This paper investigates the minimum inventory (MI) of human system interfaces (HSIs) (i.e. alarms, controls, and displays) for plant's safe operation and represents the analytic procedure on the MI of HSIs deve...This paper investigates the minimum inventory (MI) of human system interfaces (HSIs) (i.e. alarms, controls, and displays) for plant's safe operation and represents the analytic procedure on the MI of HSIs developed for the digital instrumentation and control (I&C) equipments in the main control room (MCR). The MI of HSIs in the MCR indicates the HSIs that the operator always needs available to: (1) monitor the status; (2) perform and confirm a reactor trip; (3) perform and confirm a controlled shutdown of the reactor; (4) actuate safety related systems; (5) analyze failure conditions of the normal HSIs; (6) implement the plant's emergency operating procedures (EOPs); (7) bring the plant to a safe condition; (8) carry out those operator actions shown to be risk important by the probabilistic risk assessment (PRA). The proposed analytic procedure on the MI of HSIs in this study can be used to (1) identify the MI of HSIs and their design requirements; and (2) address design requirements and implementation for the MI of HSIs. The contribution of this study is to describe the MI of HSIs needed to implement the plant's EOPs, to bring the plant to a safe condition, and to carry out those operator actions shown to be risk important by the PKA.展开更多
This study is a preparation phase for visualization of utilized information using ergonomic user interface and standardization of elements for GCS (Ground Control System). Therefore, we investigated the instances of G...This study is a preparation phase for visualization of utilized information using ergonomic user interface and standardization of elements for GCS (Ground Control System). Therefore, we investigated the instances of GCS (such as hawk and patriot missile’s GCS) for defense system. Based on the collected data, we compared and analyzed the GCS screen design. In this paper, we conduct case study for ergonomically development of GCS. It is expected that this research improves the situational awareness and reduces the user’s task load.展开更多
In this paper, rough set theory is introduced into the interface multi-agent system (MAS) for industrial supervisory system. Taking advantages of rough set in data mining, a cooperation model for MAS is built. Rules...In this paper, rough set theory is introduced into the interface multi-agent system (MAS) for industrial supervisory system. Taking advantages of rough set in data mining, a cooperation model for MAS is built. Rules for avoiding cooperation conflict are deduced. An optimization algorithm is used to enhance security and real time attributes of the system. An application based on the proposed algorithm and rules are given.展开更多
Transformer tracking always takes paired template and search images as encoder input and conduct feature extraction and target‐search feature correlation by self and/or cross attention operations,thus the model compl...Transformer tracking always takes paired template and search images as encoder input and conduct feature extraction and target‐search feature correlation by self and/or cross attention operations,thus the model complexity will grow quadratically with the number of input images.To alleviate the burden of this tracking paradigm and facilitate practical deployment of Transformer‐based trackers,we propose a dual pooling transformer tracking framework,dubbed as DPT,which consists of three components:a simple yet efficient spatiotemporal attention model(SAM),a mutual correlation pooling Trans-former(MCPT)and a multiscale aggregation pooling Transformer(MAPT).SAM is designed to gracefully aggregates temporal dynamics and spatial appearance information of multi‐frame templates along space‐time dimensions.MCPT aims to capture multi‐scale pooled and correlated contextual features,which is followed by MAPT that aggregates multi‐scale features into a unified feature representation for tracking prediction.DPT tracker achieves AUC score of 69.5 on LaSOT and precision score of 82.8 on Track-ingNet while maintaining a shorter sequence length of attention tokens,fewer parameters and FLOPs compared to existing state‐of‐the‐art(SOTA)Transformer tracking methods.Extensive experiments demonstrate that DPT tracker yields a strong real‐time tracking baseline with a good trade‐off between tracking performance and inference efficiency.展开更多
This study is a preparation phase for integrated visualization of battlefield situation. To develop the ground control station for unmanned systems, many factors have to be considered from the design stages, such as l...This study is a preparation phase for integrated visualization of battlefield situation. To develop the ground control station for unmanned systems, many factors have to be considered from the design stages, such as layout, information component, representation scheme, and human operation methods. Considering such many factors can be very difficult, hence we conducted an in-depth investigation of design factors from major UAV stations around the world. We analyzed the design characteristics and the specifics. In conclusion, we were able to derive some common aspects of design characteristics, which lead to the successful design approach.展开更多
Purpose–Connected vehicle-based variable speed limit(CV-VSL)systems in fog area use multi-source detection data to indicate drivers to make uniform change in speed when low visibility conditions suddenly occur.The pu...Purpose–Connected vehicle-based variable speed limit(CV-VSL)systems in fog area use multi-source detection data to indicate drivers to make uniform change in speed when low visibility conditions suddenly occur.The purpose of the speed limit is to make the driver’s driving behavior more consistent,so as to improve traffic safety and relieve traffic congestion.The on-road dynamic message sign(DMS)and on-board human–machine interface(HMI)are two types of warning technologies for CV-VSL systems.This study aims to analyze drivers’acceptance of the two types of warning technologies in fog area and its influencing factors.Design/methodology/approach–This study developed DMS and on-board HMI for the CV-VSL system in fog area on a driving simulator.The DMS and on-board HMI provided the driver with weather and speed limit information.In all,38 participants participated in the experiment and completed questionnaires on drivers’basic information,perceived