemotherapy,CD3+,CD4+and CD4+/CD8+in the treatment group increased significantly and they were all higher in the treatment group than in the control group,while CD8+decreased significantly and was lower in the treatment group than in the control group(P<0.05).There was no statistically significant difference in T lymphocyte subsets before and after chemotherapy in the control group(P>0.05).Conclusion:Astragalus polysaccharide can improve the chemotherapy effect and improve the bone marrow suppression in elderly patients with lung cancer,which may be related to its obvious enhancement of immune function and decrease of CD62L and Mac-1 levels.展开更多
Objective: To investigate the effect of hepatic differentiation of human bone marrow mesenchymal stem cells (HBMSCs) induced in vitro and transplanted into rats with liver failure via portal vein, and observe the chan...Objective: To investigate the effect of hepatic differentiation of human bone marrow mesenchymal stem cells (HBMSCs) induced in vitro and transplanted into rats with liver failure via portal vein, and observe the changes of liver function and pathological tissue. Method:After passage to the 6th generation in vitro, the hepatic differentiation was induced by HGFand EGF inducible factors. CCL4 acute liver failure model in rats were established, and randomly divided into 5 groups transplanted with differentiated stem cells via portal vein. These five groups included HGF-differentiated HBMSCs transplantation, EGF-differentiated HBMSCs transplantation, EGF+HGF-differentiated HBMSCs transplantation, non-differentiated HBMSCs transplantation, and non-HBMSCs transplantation. Liver function and pathological changes were detected. Results: Rats models survival, serum albumin, aminotransferase and coagulation indexes were observed at 12 h, 72 h, 7 d, 1 month and 2 months after treatment. The results showed that the survival and albumin, aminotransferase and coagulation function of rats were improved significantly after treatment in HGF-differentiated, EGF-differentiated, EGF+HGF-differentiated and non-differentiated transplantation groups, compared tothe non-HBMSCstransplantation group(P<0.05), while no significance was observed in above four groups(P>0.05).Pathological changes was ameliorated in the liver of rat models in HGF-, EGF-, EGF+HGF- and non-differentiated transplantation groups, compared to the non-HBMSCs transplantation group. Conclusion: Liver-differentiated BMSCs transplanted into rats with liver failure could effectively improve liver function and survival rate.展开更多
BACKGROUND Premature ovarian failure(POF)affects many adult women less than 40 years of age and leads to infertility.According to previous reports,various tissue-specific stem cells can restore ovarian function and fo...BACKGROUND Premature ovarian failure(POF)affects many adult women less than 40 years of age and leads to infertility.According to previous reports,various tissue-specific stem cells can restore ovarian function and folliculogenesis in mice with chemotherapy-induced POF.Human embryonic stem cells(ES)provide an alternative source for mesenchymal stem cells(MSCs)because of their similarities in phenotype and immunomodulatory and anti-inflammatory characteristics.Embryonic stem cell-derived mesenchymal stem cells(ES-MSCs)are attractive candidates for regenerative medicine because of their high proliferation and lack of barriers for harvesting tissue-specific MSCs.However,possible therapeutic effects and underlying mechanisms of transplanted ES-MSCs on cyclophosphamide and busulfan-induced mouse ovarian damage have not been evaluated.AIM To evaluate ES-MSCs vs bone marrow-derived mesenchymal stem cells(BMMSCs)in restoring ovarian function in a mouse model of chemotherapy-induced premature ovarian failure.METHODS Female mice received intraperitoneal injections of different doses of cyclophosphamide and busulfan to induce POF.Either human ES-MSCs or BMMSCs were transplanted into these mice.Ten days after the mice were injected with cyclophosphamide and busulfan and 4 wk after transplantation of the ESMSCs and/or BM-MSCs,we evaluated body weight,estrous cyclicity,folliclestimulating hormone and estradiol hormone concentrations and follicle count were used to evaluate the POF model and cell transplantation.Moreover,terminal deoxynucleotidyl transferase mediated 2-deoxyuridine 5-triphosphate nick end labeling,real-time PCR,Western blot analysis and immunohistochemistry and mating was used to evaluate cell transplantation.Enzyme-linked immunosorbent assay was used to analyze vascular endothelial growth factor,insulin-like growth factor 2 and hepatocyte growth factor levels in ES-MSC condition medium in order to investigate the mechanisms that underlie their function.RESULTS The human ES-MSCs significantly restored hormone secretion,survival rate and reproductive function in POF mice,which was similar to the results obtained with BM-MSCs.Gene expression analysis and the terminal deoxynucleotidyl transferase mediated 2-deoxyuridine 5-triphosphate nick end labeling assay results indicated that the ES-MSCs and/or BM-MSCs reduced apoptosis in the follicles.Notably,the transplanted mice generated new offspring.The results of different analyses showed increases in antiapoptotic and trophic proteins and genes.CONCLUSION These results suggested that transplantation of human ES-MSCs were similar to BM-MSCs in that they could restore the structure of the injured ovarian tissue and its function in chemotherapy-induced damaged POF mice and rescue fertility.The possible mechanisms of human ES-MSC were related to promotion of follicular development,ovarian secretion,fertility via a paracrine effect and ovarian cell survival.展开更多
