Gait recognition is an active research area that uses a walking theme to identify the subject correctly.Human Gait Recognition(HGR)is performed without any cooperation from the individual.However,in practice,it remain...Gait recognition is an active research area that uses a walking theme to identify the subject correctly.Human Gait Recognition(HGR)is performed without any cooperation from the individual.However,in practice,it remains a challenging task under diverse walking sequences due to the covariant factors such as normal walking and walking with wearing a coat.Researchers,over the years,have worked on successfully identifying subjects using different techniques,but there is still room for improvement in accuracy due to these covariant factors.This paper proposes an automated model-free framework for human gait recognition in this article.There are a few critical steps in the proposed method.Firstly,optical flow-based motion region esti-mation and dynamic coordinates-based cropping are performed.The second step involves training a fine-tuned pre-trained MobileNetV2 model on both original and optical flow cropped frames;the training has been conducted using static hyperparameters.The third step proposed a fusion technique known as normal distribution serially fusion.In the fourth step,a better optimization algorithm is applied to select the best features,which are then classified using a Bi-Layered neural network.Three publicly available datasets,CASIA A,CASIA B,and CASIA C,were used in the experimental process and obtained average accuracies of 99.6%,91.6%,and 95.02%,respectively.The proposed framework has achieved improved accuracy compared to the other methods.展开更多
Gait is a biological typical that defines the method by that people walk.Walking is the most significant performance which keeps our day-to-day life and physical condition.Surface electromyography(sEMG)is a weak bioel...Gait is a biological typical that defines the method by that people walk.Walking is the most significant performance which keeps our day-to-day life and physical condition.Surface electromyography(sEMG)is a weak bioelectric signal that portrays the functional state between the human muscles and nervous system to any extent.Gait classifiers dependent upon sEMG signals are extremely utilized in analysing muscle diseases and as a guide path for recovery treatment.Several approaches are established in the works for gait recognition utilizing conventional and deep learning(DL)approaches.This study designs an Enhanced Artificial Algae Algorithm with Hybrid Deep Learning based Human Gait Classification(EAAA-HDLGR)technique on sEMG signals.The EAAA-HDLGR technique extracts the time domain(TD)and frequency domain(FD)features from the sEMG signals and is fused.In addition,the EAAA-HDLGR technique exploits the hybrid deep learning(HDL)model for gait recognition.At last,an EAAA-based hyperparameter optimizer is applied for the HDL model,which is mainly derived from the quasi-oppositional based learning(QOBL)concept,showing the novelty of the work.A brief classifier outcome of the EAAA-HDLGR technique is examined under diverse aspects,and the results indicate improving the EAAA-HDLGR technique.The results imply that the EAAA-HDLGR technique accomplishes improved results with the inclusion of EAAA on gait recognition.展开更多
The paper builds a multi-rigid-body model of human with a 4-rigid-body foot in the 3D CAD software Solidworks, based on human anatomy. By controlling the rotation of the ankle and major joints of human body while walk...The paper builds a multi-rigid-body model of human with a 4-rigid-body foot in the 3D CAD software Solidworks, based on human anatomy. By controlling the rotation of the ankle and major joints of human body while walking, the Kinematic simulation was performed in the dynamics simulation software ADAMS. The paper analyzes the simulate results and points out deficiencies in the current work and the direction of research efforts in future.展开更多
Background—Human Gait Recognition(HGR)is an approach based on biometric and is being widely used for surveillance.HGR is adopted by researchers for the past several decades.Several factors are there that affect the s...Background—Human Gait Recognition(HGR)is an approach based on biometric and is being widely used for surveillance.HGR is adopted by researchers for the past several decades.Several factors are there that affect the system performance such as the walking variation due to clothes,a person carrying some luggage,variations in the view angle.Proposed—In this work,a new method is introduced to overcome different problems of HGR.A hybrid method is proposed or efficient HGR using deep learning and selection of best features.Four major steps are involved in this work-preprocessing of the video frames,manipulation of the pre-trained CNN model VGG-16 for the computation of the features,removing redundant features extracted from the CNN model,and classification.In the reduction of irrelevant features Principal Score and Kurtosis based approach is proposed named PSbK.After that,the features of PSbK are fused in one materix.Finally,this fused vector is fed to the One against All Multi Support Vector Machine(OAMSVM)classifier for the final results.Results—The system is evaluated by utilizing the CASIA B database and six angles 00◦,18◦,36◦,54◦,72◦,and 90◦are used and attained the accuracy of 95.80%,96.0%,95.90%,96.20%,95.60%,and 95.50%,respectively.Conclusion—The comparison with recent methods show the proposed method work better.展开更多