usefulness and ease of use of the CV-VSL systems.Technology acceptance model(TAM)was developed to evaluate the drivers’acceptance of CV-VSL systems.A variance analysis method was used to study the influencing factors of drivers’acceptance including drivers’characteristics,technology types and fog density.Findings–The results showed that drivers’acceptance of on-road DMS was significantly higher than that of on-board HMI.The fog density had no significant effect on drivers’acceptance of on-road DMS or on-board HMI.Drivers’gender,age,driving year and driving personality were associated with the acceptance of the two CV-VSL technologies differently.This study is beneficial to the functional improvement of on-road DMS,on-board HMI and their market prospects.Originality/value–Previous studies have been conducted to evaluate the effectiveness of CV-VSL systems.However,there were rare studies focused on the drivers’attitude toward using which was also called as acceptance of the CV-VSL systems.Therefore,this research calculated the drivers’acceptance of two normally used CV-VSL systems including on-road DMS and on-board HMI using TAM.Furthermore,variance analysis was conducted to explore whether the factors such as drivers’characteristics(gender,age,driving year and driving personality),technology types and fog density affected the drivers’acceptance of the CV-VSL systems.展开更多
The inculcation of bioinspiration in sensing and human–machine interface(HMI)technologies can lead to distinctive characteristics such as conformability,low power consumption,high sensitivity,and unique properties li...The inculcation of bioinspiration in sensing and human–machine interface(HMI)technologies can lead to distinctive characteristics such as conformability,low power consumption,high sensitivity,and unique properties like self-healing,self-cleaning,and adaptability.Both sensing and HMI are fields rife with opportunities for the application of bioinspired nanomaterials,particularly when it comes to wearable sensory systems where biocompatibility is an additional requirement.This review discusses recent development in bioinspired nanomaterials for wearable sensing and HMIs,with a specific focus on state-of-the-art bioinspired capacitive sensors,piezoresistive sensors,piezoelectric sensors,triboelectric sensors,magnetoelastic sensors,and electrochemical sensors.We also present a comprehensive overview of the challenges that have hindered the scientific advancement in academia and commercialization in the industry.展开更多
This paper presents a novel system assisting medical dementia examination in a joyful way: the object just needs to play a popular game SSC against the computer during the examination. The SSC game’s target is to det...This paper presents a novel system assisting medical dementia examination in a joyful way: the object just needs to play a popular game SSC against the computer during the examination. The SSC game’s target is to detect the player’s reacting capability, which is related closely with dementia. Our system reaches this target with some advantages: there are no temporal and spatial constraints at all. There is no cost, and it can even improve people’s mental status. Hand talk technology and EHMM gesture recognition approach are employed to realize the human computer interface. Experiments showed that this system can evaluate people’s reacting capability effectively and is helpful for initial dementia examination.展开更多
In recent years,Brain-Computer Interface(BCI)system gained much popularity since it aims at establishing the communication between human brain and computer.BCI systems are applied in several research areas such as neu...In recent years,Brain-Computer Interface(BCI)system gained much popularity since it aims at establishing the communication between human brain and computer.BCI systems are applied in several research areas such as neuro-rehabilitation,robots,exoeskeletons,etc.Electroencephalography(EEG)is a technique commonly applied in capturing brain signals.It is incorporated in BCI systems since it has attractive features such as noninvasive nature,high time-resolution output,mobility and cost-effective.EEG classification process is highly essential in decision making process and it incorporates different processes namely,feature extraction,feature selection,and classification.With this motivation,the current research paper presents an Intelligent Optimal Fuzzy Support Vector Machine-based EEC recognition(IOFSVM-EEG)model for BCI system.Independent Component Analysis(ICA)technique is applied onto the proposed IOFSVM-EEG model to remove the artefacts that exist in EEG signal and to retain the meaningful EEG information.Besides,Common Spatial Pattern(CSP)-based feature extraction technique is utilized to derive a helpful set of feature vectors from the preprocessed EEG signals.Moreover,OFSVM method is applied in the classification of EEG signals,in which the parameters involved in FSVM are optimally tuned using Grasshopper Optimization Algorithm(GOA).In order to validate the enhanced EEG recognition outcomes of the proposed IOFSVM-EEG model,an extensive set of experiments was conducted.The outcomes were examined under distinct aspects.The experimental results highlighted the enhanced performance of the presented IOFSVM-EEG model over other state-of-the-art methods.展开更多
Audio‐visual wake word spotting is a challenging multi‐modal task that exploits visual information of lip motion patterns to supplement acoustic speech to improve overall detection performance.However,most audio‐vi...Audio‐visual wake word spotting is a challenging multi‐modal task that exploits visual information of lip motion patterns to supplement acoustic speech to improve overall detection performance.However,most audio‐visual wake word spotting models are only suitable for simple single‐speaker scenarios and require high computational complexity.Further development is hindered by complex multi‐person scenarios and computational limitations in mobile environments.In this paper,a novel audio‐visual model is proposed for on‐device multi‐person wake word spotting.Firstly,an attention‐based audio‐visual voice activity detection module is presented,which generates an attention score matrix of audio and visual representations to derive active speaker representation.Secondly,the knowledge distillation method is introduced to transfer knowledge from the large model to the on‐device model to control the size of our model.Moreover,a new audio‐visual dataset,PKU‐KWS,is collected for sentence‐level multi‐person wake word spotting.Experimental results on the PKU‐KWS dataset show that this approach outperforms the previous state‐of‐the‐art methods.展开更多