AIM: To improve the isolation and expansion of human marrow-derived mesenchymal stem cells (MSCs) based on rat samples. METHODS: Based on the fact that rat MSCs are relatively easy to obtain from a small aspirate, bon...AIM: To improve the isolation and expansion of human marrow-derived mesenchymal stem cells (MSCs) based on rat samples. METHODS: Based on the fact that rat MSCs are relatively easy to obtain from a small aspirate, bone marrow-derived MSCs from rat were cultured and characterized to set up the different protocols used in this study. Then, accordingly, almost the same protocols were performed on human healthy bone marrow samples, after obtaining approval of the ethics committee and gaining informed consent. We used different protocols and culture conditions, including the type of basal media and the culture composition. The MSCs were characterized by immunophenotyping and differentiation. RESULTS: There was no difference in morphology and proliferation capacity between different culture media at the first passage. During the 5-7th passages, the cells gradually lost their morphology and proliferation potential on Dulbecco’s modified Eagle’s medium (DMEM) high glucose and α modified Eagle’s medium. Although the cells expanded rapidly for up to 10 passages on DMEM low glucose containing 10% to 15% fetal calf serum (FCS), their proliferation was arrested without change in morphology and differentiation capacity at the third passage on 5% FCS. Flow cytometric analysis and functional tests confirmed that more than 90% of marrow cells which were isolated and expanded by our selective protocols were MSCs. CONCLUSION: We improved the isolation and expansion of human bone marrow derived MSCs, based on rat sample experiments, for further experimental and clinical use.展开更多
The purpose of this study was to assess fetal bovine acellular dermal matrix as a scaffold for supporting the differentiation of bone marrow mesenchymal stem cells into neural cells fol-lowing induction with neural di...The purpose of this study was to assess fetal bovine acellular dermal matrix as a scaffold for supporting the differentiation of bone marrow mesenchymal stem cells into neural cells fol-lowing induction with neural differentiation medium. We performed long-term, continuous observation of cell morphology, growth, differentiation, and neuronal development using several microscopy techniques in conjunction with immunohistochemistry. We examined speciifc neu-ronal proteins and Nissl bodies involved in the differentiation process in order to determine the neuronal differentiation of bone marrow mesenchymal stem cells. The results show that bone marrow mesenchymal stem cells that differentiate on fetal bovine acellular dermal matrix display neuronal morphology with unipolar and bi/multipolar neurite elongations that express neuro-nal-speciifc proteins, includingβIII tubulin. The bone marrow mesenchymal stem cells grown on fetal bovine acellular dermal matrix and induced for long periods of time with neural differen-tiation medium differentiated into a multilayered neural network-like structure with long nerve ifbers that was composed of several parallel microifbers and neuronal cells, forming a complete neural circuit with dendrite-dendrite to axon-dendrite to dendrite-axon synapses. In addition, growth cones with filopodia were observed using scanning electron microscopy. Paraffin sec-tioning showed differentiated bone marrow mesenchymal stem cells with the typical features of neuronal phenotype, such as a large, round nucleus and a cytoplasm full of Nissl bodies. The data suggest that the biological scaffold fetal bovine acellular dermal matrix is capable of supporting human bone marrow mesenchymal stem cell differentiation into functional neurons and the subsequent formation of tissue engineered nerve.展开更多
Previous studies have shown that transplantation of human bone marrow mesenchymal stem cells promotes neural functional recovery after stroke, but the neurorestorative mechanisms remain largely unknown. We hypothesize...Previous studies have shown that transplantation of human bone marrow mesenchymal stem cells promotes neural functional recovery after stroke, but the neurorestorative mechanisms remain largely unknown. We hypothesized that functional recovery of myelinated axons may be one of underlying mechanisms. In this study, an ischemia/reperfusion rat model was established using the middle cerebral artery occlusion method. Rats were used to test the hypothesis that intravenous transplantation of human bone marrow mesenchyrnal stem cells through the femoral vein could exert neuroprotective effects against cerebral ischemia via a mechanism associated with the ability to attenuate axonal injury. The results of behavioral tests, infarction volume analysis and immunohistochemistry showed that cerebral ischemia caused severe damage to the myelin sheath and axons. After rats were intravenously transplanted with human bone marrow mesenchymal stem cells, the levels of axon and myelin sheath-related proteins, including microtubule-associated protein 2, myelin basic protein, and growth-associated protein 43, were elevated, infarct volume was decreased and neural function was improved in cerebral ischemic rats. These findings suggest that intravenously transplanted human bone marrow mesenchymal stem cells promote neural function. Possible mechanisms underlying these beneficial effects include resistance to demyelination after cerebral ischemia, prevention of axonal degeneration, and promotion of axonal regeneration.展开更多