This study presents the measurement of the angular position and acceleration during the leg gait and the data fitting using Fourier series to parameterize the measurements obtained through accelerometers. The sensor r...This study presents the measurement of the angular position and acceleration during the leg gait and the data fitting using Fourier series to parameterize the measurements obtained through accelerometers. The sensor reference is the gravity direction for the three axes that is converted into angular position and acceleration data. For this study, measurements were made in the femoral area of a human leg. The curves were obtained based on Fourier series, and though a homologation made to their harmonics, we obtained ordinary differential equations (ODEs) that parameterize these curves. The curves were approximated using six harmonics, resulting in six ODEs. The summed solutions of the ODEs represent the angular position or inclination of the leg during a walk step. The first and second derivative of the ODEs means the velocity and the acceleration of the leg movement. These types of tools are required in different research subjects such as health, entertainment, and engineering.展开更多
The compressed sensing (CS) of acceleration data has been drawing increasing attention in gait telemonitoring application. In such application, there still exist some challenging issues including high energy consumpti...The compressed sensing (CS) of acceleration data has been drawing increasing attention in gait telemonitoring application. In such application, there still exist some challenging issues including high energy consumption of body-worn device for acceleration data acquisition and the poor reconstruction performance due to nonsparsity of acceleration data. Thus, the novel scheme of compressive sensing of acceleration data is needed urgently for solutions that are found to these issues.展开更多
Human gait recognition(HGR)is the process of identifying a sub-ject(human)based on their walking pattern.Each subject is a unique walking pattern and cannot be simulated by other subjects.But,gait recognition is not e...Human gait recognition(HGR)is the process of identifying a sub-ject(human)based on their walking pattern.Each subject is a unique walking pattern and cannot be simulated by other subjects.But,gait recognition is not easy and makes the system difficult if any object is carried by a subject,such as a bag or coat.This article proposes an automated architecture based on deep features optimization for HGR.To our knowledge,it is the first architecture in which features are fused using multiset canonical correlation analysis(MCCA).In the proposed method,original video frames are processed for all 11 selected angles of the CASIA B dataset and utilized to train two fine-tuned deep learning models such as Squeezenet and Efficientnet.Deep transfer learning was used to train both fine-tuned models on selected angles,yielding two new targeted models that were later used for feature engineering.Features are extracted from the deep layer of both fine-tuned models and fused into one vector using MCCA.An improved manta ray foraging optimization algorithm is also proposed to select the best features from the fused feature matrix and classified using a narrow neural network classifier.The experimental process was conducted on all 11 angles of the large multi-view gait dataset(CASIA B)dataset and obtained improved accuracy than the state-of-the-art techniques.Moreover,a detailed confidence interval based analysis also shows the effectiveness of the proposed architecture for HGR.展开更多
The synthesis of human walking is of great interest in biomechanics and biomimetic engineering due to its predictive capabilities and potential applications in clinical biomechanics, rehabilitation engineering and bio...The synthesis of human walking is of great interest in biomechanics and biomimetic engineering due to its predictive capabilities and potential applications in clinical biomechanics, rehabilitation engineering and biomimetic robotics. In this paper, the various methods that have been used to synthesize humanwalking are reviewed from an engineering viewpoint. This involves a wide spectrum of approaches, from simple passive walking theories to large-scale computational models integrating the nervous, muscular and skeletal systems. These methods are roughly categorized under four headings: models inspired by the concept of a CPG (Central Pattern Generator), methods based on the principles of control engineering, predictive gait simulation using optimisation, and models inspired by passive walking theory. The shortcomings and advantages of these methods are examined, and future directions are discussed in the context of providing insights into the neural control objectives driving gait and improving the stability of the predicted gaits. Future advancements are likely to be motivated by improved understanding of neural control strategies and the subtle complexities of the musculoskeletal system during human locomotion. It is only a matter of time before predictive gait models become a practical and valuable tool in clinical diagnosis, rehabilitation engineering and robotics.展开更多