In this paper, the authors propose a method that incorporates mechanisms for handling ambiguity in speech and the ability of humans to create associations, and for formulating conversations based on rule base knowledg...In this paper, the authors propose a method that incorporates mechanisms for handling ambiguity in speech and the ability of humans to create associations, and for formulating conversations based on rule base knowledge and common knowledge. Go beyond the level that can be achieved, using only conventional natural language processing and vast repositories of sample patterns. In this paper, the authors propose a method for computer conversation sentences generated using newspaper headlines as an example of how the common knowledge and associative ability are applied.展开更多
This study is a preparation phase for visualization of utilized information using ergonomic user interface and standardization of elements for anti-air weapon system. Therefore, we investigated the instances of Navy W...This study is a preparation phase for visualization of utilized information using ergonomic user interface and standardization of elements for anti-air weapon system. Therefore, we investigated the instances of Navy Weapon System operation environment for defense advanced country. Based on the collected data, we compared and analyzed the weapon system operation environment design. Ultimately, it is essential to share a variety of battle field conditions such as enemy threat, enemy/friendly information, terrain information that can be effectively recognized. In this paper, we conduct case study for ergonomically development of Operation Environment. It is expected that this research improves the situational awareness and reduces the operator’s task load.展开更多
Purpose–Two-handed automobile steering at low vehicle speeds may lead to reduced steering ability at large steering wheel angles and shoulder injury at high steering wheel rates(SWRs).As afirst step toward solving the...Purpose–Two-handed automobile steering at low vehicle speeds may lead to reduced steering ability at large steering wheel angles and shoulder injury at high steering wheel rates(SWRs).As afirst step toward solving these problems,this study aims,firstly,to design a surface electromyography(sEMG)controlled steering assistance interface that enables hands-free steering wheel rotation and,secondly,to validate the effect of this rotation on path-following accuracy.Design/methodology/approach–A total of 24 drivers used biceps brachii sEMG signals to control the steering assistance interface at a maximized SWR in three driving simulator scenarios:U-turn,908 turn and 458 turn.For comparison,the scenarios were repeated with a slower SWR and a game steering wheel in place of the steering assistance interface.The path-following accuracy of the steering assistance interface would be validated if it was at least comparable to that of the game steering wheel.Findings–Overall,the steering assistance interface with a maximized SWR was comparable to a game steering wheel.For the U-turn,908 turn and 458 turn,the sEMG-based human–machine interface(HMI)had median lateral errors of 0.55,0.3 and 0.2 m,respectively,whereas the game steering wheel,respectively,had median lateral errors of 0.7,0.4 and 0.3 m.The higher accuracy of the sEMG-based HMI was statistically significant in the case of the U-turn.Originality/value–Although production automobiles do not use sEMG-based HMIs,and few studies have proposed sEMG controlled steering,the results of the current study warrant further development of a sEMG-based HMI for an actual automobile.展开更多
During the past few decades, pyroelectric sensors have attracted extensiveattention due to their prominent features. However, their effectiveness is hinderedby low electric output. In this study, the laser processed l...During the past few decades, pyroelectric sensors have attracted extensiveattention due to their prominent features. However, their effectiveness is hinderedby low electric output. In this study, the laser processed lithium niobate(LPLN) wafers are fabricated to improve the temperature–voltage response.These processed wafers are utilized to construct pyroelectric sensors as well ashuman–machine interfaces. The laser induces escape of oxygen and the formationof oxygen vacancies, which enhance the charge transport capability on thesurface of lithium niobate (LN). Therefore, the electrodes gather an increasedquantity of charges, increasing the pyroelectric voltage on the LPLN wafers toa 1.3 times higher voltage than that of LN wafers. For the human–machineinterfaces, tactile information in various modes can be recognized by a sensorarray and the temperature warning system operates well. Therefore, the lasermodification approach is promising to enhance the performance of pyroelectricdevices for applications in human–machine interfaces.展开更多
Technological developments in the domain of vehicle automation are targeted toward driver-less,or driver-out-of-the-loop driving.The main societal motivation for this ambition is that the majority of(fatal)accidents w...Technological developments in the domain of vehicle automation are targeted toward driver-less,or driver-out-of-the-loop driving.The main societal motivation for this ambition is that the majority of(fatal)accidents with manually driven vehicles are due to human error.However,when interacting with technology,users often experience the need to customize the technology to their personal preferences.This paper considers how this might apply to vehicle automation,by a conceptual analysis of relevant use cases.The analysis proceeds by comparing how handling of relevant situations is likely to differ between manual driving and automated driving.The results of the analysis indicate that full out-of-the-loop automated driving may not be acceptable to users of the technology.It is concluded that a technology that allows shared control between the vehicle and the user should be pursued.Furthermore,implications of this view are explored for the concrete temporal dynamics of shared control,and general characteristics of human machine interface that support shared control are proposed.Finally,implications of the proposed view and directions for further research are discussed.展开更多