Alveolar bone regeneration has been strongly linked to macrophage polarization.M1 macrophages aggravate alveolar bone loss,whereas M2 macrophages reverse this process.Berberine(BBR),a natural alkaloid isolated and ref...Alveolar bone regeneration has been strongly linked to macrophage polarization.M1 macrophages aggravate alveolar bone loss,whereas M2 macrophages reverse this process.Berberine(BBR),a natural alkaloid isolated and refined from Chinese medicinal plants,has shown therapeutic effects in treating metabolic disorders.In this study,we first discovered that culture supernatant(CS)collected from BBR-treated human bone marrow mesenchymal stem cells(HBMSCs)ameliorated periodontal alveolar bone loss.CS from the BBR-treated HBMSCs contained bioactive materials that suppressed the M1 polarization and induced the M2 polarization of macrophages in vivo and in vitro.To clarify the underlying mechanism,the bioactive materials were applied to different animal models.We discovered macrophage colony-stimulating factor(M-CSF),which regulates macrophage polarization and promotes bone formation,a key macromolecule in the CS.Injection of pure M-CSF attenuated experimental periodontal alveolar bone loss in rats.Colony-stimulating factor 1 receptor(CSF1R)inhibitor or anti-human M-CSF(M-CSF neutralizing antibody,Nab)abolished the therapeutic effects of the CS of BBR-treated HBMSCs.Moreover,AKT phosphorylation in macrophages was activated by the CS,and the AKT activator reversed the negative effect of the CSF1R inhibitor or Nab.These results suggest that the CS of BBR-treated HBMSCs modulates macrophage polarization via the M-CSF/AKT axis.Further studies also showed that CS of BBR-treated HBMSCs accelerated bone formation and M2 polarization in rat teeth extraction sockets.Overall,our findings established an essential role of BBR-treated HBMSCs CS and this might be the first report to show that the products of BBR-treated HBMSCs have active effects on alveolar bone regeneration.展开更多
AIM: To compare the phenotypic and neural differentiation potential of human bone marrow derived multipotent adult progenitor cells (MAPC) and mesenchymal stem cells (MSC). METHODS: Cultures of MAPC and MSC were estab...AIM: To compare the phenotypic and neural differentiation potential of human bone marrow derived multipotent adult progenitor cells (MAPC) and mesenchymal stem cells (MSC). METHODS: Cultures of MAPC and MSC were established in parallel from same samples of human bone marrow (n = 5). Both stem cell types were evaluated for expression of pluripotency markers including Oct-4 and Nanog by immunocytochemistry and reversetranscription polymerase chain reaction (RT-PCR) and expression of standard mesenchymal markers including CD14, CD34, CD44, CD45, CD73, CD90, CD105 andhuman leukocyte antigen (HLA)-ABC by flow cytometry. After treatment with neural induction medium both MAPC and MSC were evaluated for expression of neural proteins [neuronal filament-200 (NF-200) and glial fibrillar acidic protein (GFAP)] by immunocytochemistry and Western blotting and neural genes [NF-200, GFAP, Tau, microtubule-associated protein (MAP)-1B, MAP-2, neuron-specific enolase (NSE) and oligodendrocyte-1 (Olig-1)] by quantitative real-time-PCR. RESULTS: MAPC had small trigonal shaped while MSC had elongated spindle-shaped morphology. The MAPC expressed Oct-4 and Nanog both at gene and protein levels, whereas MSC were negative for these pluripotent markers. MAPC were negative for HLA-ABC while MSC had high expression of HLA-ABC. In addition, MAPC as compared to MSC had significantly lower expression of CD44 (36.56% ± 1.92% vs 98.23% ± 0.51%), CD73 (15.11% ± 2.24% vs 98.53% ± 2.22%) and CD105 (13.81% ± 3.82%vs 95.12% ± 5.65%) (P < 0.001, for all) MAPC cultures compared to MSC cultures treated with neural induction medium had significantly higher fold change expression of NF-200 (0.64), GFAP (0.52), Tau (0.59), MAP-2 (0.72), Olig-1 (0.18) and NSE (0.29) proteins (P < 0.01 for Olig-1 and P < 0.001 for rest) as well as higher fold change expression of genes of NF-200 (1.34),GFAP (1.12),Tau (1.08),MAP-1B (0.92), MAP-2 (1.14) andNSE (0.4) (P < 0.001 for all). CONCLUSION: MAPC can be differentially characterized from MSC as Oct-4 and Nanog positive stem cells with no expression of HLA-ABC and low expression of mesenchymal markers CD44, CD73 and CD105 and when compared to MSC they possess greater predilection for differentiation into neuro-ectodermal lineage.展开更多
BACKGROUND Mesenchymal stem cells(MSCs) have been widely tested for their therapeutic efficacy in the ischemic brain and have been shown to provide several benefits. A major obstacle to the clinical translation of the...BACKGROUND Mesenchymal stem cells(MSCs) have been widely tested for their therapeutic efficacy in the ischemic brain and have been shown to provide several benefits. A major obstacle to the clinical translation of these therapies has been the inability to noninvasively monitor the best route, cell doses, and collateral effects while ensuring the survival and effective biological functioning of the transplanted stem cells. Technological advances in multimodal imaging have allowed in vivo monitoring of the biodistribution and viability of transplanted stem cells due to a combination of imaging technologies associated with multimodal nanoparticles(MNPs) using new labels and covers to achieve low toxicity and longtime residence in cells.AIM To evaluate the sensitivity of triple-modal imaging of stem cells labeled with MNPs and applied in a stroke model.METHODS After the isolation and immunophenotypic characterization of human bonemarrow MSCs(hBM-MSCs), our team carried out lentiviral transduction of these cells for the evaluation of bioluminescent images(BLIs) in vitro and in vivo. In addition, MNPs that were previously characterized(regarding hydrodynamic size, zeta potential, and optical properties), and were used to label these cells,analyze cell viability via the 3-[4,5-dimethylthiazol-2-yl]-2,5 diphenyl tetrazolium bromide assay and BLI analysis, and quantify the internalization process and iron load in different concentrations of MNPs via magnetic resonance imaging(MRI),near-infrared fluorescence(NIRF), and inductively coupled plasma-mass spectrometry(ICP-MS). In in vivo analyses, the same labeled cells were implanted in a sham group and a stroke group at different times and under different MNP concentrations(after 4 h or 6 d of cell implantation) to evaluate the sensitivity of triple-modal images.RESULTS hBM-MSC collection and isolation after immunophenotypic characterization were demonstrated to be adequate in hBM samples. After transduction