Most women like wearing high-heeled shoes for the benefit of sensuous attractiveness and self-esteem while musculoskeletal problems and gait patterns changes are often associated. The present study aimed to identify c...Most women like wearing high-heeled shoes for the benefit of sensuous attractiveness and self-esteem while musculoskeletal problems and gait patterns changes are often associated. The present study aimed to identify changes during the gait stance and swing phases in some lower limb muscles. In addition, abdominal muscle was included due to its importance in dynamic trunk stability, and lack of studies on the subject. Here, we found that the use of high-heeled shoes elicited not only the increasing of the electrical activity from the muscles involved in the gait cycle, but also altered the temporal sequence of their recruitment. As practical applications, these changes may be strategies to maintain stability and minimize risks of falling, but they are often associated to diseases. Women that use high-heeled shoes for prolonged time must apply specific muscle exercises to minimize its long-term effects.展开更多
Biomedical applications of body area networks (BANs) are evolving, where taking periodic medical readings of patients via means wireless technologies at home or in the office will aid physicians to periodically superv...Biomedical applications of body area networks (BANs) are evolving, where taking periodic medical readings of patients via means wireless technologies at home or in the office will aid physicians to periodically supervise the patient’s medical status without having to see the patient. Thus, one important objective of BANs is to provide the doctor with the medical readings that can be collected electronically without being in close proximity to the patient. This is done through the measurement of the patient’s physiological signals via means of wearable sensors. This paper investigates wireless BAN cooperation via actual measurements of human movement kinematics and electrocardiogram (ECG), which are believed to provide patients with easy healthcare for continuous health-monitoring. The collected information will be processed using specially designed software, which in turn will enable the patient to send a full medical chart to the physician’s electronic device. In this way, physicians will have the ability to monitor their patients more efficiently.展开更多
基金supported by“Human Resources Program in Energy Technology”of the Korea Institute of Energy Technology Evaluation and Planning(KETEP)granted financial resources from the Ministry of Trade,Industry&Energy,Republic of Korea.(No.20204010600090).
文摘Gait recognition is an active research area that uses a walking theme to identify the subject correctly.Human Gait Recognition(HGR)is performed without any cooperation from the individual.However,in practice,it remains a challenging task under diverse walking sequences due to the covariant factors such as normal walking and walking with wearing a coat.Researchers,over the years,have worked on successfully identifying subjects using different techniques,but there is still room for improvement in accuracy due to these covariant factors.This paper proposes an automated model-free framework for human gait recognition in this article.There are a few critical steps in the proposed method.Firstly,optical flow-based motion region esti-mation and dynamic coordinates-based cropping are performed.The second step involves training a fine-tuned pre-trained MobileNetV2 model on both original and optical flow cropped frames;the training has been conducted using static hyperparameters.The third step proposed a fusion technique known as normal distribution serially fusion.In the fourth step,a better optimization algorithm is applied to select the best features,which are then classified using a Bi-Layered neural network.Three publicly available datasets,CASIA A,CASIA B,and CASIA C,were used in the experimental process and obtained average accuracies of 99.6%,91.6%,and 95.02%,respectively.The proposed framework has achieved improved accuracy compared to the other methods.
基金supported by a grant from the Korea Health Technology R&D Project through the KoreaHealth Industry Development Institute (KHIDI)funded by the Ministry of Health&Welfare,Republic of Korea (grant number:HI21C1831)the Soonchunhyang University Research Fund.