Force Myography (FMG), which monitors pressure or radial deformation of a limb, has recently been proposed as a po- tential alternative for naturally controlling bionic robotic prostheses. This paper presents an exp...Force Myography (FMG), which monitors pressure or radial deformation of a limb, has recently been proposed as a po- tential alternative for naturally controlling bionic robotic prostheses. This paper presents an exploratory case study aimed at evaluating how FMG behaves when a person with amputation uses a hand prosthetic prototype. One volunteer (transradial amputation) participated in this study, which investigated two experimental cases: static and dynamic. The static case considered forearm muscle contractions in a fixed elbow and shoulder positions whereas the dynamic case included movements of the elbow and shoulder. When considering eleven different hand grips, static data showed an accuracy over 99%, and dynamic data over 86% (within-trial analysis). The across-trial analysis, that takes into account multiple trials in the same data collection set, showed a meaningful accuracy respectively of 81% and 75% only for the reduced six grips setup. While further research is needed to increase these accuracies, the obtained results provided initial evidence that this technology could represent an in- teresting alternative that is worth exploring for controlling prosthesis.展开更多
Early Warning Aircraft(EWA)are the main force for air detection and its Human-Machine Interface(HMI)should be designed to support task efficiency and safety.With the appli-cation of advanced input method and interface...Early Warning Aircraft(EWA)are the main force for air detection and its Human-Machine Interface(HMI)should be designed to support task efficiency and safety.With the appli-cation of advanced input method and interface design in EWA,little is known about their actual usability in terms of human factors and ergonomics.The aim of this study was to investigate the effects of the input method and display mode of the situation map on EWA reconnaissance task performance with different information complexities.Eighteen participants attended a three-factor within-subject design experiment with input method(touch screen and mouse),display mode of the situation map(color and grayscale),and information complexity(high and low)as the inde-pendent variables.Participant behavior performance,subjective workload,heart rate/heart rate variability,and eye movements were recorded as the dependent variables.The results suggest that a touch screen requires greater task completion time and has greater physical demands than mouse operation;however,it also facilitates information processing by reducing the average fixation time.Color mode significantly decreases saccade counts compared to grayscale mode and is considered more appropriate for target search tasks as it induces less visual search load.High information complexity produces significant negative effects on behavior performance and subjective workload.It also has significant interaction effects with input method on fixation and saccade counts.The findings have implications in the optimization design of Human–Machine Interface for EWA task systems.展开更多
Limited to the structure of traditional light‐emitting devices,electronic devices that can directly convert machine language into human visual information without introducing any back‐end circuit are still not easy ...Limited to the structure of traditional light‐emitting devices,electronic devices that can directly convert machine language into human visual information without introducing any back‐end circuit are still not easy to achieve.Based on a specially designed three‐phase co‐planar electrode structure,a new type of three‐phase alternating current driven organic light‐emitting device with the integration of emission and control functions,full‐color tunability and simple device structure is demonstrated in this study.We integrate the light‐emitting function of color‐tunable light‐emitting devices and the switching of three triodes in a single three phase organic light‐emitting device.The state control of luminous color and luminance intensity merely requires the introduction of a kind of machine language,that is an easy‐to‐program 6‐bit binary number coded digital signals.The color adjustable area covers 66%of the color triangle of the National Television System Committee.Such simple and easy‐to‐integrate light‐emitting system has great potential applications in the next‐generation man‐machine interface.展开更多
Wearable sensors for activity monitoring currently are being designed and developed,driven by an increasing demand in health care for noninvasive patient monitoring and rehabilitation training.This article reviews sta...Wearable sensors for activity monitoring currently are being designed and developed,driven by an increasing demand in health care for noninvasive patient monitoring and rehabilitation training.This article reviews state-of-the-art wearable sensors for activity monitoring and motion control.Different technologies,including electromechanical,bioelectrical,and biomechanical sensors,are reviewed,along with their broad applications.Moreover,an overview of existing commercial wearable products and the computation methods for motion analysis are provided.Future research issues are identified and discussed.展开更多
文摘This paper investigates the minimum inventory (MI) of human system interfaces (HSIs) (i.e. alarms, controls, and displays) for plant's safe operation and represents the analytic procedure on the MI of HSIs developed for the digital instrumentation and control (I&C) equipments in the main control room (MCR). The MI of HSIs in the MCR indicates the HSIs that the operator always needs available to: (1) monitor the status; (2) perform and confirm a reactor trip; (3) perform and confirm a controlled shutdown of the reactor; (4) actuate safety related systems; (5) analyze failure conditions of the normal HSIs; (6) implement the plant's emergency operating procedures (EOPs); (7) bring the plant to a safe condition; (8) carry out those operator actions shown to be risk important by the probabilistic risk assessment (PRA). The proposed analytic procedure on the MI of HSIs in this study can be used to (1) identify the MI of HSIs and their design requirements; and (2) address design requirements and implementation for the MI of HSIs. The contribution of this study is to describe the MI of HSIs needed to implement the plant's EOPs, to bring the plant to a safe condition, and to carry out those operator actions shown to be risk important by the PKA.