of these cells with luciferase(hBM-MSCLuc), we detected a maximum BLI intensity of 2.0 x10^8 photons/s in samples of 10~6 hBM-MSCs. Analysis of the physicochemical characteristics of the MNPs showed an average hydrodynamic diameter of 38.2 ±0.5 nm, zeta potential of 29.2 ± 1.9 mV and adequate colloidal stability without agglomeration over 18 h. The signal of iron load internalization in hBM-MSCLuc showed a close relationship with the corresponding MNP-labeling concentrations based on MRI, ICP-MS and NIRF. Under the highest MNP concentration, cellular viability showed a reduction of less than 10% compared to the control.Correlation analysis of the MNP load internalized into hBM-MSCLuc determined via the MRI, ICP-MS and NIRF techniques showed the same correlation coefficient of 0.99. Evaluation of the BLI, NIRF, and MRI signals in vivo and ex vivo after labeled hBM-MSCLuc were implanted into animals showed differences between different MNP concentrations and signals associated with different techniques(MRI and NIRF; 5 and 20 μg Fe/mL; P < 0.05) in the sham groups at 4 h as well as a time effect(4 h and 6 d; P < 0.001) and differences between the sham and stroke groups in all images signals(P < 0.001).CONCLUSION This study highlighted the importance of quantifying MNPs internalized into cells and the efficacy of signal detection under the triple-image modality in a stroke model.展开更多
文摘Objective:To explore the mechanism of circRNA-vgll3 in osteogenic differentiation of human bone marrow mesenchymal stem cells.Methods:BMSCs cells were transfected with circRNA-vgll3,and divided into circRNA-vgll3 high-level group,circRNA-vgll3 low-level group,and negative control group(circRNA-vgll3 not transfected)according to the amount of transfection.The proliferation and apoptosis of BMSCs osteoblasts in each group were analyzed,and the alkaline phosphatase(ALP)activity,type I collagen gray value,bone morphogenetic protein 2(BMP-2),Runx2 protein,and mRNA expression levels were detected.Results:The circRNA-vgll3 low-level group had a significant inhibitory effect on the proliferation of BMSCs osteoblasts,and the apoptosis rate of the circRNA-vgll3 low-level group was significantly higher than that of the circRNA-vgll3 high-level group(P<0.05);ALP activity,type I collagen gray value,BMP-2,Runx2 protein,and mRNA expression levels in the high-level circRNA-vgll3 group were significantly higher than those in the low-level circRNA-vgll3 group,and the difference was statistically significant(P<0.05).Conclusion:Overexpression of circRNA-vgll3 can promote the osteogenic differentiation ability of BMSCs,while low expression of circRNA-vgll3 can inhibit the osteogenic differentiation ability of BMSCs.The main mechanism of action is that circRNA-vgll3 can affect osteogenic differentiation by regulating the Runx2 protein.
文摘Mesenchymal stromal cells (MSCs) can be obtained from several sources and the significant differences in their properties make it crucial to investigate the differentiation potential of MSCs from different sources to determine the optimal source of MSCs. We investigated if this biological heterogeneity in MSCs from different sources results in different mechanisms for their differentiation. In this study, we compared the gene expression patterns of phenotypically defined MSCs derived from three ontogenically different sources: Embryonic stem cells (hES-MSCs), Fetal limb (Flb-MSCs) and Bone Marrow (BM-MSCs). Differentially expressed genes between differentiated cells and undifferentiated controls were compared across the three MSC sources. We found minimal overlap (5% - 16%) in differentially expressed gene sets among the three sources. Flb-MSCs were similar to BM-MSCs based on differential gene expression patterns. Pathway analysis of the differentially expressed genes using Ingenuity Pathway Analysis (IPA) revealed a large variation in the canonical pathways leading to MSC differentiation. The similar canonical pathways among the three sources were lineage specific. The Flb-MSCs showed maximum overlap of canonical pathways with the BM-MSCs, indicating that the Flb-MSCs are an intermediate source between the less specialised hES-MSC source and the more specialised BM-MSC source. The source specific pathways prove that MSCs from the three ontogenically different sources use different biological pathways to obtain similar differentiation outcomes. Thus our study advocates the understanding of biological pathways to obtain optimal sources of MSCs for various clinical applications.
基金Supported by Grant MG-098-PP-08 from the National Health Research Institutes, Taiwan
文摘AIM: To investigate the differentiation status and key factors to facilitate hepatic differentiation of human bone-marrow-derived mesenchymal stem cells (MSCs). METHODS: Human MSCs derived from bone marrow were induced into hepatocyte-like cells following a previously published protocol. The differentiation status of the hepatocyte-like cells was compared with various human hepatoma cell lines. Overexpression of hepatocyte nuclear factor (HNF)-4α was mediated by adenovirus infection of these hepatocyte-like cells. The expression of interesting genes was then examined by either re-verse transcription-polymerase chain reaction (RT-PCR) or real-time RT-PCR methods. RESULTS: Our results demonstrated that the differentiation status of hepatocyte-like cells induced from human MSCs was relatively similar to poorly differentiated human hepatoma cell lines. Interestingly, the HNF-4 isoform in induced MSCs and poorly differentiated human hepatoma cell lines was identified as HNF4γ instead of HNF-4α. Overexpression of HNF-4α in induced MSCs significantly enhanced the expression level of hepatic-specific genes, liver-enriched transcription factors, and cytochrome P450 (P450) genes. CONCLUSION: Overexpression of HNF-4α improves the hepatic differentiation of human MSCs from bone marrow and is a simple way of providing better cell sources for clinical applications.