文摘Gait is a biological typical that defines the method by that people walk.Walking is the most significant performance which keeps our day-to-day life and physical condition.Surface electromyography(sEMG)is a weak bioelectric signal that portrays the functional state between the human muscles and nervous system to any extent.Gait classifiers dependent upon sEMG signals are extremely utilized in analysing muscle diseases and as a guide path for recovery treatment.Several approaches are established in the works for gait recognition utilizing conventional and deep learning(DL)approaches.This study designs an Enhanced Artificial Algae Algorithm with Hybrid Deep Learning based Human Gait Classification(EAAA-HDLGR)technique on sEMG signals.The EAAA-HDLGR technique extracts the time domain(TD)and frequency domain(FD)features from the sEMG signals and is fused.In addition,the EAAA-HDLGR technique exploits the hybrid deep learning(HDL)model for gait recognition.At last,an EAAA-based hyperparameter optimizer is applied for the HDL model,which is mainly derived from the quasi-oppositional based learning(QOBL)concept,showing the novelty of the work.A brief classifier outcome of the EAAA-HDLGR technique is examined under diverse aspects,and the results indicate improving the EAAA-HDLGR technique.The results imply that the EAAA-HDLGR technique accomplishes improved results with the inclusion of EAAA on gait recognition.
文摘The paper builds a multi-rigid-body model of human with a 4-rigid-body foot in the 3D CAD software Solidworks, based on human anatomy. By controlling the rotation of the ankle and major joints of human body while walking, the Kinematic simulation was performed in the dynamics simulation software ADAMS. The paper analyzes the simulate results and points out deficiencies in the current work and the direction of research efforts in future.
基金This study was supported by the grants of the Korea Health Technology R&D Project through the Korea Health Industry Development Institute(KHIDI),funded by the Ministry of Health&Welfare(HI18C1216)and the Soonchunhyang University Research Fund.
文摘Background—Human Gait Recognition(HGR)is an approach based on biometric and is being widely used for surveillance.HGR is adopted by researchers for the past several decades.Several factors are there that affect the system performance such as the walking variation due to clothes,a person carrying some luggage,variations in the view angle.Proposed—In this work,a new method is introduced to overcome different problems of HGR.A hybrid method is proposed or efficient HGR using deep learning and selection of best features.Four major steps are involved in this work-preprocessing of the video frames,manipulation of the pre-trained CNN model VGG-16 for the computation of the features,removing redundant features extracted from the CNN model,and classification.In the reduction of irrelevant features Principal Score and Kurtosis based approach is proposed named PSbK.After that,the features of PSbK are fused in one materix.Finally,this fused vector is fed to the One against All Multi Support Vector Machine(OAMSVM)classifier for the final results.Results—The system is evaluated by utilizing the CASIA B database and six angles 00◦,18◦,36◦,54◦,72◦,and 90◦are used and attained the accuracy of 95.80%,96.0%,95.90%,96.20%,95.60%,and 95.50%,respectively.Conclusion—The comparison with recent methods show the proposed method work better.
文摘This study presents the measurement of the angular position and acceleration during the leg gait and the data fitting using Fourier series to parameterize the measurements obtained through accelerometers. The sensor reference is the gravity direction for the three axes that is converted into angular position and acceleration data. For this study, measurements were made in the femoral area of a human leg. The curves were obtained based on Fourier series, and though a homologation made to their harmonics, we obtained ordinary differential equations (ODEs) that parameterize these curves. The curves were approximated using six harmonics, resulting in six ODEs. The summed solutions of the ODEs represent the angular position or inclination of the leg during a walk step. The first and second derivative of the ODEs means the velocity and the acceleration of the leg movement. These types of tools are required in different research subjects such as health, entertainment, and engineering.
文摘The compressed sensing (CS) of acceleration data has been drawing increasing attention in gait telemonitoring application. In such application, there still exist some challenging issues including high energy consumption of body-worn device for acceleration data acquisition and the poor reconstruction performance due to nonsparsity of acceleration data. Thus, the novel scheme of compressive sensing of acceleration data is needed urgently for solutions that are found to these issues.