文摘This study is a preparation phase for visualization of utilized information using ergonomic user interface and standardization of elements for GCS (Ground Control System). Therefore, we investigated the instances of GCS (such as hawk and patriot missile’s GCS) for defense system. Based on the collected data, we compared and analyzed the GCS screen design. In this paper, we conduct case study for ergonomically development of GCS. It is expected that this research improves the situational awareness and reduces the user’s task load.
基金Project supported by Science Foundation of Shanghai MunicipalCommission of Science and Technology (Grant Nos .025111052 ,04JC14038)
文摘In this paper, rough set theory is introduced into the interface multi-agent system (MAS) for industrial supervisory system. Taking advantages of rough set in data mining, a cooperation model for MAS is built. Rules for avoiding cooperation conflict are deduced. An optimization algorithm is used to enhance security and real time attributes of the system. An application based on the proposed algorithm and rules are given.
基金the National Natural Science Foundation of China,Grant/Award Number:62006065the Science and Technology Research Program of Chongqing Municipal Education Commission,Grant/Award Number:KJQN202100634+1 种基金the Natural Science Foundation of Chongqing,Grant/Award Number:CSTB2022NSCQ‐MSX1202Chongqing Municipal Education Commission,Grant/Award Number:KJQN202100634。
文摘Transformer tracking always takes paired template and search images as encoder input and conduct feature extraction and target‐search feature correlation by self and/or cross attention operations,thus the model complexity will grow quadratically with the number of input images.To alleviate the burden of this tracking paradigm and facilitate practical deployment of Transformer‐based trackers,we propose a dual pooling transformer tracking framework,dubbed as DPT,which consists of three components:a simple yet efficient spatiotemporal attention model(SAM),a mutual correlation pooling Trans-former(MCPT)and a multiscale aggregation pooling Transformer(MAPT).SAM is designed to gracefully aggregates temporal dynamics and spatial appearance information of multi‐frame templates along space‐time dimensions.MCPT aims to capture multi‐scale pooled and correlated contextual features,which is followed by MAPT that aggregates multi‐scale features into a unified feature representation for tracking prediction.DPT tracker achieves AUC score of 69.5 on LaSOT and precision score of 82.8 on Track-ingNet while maintaining a shorter sequence length of attention tokens,fewer parameters and FLOPs compared to existing state‐of‐the‐art(SOTA)Transformer tracking methods.Extensive experiments demonstrate that DPT tracker yields a strong real‐time tracking baseline with a good trade‐off between tracking performance and inference efficiency.
文摘This study is a preparation phase for integrated visualization of battlefield situation. To develop the ground control station for unmanned systems, many factors have to be considered from the design stages, such as layout, information component, representation scheme, and human operation methods. Considering such many factors can be very difficult, hence we conducted an in-depth investigation of design factors from major UAV stations around the world. We analyzed the design characteristics and the specifics. In conclusion, we were able to derive some common aspects of design characteristics, which lead to the successful design approach.