基金supported by research grants from State 863 high technology R&D Project of China(2002AA205051and 2003AA205160)the National Key Rroject for Basic Research of China(2001CB509906)
文摘Objective To investigate the potential of adult mesenchymal stem cells (MSCs) derived from human bone marrow to undergo cardiomyogenic differentiation after exposure to 5-azacytidine (5-aza) in vitro. Methods A small bone marrow aspirate was taken from the iliac crest of human volunteers, and hMSCs were isolated by 1.073g/mL Percoll and propagated in the right cell culturing medium as previously described. The phenotypes of hMSCs were characterized with the use of flow cytometry. The hMSCs were cultured in cell culture medium (as control) and medium mixed with 5-aza for cellular differentiation. We examined by immunohistochemistry at 21 days the inducement of desmin, cardiac-specific cardiac troponin I (cTnI), GATA 4 and connexin-43 respectively. Results The hMSCs are fibroblast-like morphology and express CD44+ CD29+ CD90+ / CD34- CD45- CD31- CD11a. After 5-aza treatment, 20-30% hMSCs connected with adjoining cells and coalesced into myotube structures after 14days. Twenty-one days after 5-aza treatment, immunofluorescence showed that some cells expressed desmin,GATA4, cTnI and connexin-43 in 5,10 μmol/L 5-aza groups, but no cardiac specific protein was found in neither 3μmol/L 5-aza group nor in the control group. The ratio of cTnI positively stained cells in 10 μmol/L group was higher than that in 5 μmol/L group (65.3 ± 4.7% vs 48.2 ± 5.4%, P < 0.05). Electron microscopy revealed that myofilaments were formed. The induced cells expressed cardiac-myosin heavy chain (MyHC) gene by reverse transcription-polymerase chain reaction (RT-PCR). Conclusions Theses findings suggest that hMSCs from adult bone marrow can be differentiated into cardiac-like muscle cells with 5-aza inducement in vitro and the differentiation is in line with the 5-aza concentration. (J Geriatr Cardiol 2004;1(2) :101-107. )
基金the National Basic Research Program of China (No 2005CB522404 and 2006CB910506)the Program for Changjiang Scholars and Innovative Research Team (PCSIRT) in Universities (No IRT0519)the National Natural Science Founda-tion of China (No 30771232 and 30671184)
文摘Mesenchymal stem cells (MSCs) of nonembryonic origins possess the proliferation and multi-lineage differentiation potentials. It has been established that epigenetic mechanisms could be critical for determining the fate of stem cells, and MSCs derived from different origins exhibited different expression profiles individually to a certain extent. In this study, ChiP-on-chip was used to generate genome-wide histone H3-Lys9 acetylation and dimethylation profiles at gene promoters in human bone marrow MSCs. We showed that modifications of histone H3-Lys9 at gene promoters correlated well with mRNA expression in human bone marrow MSCs. Functional analysis revealed that many key cellular pathways in human bone marrow MSC self-renewal, such as the canonical signaling pathways, cell cycle pathways and cytokine related pathways may be regulated by H3-Lys9 modifications. These data suggest that gene activation and silencing affected by H3-Lys9 acetylation and dimethylation, respectively, may be essential to the maintenance of human bone marrow MSC self-renewal and multi-potency.
文摘Human-induced neural stem cells(iNSCs)transplantation is a potential treatment of neurodegeneration diseases.However,whether the reprogrammed cells have the same characterizations as human fetal neural stem cells needs further exploration.Here we isolated human fetal neural stem cells from aborted 12-week fetal brains and compared with iNSCs reprogrammed from human peripheral blood mononuclear cells in gene expression,proliferation ability,differentiation capacity,and the responses to tumor necrosis factor-α.We found that iNSCs and NSCs both expressed neural stem cell markers Nestin,SOX1,and SOX2.However,only iNSCs can be patterned into dopaminergic neurons and motor neurons.Furthermore,both iNSCs and NSCs can differentiate into oligodendrocyte progenitor cells.In addition,a low dose of tumor necrosis factor-αdid not inhibit the proliferation and differentiation of iNSCs and NSCs.In conclusion,iNSCs have properties similar to,and even better than,fetal neural stem cells and may be suitable for disease modeling and transplantation.
基金Project Description of Xingtai Science and Technology Plan(No.2019ZC206)
文摘Objective:To investigate the effects of astragalus polysaccharides(APS)on bone marrow suppression and hematopoietic stem cells during chemotherapy in elderly patients with lung cancer.Methods:120 elderly patients with lung cancer treated in the first hospital of Xingtai city from January 2019 to early December 2019 were divided into the treatment group and the control group by the random number table method,all of whom received pemetrexed+carboplatin chemotherapy,and the treatment group was treated with APS at the same time.The efficacy was evaluated after 2 cycles of chemotherapy,bone marrow suppression was observed,and levels of TCM symptoms score,peripheral blood T lymphocyte subgroup index,L-selectin(CD62L)and macrophage differentiation antigen-1(Mac-1)were measured before and after 2 cycles of chemotherapy.Results:The response rate(RR)was 56.67%in the treatment group and 45.00%in the control group,with no statistically significant difference(P>0.05);The disease control rate(DCR)in the treatment group was 81.67%,which was significantly higher than 65.00%in the control group(P<0.05);The reduction degree of leukopenia in the treatment group was significantly lower than that in the control group(P<0.05);The treatment group had a platelet reduction of grade 1+2 at a rate of 40.00%,and hemoglobin reduction of grade 1+2 at a rate of 28.33%,which were significantly lower than the control group at 65.00%and 58.33%(P<0.05);Compared with those before chemotherapy,the total score of TCM symptoms,serum CD62L and Mac-1 levels in the two groups all decreased significantly after chemotherapy,and they were significantly lower in the treatment group than in the control group(P<0.05);After chemotherapy,CD3+,CD4+and CD4+/CD8+in the treatment group increased significantly and they were all higher in the treatment group than in the control group,while CD8+decreased significantly and was lower in the treatment group than in the control group(P<0.05).There was no statistically significant difference in T lymphocyte subsets before and after chemotherapy in the control group(P>0.05).Conclusion:Astragalus polysaccharide can improve the chemotherapy effect and improve the bone marrow suppression in elderly patients with lung cancer,which may be related to its obvious enhancement of immune function and decrease of CD62L and Mac-1 levels.