基金supported by the MSIT(Ministry of Science and ICT),Korea,under the ICAN(ICT Challenge and Advanced Network of HRD)program(IITP-2022-2020-0-01832)supervised by the IITP(Institute of Information&Communications Technology Planning&Evaluation)and the Soonchunhyang University Research Fund.
文摘Human gait recognition(HGR)is the process of identifying a sub-ject(human)based on their walking pattern.Each subject is a unique walking pattern and cannot be simulated by other subjects.But,gait recognition is not easy and makes the system difficult if any object is carried by a subject,such as a bag or coat.This article proposes an automated architecture based on deep features optimization for HGR.To our knowledge,it is the first architecture in which features are fused using multiset canonical correlation analysis(MCCA).In the proposed method,original video frames are processed for all 11 selected angles of the CASIA B dataset and utilized to train two fine-tuned deep learning models such as Squeezenet and Efficientnet.Deep transfer learning was used to train both fine-tuned models on selected angles,yielding two new targeted models that were later used for feature engineering.Features are extracted from the deep layer of both fine-tuned models and fused into one vector using MCCA.An improved manta ray foraging optimization algorithm is also proposed to select the best features from the fused feature matrix and classified using a narrow neural network classifier.The experimental process was conducted on all 11 angles of the large multi-view gait dataset(CASIA B)dataset and obtained improved accuracy than the state-of-the-art techniques.Moreover,a detailed confidence interval based analysis also shows the effectiveness of the proposed architecture for HGR.
文摘The synthesis of human walking is of great interest in biomechanics and biomimetic engineering due to its predictive capabilities and potential applications in clinical biomechanics, rehabilitation engineering and biomimetic robotics. In this paper, the various methods that have been used to synthesize humanwalking are reviewed from an engineering viewpoint. This involves a wide spectrum of approaches, from simple passive walking theories to large-scale computational models integrating the nervous, muscular and skeletal systems. These methods are roughly categorized under four headings: models inspired by the concept of a CPG (Central Pattern Generator), methods based on the principles of control engineering, predictive gait simulation using optimisation, and models inspired by passive walking theory. The shortcomings and advantages of these methods are examined, and future directions are discussed in the context of providing insights into the neural control objectives driving gait and improving the stability of the predicted gaits. Future advancements are likely to be motivated by improved understanding of neural control strategies and the subtle complexities of the musculoskeletal system during human locomotion. It is only a matter of time before predictive gait models become a practical and valuable tool in clinical diagnosis, rehabilitation engineering and robotics.
文摘Most women like wearing high-heeled shoes for the benefit of sensuous attractiveness and self-esteem while musculoskeletal problems and gait patterns changes are often associated. The present study aimed to identify changes during the gait stance and swing phases in some lower limb muscles. In addition, abdominal muscle was included due to its importance in dynamic trunk stability, and lack of studies on the subject. Here, we found that the use of high-heeled shoes elicited not only the increasing of the electrical activity from the muscles involved in the gait cycle, but also altered the temporal sequence of their recruitment. As practical applications, these changes may be strategies to maintain stability and minimize risks of falling, but they are often associated to diseases. Women that use high-heeled shoes for prolonged time must apply specific muscle exercises to minimize its long-term effects.
文摘Biomedical applications of body area networks (BANs) are evolving, where taking periodic medical readings of patients via means wireless technologies at home or in the office will aid physicians to periodically supervise the patient’s medical status without having to see the patient. Thus, one important objective of BANs is to provide the doctor with the medical readings that can be collected electronically without being in close proximity to the patient. This is done through the measurement of the patient’s physiological signals via means of wearable sensors. This paper investigates wireless BAN cooperation via actual measurements of human movement kinematics and electrocardiogram (ECG), which are believed to provide patients with easy healthcare for continuous health-monitoring. The collected information will be processed using specially designed software, which in turn will enable the patient to send a full medical chart to the physician’s electronic device. In this way, physicians will have the ability to monitor their patients more efficiently.