文摘Purpose–Connected vehicle-based variable speed limit(CV-VSL)systems in fog area use multi-source detection data to indicate drivers to make uniform change in speed when low visibility conditions suddenly occur.The purpose of the speed limit is to make the driver’s driving behavior more consistent,so as to improve traffic safety and relieve traffic congestion.The on-road dynamic message sign(DMS)and on-board human–machine interface(HMI)are two types of warning technologies for CV-VSL systems.This study aims to analyze drivers’acceptance of the two types of warning technologies in fog area and its influencing factors.Design/methodology/approach–This study developed DMS and on-board HMI for the CV-VSL system in fog area on a driving simulator.The DMS and on-board HMI provided the driver with weather and speed limit information.In all,38 participants participated in the experiment and completed questionnaires on drivers’basic information,perceived usefulness and ease of use of the CV-VSL systems.Technology acceptance model(TAM)was developed to evaluate the drivers’acceptance of CV-VSL systems.A variance analysis method was used to study the influencing factors of drivers’acceptance including drivers’characteristics,technology types and fog density.Findings–The results showed that drivers’acceptance of on-road DMS was significantly higher than that of on-board HMI.The fog density had no significant effect on drivers’acceptance of on-road DMS or on-board HMI.Drivers’gender,age,driving year and driving personality were associated with the acceptance of the two CV-VSL technologies differently.This study is beneficial to the functional improvement of on-road DMS,on-board HMI and their market prospects.Originality/value–Previous studies have been conducted to evaluate the effectiveness of CV-VSL systems.However,there were rare studies focused on the drivers’attitude toward using which was also called as acceptance of the CV-VSL systems.Therefore,this research calculated the drivers’acceptance of two normally used CV-VSL systems including on-road DMS and on-board HMI using TAM.Furthermore,variance analysis was conducted to explore whether the factors such as drivers’characteristics(gender,age,driving year and driving personality),technology types and fog density affected the drivers’acceptance of the CV-VSL systems.
基金support.J.C.also acknowledges the Hellman Fellows Research Grant,the UCLA Pandemic Resources Program Research Award,the Research Recovery Grant by the UCLA Academic Senate,and the Brain&Behavior Research Foundation Young Investigator Grant(Grant Number:30944)the Catalyzing Pediatric Innovation Grant(Grant Number:47744)from the West Coast Consortium for Technology&Innovation in Pediatrics,Children’s Hospital Los Angeles.
文摘The inculcation of bioinspiration in sensing and human–machine interface(HMI)technologies can lead to distinctive characteristics such as conformability,low power consumption,high sensitivity,and unique properties like self-healing,self-cleaning,and adaptability.Both sensing and HMI are fields rife with opportunities for the application of bioinspired nanomaterials,particularly when it comes to wearable sensory systems where biocompatibility is an additional requirement.This review discusses recent development in bioinspired nanomaterials for wearable sensing and HMIs,with a specific focus on state-of-the-art bioinspired capacitive sensors,piezoresistive sensors,piezoelectric sensors,triboelectric sensors,magnetoelastic sensors,and electrochemical sensors.We also present a comprehensive overview of the challenges that have hindered the scientific advancement in academia and commercialization in the industry.
基金Project supported by the National Nature Science Foundation of China (Nos. 60303018 and 60533030) and Beijing Science and Technology New Star Project (No. 2005B54), China
文摘This paper presents a novel system assisting medical dementia examination in a joyful way: the object just needs to play a popular game SSC against the computer during the examination. The SSC game’s target is to detect the player’s reacting capability, which is related closely with dementia. Our system reaches this target with some advantages: there are no temporal and spatial constraints at all. There is no cost, and it can even improve people’s mental status. Hand talk technology and EHMM gesture recognition approach are employed to realize the human computer interface. Experiments showed that this system can evaluate people’s reacting capability effectively and is helpful for initial dementia examination.
文摘In recent years,Brain-Computer Interface(BCI)system gained much popularity since it aims at establishing the communication between human brain and computer.BCI systems are applied in several research areas such as neuro-rehabilitation,robots,exoeskeletons,etc.Electroencephalography(EEG)is a technique commonly applied in capturing brain signals.It is incorporated in BCI systems since it has attractive features such as noninvasive nature,high time-resolution output,mobility and cost-effective.EEG classification process is highly essential in decision making process and it incorporates different processes namely,feature extraction,feature selection,and classification.With this motivation,the current research paper presents an Intelligent Optimal Fuzzy Support Vector Machine-based EEC recognition(IOFSVM-EEG)model for BCI system.Independent Component Analysis(ICA)technique is applied onto the proposed IOFSVM-EEG model to remove the artefacts that exist in EEG signal and to retain the meaningful EEG information.Besides,Common Spatial Pattern(CSP)-based feature extraction technique is utilized to derive a helpful set of feature vectors from the preprocessed EEG signals.Moreover,OFSVM method is applied in the classification of EEG signals,in which the parameters involved in FSVM are optimally tuned using Grasshopper Optimization Algorithm(GOA).In order to validate the enhanced EEG recognition outcomes of the proposed IOFSVM-EEG model,an extensive set of experiments was conducted.The outcomes were examined under distinct aspects.The experimental results highlighted the enhanced performance of the presented IOFSVM-EEG model over other state-of-the-art methods.
基金supported by the National Key R&D Program of China(No.2020AAA0108904)the Science and Technology Plan of Shenzhen(No.JCYJ20200109140410340).