基金Hainan Provincial Key Research and Development Plan(ZDYF2017080)National Natural Science Foundation of China(81660489,81260367,81160310).
文摘Objective: To investigate the effect of hepatic differentiation of human bone marrow mesenchymal stem cells (HBMSCs) induced in vitro and transplanted into rats with liver failure via portal vein, and observe the changes of liver function and pathological tissue. Method:After passage to the 6th generation in vitro, the hepatic differentiation was induced by HGFand EGF inducible factors. CCL4 acute liver failure model in rats were established, and randomly divided into 5 groups transplanted with differentiated stem cells via portal vein. These five groups included HGF-differentiated HBMSCs transplantation, EGF-differentiated HBMSCs transplantation, EGF+HGF-differentiated HBMSCs transplantation, non-differentiated HBMSCs transplantation, and non-HBMSCs transplantation. Liver function and pathological changes were detected. Results: Rats models survival, serum albumin, aminotransferase and coagulation indexes were observed at 12 h, 72 h, 7 d, 1 month and 2 months after treatment. The results showed that the survival and albumin, aminotransferase and coagulation function of rats were improved significantly after treatment in HGF-differentiated, EGF-differentiated, EGF+HGF-differentiated and non-differentiated transplantation groups, compared tothe non-HBMSCstransplantation group(P<0.05), while no significance was observed in above four groups(P>0.05).Pathological changes was ameliorated in the liver of rat models in HGF-, EGF-, EGF+HGF- and non-differentiated transplantation groups, compared to the non-HBMSCs transplantation group. Conclusion: Liver-differentiated BMSCs transplanted into rats with liver failure could effectively improve liver function and survival rate.
文摘BACKGROUND Premature ovarian failure(POF)affects many adult women less than 40 years of age and leads to infertility.According to previous reports,various tissue-specific stem cells can restore ovarian function and folliculogenesis in mice with chemotherapy-induced POF.Human embryonic stem cells(ES)provide an alternative source for mesenchymal stem cells(MSCs)because of their similarities in phenotype and immunomodulatory and anti-inflammatory characteristics.Embryonic stem cell-derived mesenchymal stem cells(ES-MSCs)are attractive candidates for regenerative medicine because of their high proliferation and lack of barriers for harvesting tissue-specific MSCs.However,possible therapeutic effects and underlying mechanisms of transplanted ES-MSCs on cyclophosphamide and busulfan-induced mouse ovarian damage have not been evaluated.AIM To evaluate ES-MSCs vs bone marrow-derived mesenchymal stem cells(BMMSCs)in restoring ovarian function in a mouse model of chemotherapy-induced premature ovarian failure.METHODS Female mice received intraperitoneal injections of different doses of cyclophosphamide and busulfan to induce POF.Either human ES-MSCs or BMMSCs were transplanted into these mice.Ten days after the mice were injected with cyclophosphamide and busulfan and 4 wk after transplantation of the ESMSCs and/or BM-MSCs,we evaluated body weight,estrous cyclicity,folliclestimulating hormone and estradiol hormone concentrations and follicle count were used to evaluate the POF model and cell transplantation.Moreover,terminal deoxynucleotidyl transferase mediated 2-deoxyuridine 5-triphosphate nick end labeling,real-time PCR,Western blot analysis and immunohistochemistry and mating was used to evaluate cell transplantation.Enzyme-linked immunosorbent assay was used to analyze vascular endothelial growth factor,insulin-like growth factor 2 and hepatocyte growth factor levels in ES-MSC condition medium in order to investigate the mechanisms that underlie their function.RESULTS The human ES-MSCs significantly restored hormone secretion,survival rate and reproductive function in POF mice,which was similar to the results obtained with BM-MSCs.Gene expression analysis and the terminal deoxynucleotidyl transferase mediated 2-deoxyuridine 5-triphosphate nick end labeling assay results indicated that the ES-MSCs and/or BM-MSCs reduced apoptosis in the follicles.Notably,the transplanted mice generated new offspring.The results of different analyses showed increases in antiapoptotic and trophic proteins and genes.CONCLUSION These results suggested that transplantation of human ES-MSCs were similar to BM-MSCs in that they could restore the structure of the injured ovarian tissue and its function in chemotherapy-induced damaged POF mice and rescue fertility.The possible mechanisms of human ES-MSC were related to promotion of follicular development,ovarian secretion,fertility via a paracrine effect and ovarian cell survival.
基金Supported by A grant from Stem Cell Organization: www.stem-cell.ir
文摘AIM: To improve the isolation and expansion of human marrow-derived mesenchymal stem cells (MSCs) based on rat samples. METHODS: Based on the fact that rat MSCs are relatively easy to obtain from a small aspirate, bone marrow-derived MSCs from rat were cultured and characterized to set up the different protocols used in this study. Then, accordingly, almost the same protocols were performed on human healthy bone marrow samples, after obtaining approval of the ethics committee and gaining informed consent. We used different protocols and culture conditions, including the type of basal media and the culture composition. The MSCs were characterized by immunophenotyping and differentiation. RESULTS: There was no difference in morphology and proliferation capacity between different culture media at the first passage. During the 5-7th passages, the cells gradually lost their morphology and proliferation potential on Dulbecco’s modified Eagle’s medium (DMEM) high glucose and α modified Eagle’s medium. Although the cells expanded rapidly for up to 10 passages on DMEM low glucose containing 10% to 15% fetal calf serum (FCS), their proliferation was arrested without change in morphology and differentiation capacity at the third passage on 5% FCS. Flow cytometric analysis and functional tests confirmed that more than 90% of marrow cells which were isolated and expanded by our selective protocols were MSCs. CONCLUSION: We improved the isolation and expansion of human bone marrow derived MSCs, based on rat sample experiments, for further experimental and clinical use.
