Human Interaction Recognition(HIR)was one of the challenging issues in computer vision research due to the involvement of multiple individuals and their mutual interactions within video frames generated from their mov...Human Interaction Recognition(HIR)was one of the challenging issues in computer vision research due to the involvement of multiple individuals and their mutual interactions within video frames generated from their movements.HIR requires more sophisticated analysis than Human Action Recognition(HAR)since HAR focuses solely on individual activities like walking or running,while HIR involves the interactions between people.This research aims to develop a robust system for recognizing five common human interactions,such as hugging,kicking,pushing,pointing,and no interaction,from video sequences using multiple cameras.In this study,a hybrid Deep Learning(DL)and Machine Learning(ML)model was employed to improve classification accuracy and generalizability.The dataset was collected in an indoor environment with four-channel cameras capturing the five types of interactions among 13 participants.The data was processed using a DL model with a fine-tuned ResNet(Residual Networks)architecture based on 2D Convolutional Neural Network(CNN)layers for feature extraction.Subsequently,machine learning models were trained and utilized for interaction classification using six commonly used ML algorithms,including SVM,KNN,RF,DT,NB,and XGBoost.The results demonstrate a high accuracy of 95.45%in classifying human interactions.The hybrid approach enabled effective learning,resulting in highly accurate performance across different interaction types.Future work will explore more complex scenarios involving multiple individuals based on the application of this architecture.展开更多
Human-human interaction recognition is crucial in computer vision fields like surveillance,human-computer interaction,and social robotics.It enhances systems’ability to interpret and respond to human behavior precise...Human-human interaction recognition is crucial in computer vision fields like surveillance,human-computer interaction,and social robotics.It enhances systems’ability to interpret and respond to human behavior precisely.This research focuses on recognizing human interaction behaviors using a static image,which is challenging due to the complexity of diverse actions.The overall purpose of this study is to develop a robust and accurate system for human interaction recognition.This research presents a novel image-based human interaction recognition method using a Hidden Markov Model(HMM).The technique employs hue,saturation,and intensity(HSI)color transformation to enhance colors in video frames,making them more vibrant and visually appealing,especially in low-contrast or washed-out scenes.Gaussian filters reduce noise and smooth imperfections followed by silhouette extraction using a statistical method.Feature extraction uses the features from Accelerated Segment Test(FAST),Oriented FAST,and Rotated BRIEF(ORB)techniques.The application of Quadratic Discriminant Analysis(QDA)for feature fusion and discrimination enables high-dimensional data to be effectively analyzed,thus further enhancing the classification process.It ensures that the final features loaded into the HMM classifier accurately represent the relevant human activities.The impressive accuracy rates of 93%and 94.6%achieved in the BIT-Interaction and UT-Interaction datasets respectively,highlight the success and reliability of the proposed technique.The proposed approach addresses challenges in various domains by focusing on frame improvement,silhouette and feature extraction,feature fusion,and HMM classification.This enhances data quality,accuracy,adaptability,reliability,and reduction of errors.展开更多
基金supported by the National Research Foundation of Korea(NRF)grant funded by the Korea government(MSIT)(No.RS-2023-00218176)and the Soonchunhyang University Research Fund.
文摘Human Interaction Recognition(HIR)was one of the challenging issues in computer vision research due to the involvement of multiple individuals and their mutual interactions within video frames generated from their movements.HIR requires more sophisticated analysis than Human Action Recognition(HAR)since HAR focuses solely on individual activities like walking or running,while HIR involves the interactions between people.This research aims to develop a robust system for recognizing five common human interactions,such as hugging,kicking,pushing,pointing,and no interaction,from video sequences using multiple cameras.In this study,a hybrid Deep Learning(DL)and Machine Learning(ML)model was employed to improve classification accuracy and generalizability.The dataset was collected in an indoor environment with four-channel cameras capturing the five types of interactions among 13 participants.The data was processed using a DL model with a fine-tuned ResNet(Residual Networks)architecture based on 2D Convolutional Neural Network(CNN)layers for feature extraction.Subsequently,machine learning models were trained and utilized for interaction classification using six commonly used ML algorithms,including SVM,KNN,RF,DT,NB,and XGBoost.The results demonstrate a high accuracy of 95.45%in classifying human interactions.The hybrid approach enabled effective learning,resulting in highly accurate performance across different interaction types.Future work will explore more complex scenarios involving multiple individuals based on the application of this architecture.
基金funding this work under the Research Group Funding Program Grant Code(NU/RG/SERC/12/6)supported via funding from Prince Satam bin Abdulaziz University Project Number(PSAU/2023/R/1444)+1 种基金Princess Nourah bint Abdulrahman University Researchers Supporting Project Number(PNURSP2023R348)Princess Nourah bint Abdulrahman University,Riyadh,Saudi Arabia,and this work was also supported by the Ministry of Science and ICT(MSIT),South Korea,through the ICT Creative Consilience Program supervised by the Institute for Information and Communications Technology Planning and Evaluation(IITP)under Grant IITP-2023-2020-0-01821.
文摘Human-human interaction recognition is crucial in computer vision fields like surveillance,human-computer interaction,and social robotics.It enhances systems’ability to interpret and respond to human behavior precisely.This research focuses on recognizing human interaction behaviors using a static image,which is challenging due to the complexity of diverse actions.The overall purpose of this study is to develop a robust and accurate system for human interaction recognition.This research presents a novel image-based human interaction recognition method using a Hidden Markov Model(HMM).The technique employs hue,saturation,and intensity(HSI)color transformation to enhance colors in video frames,making them more vibrant and visually appealing,especially in low-contrast or washed-out scenes.Gaussian filters reduce noise and smooth imperfections followed by silhouette extraction using a statistical method.Feature extraction uses the features from Accelerated Segment Test(FAST),Oriented FAST,and Rotated BRIEF(ORB)techniques.The application of Quadratic Discriminant Analysis(QDA)for feature fusion and discrimination enables high-dimensional data to be effectively analyzed,thus further enhancing the classification process.It ensures that the final features loaded into the HMM classifier accurately represent the relevant human activities.The impressive accuracy rates of 93%and 94.6%achieved in the BIT-Interaction and UT-Interaction datasets respectively,highlight the success and reliability of the proposed technique.The proposed approach addresses challenges in various domains by focusing on frame improvement,silhouette and feature extraction,feature fusion,and HMM classification.This enhances data quality,accuracy,adaptability,reliability,and reduction of errors.