文摘Audio‐visual wake word spotting is a challenging multi‐modal task that exploits visual information of lip motion patterns to supplement acoustic speech to improve overall detection performance.However,most audio‐visual wake word spotting models are only suitable for simple single‐speaker scenarios and require high computational complexity.Further development is hindered by complex multi‐person scenarios and computational limitations in mobile environments.In this paper,a novel audio‐visual model is proposed for on‐device multi‐person wake word spotting.Firstly,an attention‐based audio‐visual voice activity detection module is presented,which generates an attention score matrix of audio and visual representations to derive active speaker representation.Secondly,the knowledge distillation method is introduced to transfer knowledge from the large model to the on‐device model to control the size of our model.Moreover,a new audio‐visual dataset,PKU‐KWS,is collected for sentence‐level multi‐person wake word spotting.Experimental results on the PKU‐KWS dataset show that this approach outperforms the previous state‐of‐the‐art methods.
文摘In this paper, the authors propose a method that incorporates mechanisms for handling ambiguity in speech and the ability of humans to create associations, and for formulating conversations based on rule base knowledge and common knowledge. Go beyond the level that can be achieved, using only conventional natural language processing and vast repositories of sample patterns. In this paper, the authors propose a method for computer conversation sentences generated using newspaper headlines as an example of how the common knowledge and associative ability are applied.
文摘This study is a preparation phase for visualization of utilized information using ergonomic user interface and standardization of elements for anti-air weapon system. Therefore, we investigated the instances of Navy Weapon System operation environment for defense advanced country. Based on the collected data, we compared and analyzed the weapon system operation environment design. Ultimately, it is essential to share a variety of battle field conditions such as enemy threat, enemy/friendly information, terrain information that can be effectively recognized. In this paper, we conduct case study for ergonomically development of Operation Environment. It is expected that this research improves the situational awareness and reduces the operator’s task load.
文摘Purpose–Two-handed automobile steering at low vehicle speeds may lead to reduced steering ability at large steering wheel angles and shoulder injury at high steering wheel rates(SWRs).As afirst step toward solving these problems,this study aims,firstly,to design a surface electromyography(sEMG)controlled steering assistance interface that enables hands-free steering wheel rotation and,secondly,to validate the effect of this rotation on path-following accuracy.Design/methodology/approach–A total of 24 drivers used biceps brachii sEMG signals to control the steering assistance interface at a maximized SWR in three driving simulator scenarios:U-turn,908 turn and 458 turn.For comparison,the scenarios were repeated with a slower SWR and a game steering wheel in place of the steering assistance interface.The path-following accuracy of the steering assistance interface would be validated if it was at least comparable to that of the game steering wheel.Findings–Overall,the steering assistance interface with a maximized SWR was comparable to a game steering wheel.For the U-turn,908 turn and 458 turn,the sEMG-based human–machine interface(HMI)had median lateral errors of 0.55,0.3 and 0.2 m,respectively,whereas the game steering wheel,respectively,had median lateral errors of 0.7,0.4 and 0.3 m.The higher accuracy of the sEMG-based HMI was statistically significant in the case of the U-turn.Originality/value–Although production automobiles do not use sEMG-based HMIs,and few studies have proposed sEMG controlled steering,the results of the current study warrant further development of a sEMG-based HMI for an actual automobile.
基金National Key Research and Development Program of China,Grant/Award Number:2023YFB3210400National Natural Science Foundation of China,Grant/Award Number:52102171+2 种基金Major Scientific and Technological Innovation Project of Shandong Province,Grant/Award Numbers:2021CXGC010603,2023CXGC010110Natural Science Foundation of Shandong Province,Grant/Award Numbers:ZR2021ZD20,ZR2020LLZ006,ZR2021JQ15,ZR2023LLZ008Innovative Team Project of Jinan,Grant/Award Number:2021GXRC019。
文摘During the past few decades, pyroelectric sensors have attracted extensiveattention due to their prominent features. However, their effectiveness is hinderedby low electric output. In this study, the laser processed lithium niobate(LPLN) wafers are fabricated to improve the temperature–voltage response.These processed wafers are utilized to construct pyroelectric sensors as well ashuman–machine interfaces. The laser induces escape of oxygen and the formationof oxygen vacancies, which enhance the charge transport capability on thesurface of lithium niobate (LN). Therefore, the electrodes gather an increasedquantity of charges, increasing the pyroelectric voltage on the LPLN wafers toa 1.3 times higher voltage than that of LN wafers. For the human–machineinterfaces, tactile information in various modes can be recognized by a sensorarray and the temperature warning system operates well. Therefore, the lasermodification approach is promising to enhance the performance of pyroelectricdevices for applications in human–machine interfaces.