基金supported by a grant from Construction Project of Gansu Provincial Animal Cell Engineering Center,No.0808NTGA013Program for Innovative Research Team in University of Ministry of Education of China,No.IRT13091
文摘The purpose of this study was to assess fetal bovine acellular dermal matrix as a scaffold for supporting the differentiation of bone marrow mesenchymal stem cells into neural cells fol-lowing induction with neural differentiation medium. We performed long-term, continuous observation of cell morphology, growth, differentiation, and neuronal development using several microscopy techniques in conjunction with immunohistochemistry. We examined speciifc neu-ronal proteins and Nissl bodies involved in the differentiation process in order to determine the neuronal differentiation of bone marrow mesenchymal stem cells. The results show that bone marrow mesenchymal stem cells that differentiate on fetal bovine acellular dermal matrix display neuronal morphology with unipolar and bi/multipolar neurite elongations that express neuro-nal-speciifc proteins, includingβIII tubulin. The bone marrow mesenchymal stem cells grown on fetal bovine acellular dermal matrix and induced for long periods of time with neural differen-tiation medium differentiated into a multilayered neural network-like structure with long nerve ifbers that was composed of several parallel microifbers and neuronal cells, forming a complete neural circuit with dendrite-dendrite to axon-dendrite to dendrite-axon synapses. In addition, growth cones with filopodia were observed using scanning electron microscopy. Paraffin sec-tioning showed differentiated bone marrow mesenchymal stem cells with the typical features of neuronal phenotype, such as a large, round nucleus and a cytoplasm full of Nissl bodies. The data suggest that the biological scaffold fetal bovine acellular dermal matrix is capable of supporting human bone marrow mesenchymal stem cell differentiation into functional neurons and the subsequent formation of tissue engineered nerve.
文摘Previous studies have shown that transplantation of human bone marrow mesenchymal stem cells promotes neural functional recovery after stroke, but the neurorestorative mechanisms remain largely unknown. We hypothesized that functional recovery of myelinated axons may be one of underlying mechanisms. In this study, an ischemia/reperfusion rat model was established using the middle cerebral artery occlusion method. Rats were used to test the hypothesis that intravenous transplantation of human bone marrow mesenchyrnal stem cells through the femoral vein could exert neuroprotective effects against cerebral ischemia via a mechanism associated with the ability to attenuate axonal injury. The results of behavioral tests, infarction volume analysis and immunohistochemistry showed that cerebral ischemia caused severe damage to the myelin sheath and axons. After rats were intravenously transplanted with human bone marrow mesenchymal stem cells, the levels of axon and myelin sheath-related proteins, including microtubule-associated protein 2, myelin basic protein, and growth-associated protein 43, were elevated, infarct volume was decreased and neural function was improved in cerebral ischemic rats. These findings suggest that intravenously transplanted human bone marrow mesenchymal stem cells promote neural function. Possible mechanisms underlying these beneficial effects include resistance to demyelination after cerebral ischemia, prevention of axonal degeneration, and promotion of axonal regeneration.
基金supported by the CAMS Innovation Foundation for Medical Sciences(2016-I2M1-011)A Project Funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions(2018-87)+1 种基金Jiangsu Province Capability Improvement Project through Science,Technology and Education-Jiangsu Provincial Research Hospital Cultivation Unit(YJXYYJSDW4)Jiangsu Provincial Medical Innovation Center(CXZX202227)。
文摘Alveolar bone regeneration has been strongly linked to macrophage polarization.M1 macrophages aggravate alveolar bone loss,whereas M2 macrophages reverse this process.Berberine(BBR),a natural alkaloid isolated and refined from Chinese medicinal plants,has shown therapeutic effects in treating metabolic disorders.In this study,we first discovered that culture supernatant(CS)collected from BBR-treated human bone marrow mesenchymal stem cells(HBMSCs)ameliorated periodontal alveolar bone loss.CS from the BBR-treated HBMSCs contained bioactive materials that suppressed the M1 polarization and induced the M2 polarization of macrophages in vivo and in vitro.To clarify the underlying mechanism,the bioactive materials were applied to different animal models.We discovered macrophage colony-stimulating factor(M-CSF),which regulates macrophage polarization and promotes bone formation,a key macromolecule in the CS.Injection of pure M-CSF attenuated experimental periodontal alveolar bone loss in rats.Colony-stimulating factor 1 receptor(CSF1R)inhibitor or anti-human M-CSF(M-CSF neutralizing antibody,Nab)abolished the therapeutic effects of the CS of BBR-treated HBMSCs.Moreover,AKT phosphorylation in macrophages was activated by the CS,and the AKT activator reversed the negative effect of the CSF1R inhibitor or Nab.These results suggest that the CS of BBR-treated HBMSCs modulates macrophage polarization via the M-CSF/AKT axis.Further studies also showed that CS of BBR-treated HBMSCs accelerated bone formation and M2 polarization in rat teeth extraction sockets.Overall,our findings established an essential role of BBR-treated HBMSCs CS and this might be the first report to show that the products of BBR-treated HBMSCs have active effects on alveolar bone regeneration.