文摘Technological developments in the domain of vehicle automation are targeted toward driver-less,or driver-out-of-the-loop driving.The main societal motivation for this ambition is that the majority of(fatal)accidents with manually driven vehicles are due to human error.However,when interacting with technology,users often experience the need to customize the technology to their personal preferences.This paper considers how this might apply to vehicle automation,by a conceptual analysis of relevant use cases.The analysis proceeds by comparing how handling of relevant situations is likely to differ between manual driving and automated driving.The results of the analysis indicate that full out-of-the-loop automated driving may not be acceptable to users of the technology.It is concluded that a technology that allows shared control between the vehicle and the user should be pursued.Furthermore,implications of this view are explored for the concrete temporal dynamics of shared control,and general characteristics of human machine interface that support shared control are proposed.Finally,implications of the proposed view and directions for further research are discussed.
文摘Force Myography (FMG), which monitors pressure or radial deformation of a limb, has recently been proposed as a po- tential alternative for naturally controlling bionic robotic prostheses. This paper presents an exploratory case study aimed at evaluating how FMG behaves when a person with amputation uses a hand prosthetic prototype. One volunteer (transradial amputation) participated in this study, which investigated two experimental cases: static and dynamic. The static case considered forearm muscle contractions in a fixed elbow and shoulder positions whereas the dynamic case included movements of the elbow and shoulder. When considering eleven different hand grips, static data showed an accuracy over 99%, and dynamic data over 86% (within-trial analysis). The across-trial analysis, that takes into account multiple trials in the same data collection set, showed a meaningful accuracy respectively of 81% and 75% only for the reduced six grips setup. While further research is needed to increase these accuracies, the obtained results provided initial evidence that this technology could represent an in- teresting alternative that is worth exploring for controlling prosthesis.
基金co-supported by the National Natural Science Foundation of ChinaCivil Aviation Administration of China (No. U1733118)+1 种基金the National Natural Science Foundation of China (No. 71301005)the Aeronautical Science Foundation of China (No. 20181330002)
文摘Early Warning Aircraft(EWA)are the main force for air detection and its Human-Machine Interface(HMI)should be designed to support task efficiency and safety.With the appli-cation of advanced input method and interface design in EWA,little is known about their actual usability in terms of human factors and ergonomics.The aim of this study was to investigate the effects of the input method and display mode of the situation map on EWA reconnaissance task performance with different information complexities.Eighteen participants attended a three-factor within-subject design experiment with input method(touch screen and mouse),display mode of the situation map(color and grayscale),and information complexity(high and low)as the inde-pendent variables.Participant behavior performance,subjective workload,heart rate/heart rate variability,and eye movements were recorded as the dependent variables.The results suggest that a touch screen requires greater task completion time and has greater physical demands than mouse operation;however,it also facilitates information processing by reducing the average fixation time.Color mode significantly decreases saccade counts compared to grayscale mode and is considered more appropriate for target search tasks as it induces less visual search load.High information complexity produces significant negative effects on behavior performance and subjective workload.It also has significant interaction effects with input method on fixation and saccade counts.The findings have implications in the optimization design of Human–Machine Interface for EWA task systems.
基金supported by the Key‐Area Research and Development Program of Guangdong Province(No.2019B010924003)Guangdong Basic and Applied Basic Research Foundation(No.2020B1515120030,No.2020A1515010449)+3 种基金Natural Science Basic Research Program of Shaanxi(Program No.2019JLP‐11)Shenzhen Fundamental Research Program(JCYJ20190808182803805)Shenzhen OLED Materials and Devices Technology Engineering Research Center([2018]1410)Shenzhen Key Laboratory of Shenzhen Science and Technology(ZDSYS_(2)0140509094114164).
文摘Limited to the structure of traditional light‐emitting devices,electronic devices that can directly convert machine language into human visual information without introducing any back‐end circuit are still not easy to achieve.Based on a specially designed three‐phase co‐planar electrode structure,a new type of three‐phase alternating current driven organic light‐emitting device with the integration of emission and control functions,full‐color tunability and simple device structure is demonstrated in this study.We integrate the light‐emitting function of color‐tunable light‐emitting devices and the switching of three triodes in a single three phase organic light‐emitting device.The state control of luminous color and luminance intensity merely requires the introduction of a kind of machine language,that is an easy‐to‐program 6‐bit binary number coded digital signals.The color adjustable area covers 66%of the color triangle of the National Television System Committee.Such simple and easy‐to‐integrate light‐emitting system has great potential applications in the next‐generation man‐machine interface.
基金supported by the Region Nordjylland Health Hub Project SLAM and the National Natural Science Foundation of China(62073224)the financial support from the China Scholarships Council for her study at Aalborg University,Denmark.
文摘Wearable sensors for activity monitoring currently are being designed and developed,driven by an increasing demand in health care for noninvasive patient monitoring and rehabilitation training.This article reviews state-of-the-art wearable sensors for activity monitoring and motion control.Different technologies,including electromechanical,bioelectrical,and biomechanical sensors,are reviewed,along with their broad applications.Moreover,an overview of existing commercial wearable products and the computation methods for motion analysis are provided.Future research issues are identified and discussed.