基金Supported by The Grant-in-Aid entitled"Stem cells for regenerative medicine:Isolation of Multipotent adult Progenitor Cells from Human Bone Marrow and their Clonal Expansion and Differentiation into Cardiomyocytes,Hepatocytes and Beta-islets"No.BT/PR6303/MED/14/776/2005,sanctioned by Department of Biotechnology,Government of India
文摘AIM: To compare the phenotypic and neural differentiation potential of human bone marrow derived multipotent adult progenitor cells (MAPC) and mesenchymal stem cells (MSC). METHODS: Cultures of MAPC and MSC were established in parallel from same samples of human bone marrow (n = 5). Both stem cell types were evaluated for expression of pluripotency markers including Oct-4 and Nanog by immunocytochemistry and reversetranscription polymerase chain reaction (RT-PCR) and expression of standard mesenchymal markers including CD14, CD34, CD44, CD45, CD73, CD90, CD105 andhuman leukocyte antigen (HLA)-ABC by flow cytometry. After treatment with neural induction medium both MAPC and MSC were evaluated for expression of neural proteins [neuronal filament-200 (NF-200) and glial fibrillar acidic protein (GFAP)] by immunocytochemistry and Western blotting and neural genes [NF-200, GFAP, Tau, microtubule-associated protein (MAP)-1B, MAP-2, neuron-specific enolase (NSE) and oligodendrocyte-1 (Olig-1)] by quantitative real-time-PCR. RESULTS: MAPC had small trigonal shaped while MSC had elongated spindle-shaped morphology. The MAPC expressed Oct-4 and Nanog both at gene and protein levels, whereas MSC were negative for these pluripotent markers. MAPC were negative for HLA-ABC while MSC had high expression of HLA-ABC. In addition, MAPC as compared to MSC had significantly lower expression of CD44 (36.56% ± 1.92% vs 98.23% ± 0.51%), CD73 (15.11% ± 2.24% vs 98.53% ± 2.22%) and CD105 (13.81% ± 3.82%vs 95.12% ± 5.65%) (P < 0.001, for all) MAPC cultures compared to MSC cultures treated with neural induction medium had significantly higher fold change expression of NF-200 (0.64), GFAP (0.52), Tau (0.59), MAP-2 (0.72), Olig-1 (0.18) and NSE (0.29) proteins (P < 0.01 for Olig-1 and P < 0.001 for rest) as well as higher fold change expression of genes of NF-200 (1.34),GFAP (1.12),Tau (1.08),MAP-1B (0.92), MAP-2 (1.14) andNSE (0.4) (P < 0.001 for all). CONCLUSION: MAPC can be differentially characterized from MSC as Oct-4 and Nanog positive stem cells with no expression of HLA-ABC and low expression of mesenchymal markers CD44, CD73 and CD105 and when compared to MSC they possess greater predilection for differentiation into neuro-ectodermal lineage.
基金Supported by Conselho Nacional de Desenvolvimento Científico e Tecnológico,No.CNPq-465259/2014-6,and No.CNPq-400856/2016-6São Paulo State Research Support Foundation,No.2014/50983-3,and No.2016/21470-3
文摘BACKGROUND Mesenchymal stem cells(MSCs) have been widely tested for their therapeutic efficacy in the ischemic brain and have been shown to provide several benefits. A major obstacle to the clinical translation of these therapies has been the inability to noninvasively monitor the best route, cell doses, and collateral effects while ensuring the survival and effective biological functioning of the transplanted stem cells. Technological advances in multimodal imaging have allowed in vivo monitoring of the biodistribution and viability of transplanted stem cells due to a combination of imaging technologies associated with multimodal nanoparticles(MNPs) using new labels and covers to achieve low toxicity and longtime residence in cells.AIM To evaluate the sensitivity of triple-modal imaging of stem cells labeled with MNPs and applied in a stroke model.METHODS After the isolation and immunophenotypic characterization of human bonemarrow MSCs(hBM-MSCs), our team carried out lentiviral transduction of these cells for the evaluation of bioluminescent images(BLIs) in vitro and in vivo. In addition, MNPs that were previously characterized(regarding hydrodynamic size, zeta potential, and optical properties), and were used to label these cells,analyze cell viability via the 3-[4,5-dimethylthiazol-2-yl]-2,5 diphenyl tetrazolium bromide assay and BLI analysis, and quantify the internalization process and iron load in different concentrations of MNPs via magnetic resonance imaging(MRI),near-infrared fluorescence(NIRF), and inductively coupled plasma-mass spectrometry(ICP-MS). In in vivo analyses, the same labeled cells were implanted in a sham group and a stroke group at different times and under different MNP concentrations(after 4 h or 6 d of cell implantation) to evaluate the sensitivity of triple-modal images.RESULTS hBM-MSC collection and isolation after immunophenotypic characterization were demonstrated to be adequate in hBM samples. After transduction of these cells with luciferase(hBM-MSCLuc), we detected a maximum BLI intensity of 2.0 x10^8 photons/s in samples of 10~6 hBM-MSCs. Analysis of the physicochemical characteristics of the MNPs showed an average hydrodynamic diameter of 38.2 ±0.5 nm, zeta potential of 29.2 ± 1.9 mV and adequate colloidal stability without agglomeration over 18 h. The signal of iron load internalization in hBM-MSCLuc showed a close relationship with the corresponding MNP-labeling concentrations based on MRI, ICP-MS and NIRF. Under the highest MNP concentration, cellular viability showed a reduction of less than 10% compared to the control.Correlation analysis of the MNP load internalized into hBM-MSCLuc determined via the MRI, ICP-MS and NIRF techniques showed the same correlation coefficient of 0.99. Evaluation of the BLI, NIRF, and MRI signals in vivo and ex vivo after labeled hBM-MSCLuc were implanted into animals showed differences between different MNP concentrations and signals associated with different techniques(MRI and NIRF; 5 and 20 μg Fe/mL; P < 0.05) in the sham groups at 4 h as well as a time effect(4 h and 6 d; P < 0.001) and differences between the sham and stroke groups in all images signals(P < 0.001).CONCLUSION This study highlighted the importance of quantifying MNPs internalized into cells and the efficacy of signal detection under the triple-image modality in a stroke model.