Previously, mouse bone marrow-derived stem cells (MSC) treated with the unspecific DNA methyltransferase inhibitor 5-azacytidine were reported to differentiate into cardiomyocytes. The aim of the present study was t...Previously, mouse bone marrow-derived stem cells (MSC) treated with the unspecific DNA methyltransferase inhibitor 5-azacytidine were reported to differentiate into cardiomyocytes. The aim of the present study was to investigate the efficiency of a similar differentiation strategy in human mononuclear cells obtained from healthy bone marrow donors. After 1-3 passages, cultures were exposed for 24 h to 5-azacytidine (3 μM) followed by 6 weeks of further culture. Drug treatment did not induce expression of myogenic marker MyoD or cardiac markers Nkx2.5 and GATA-4 and did not yield beating cells during follow-up. In patch clamp experiments, approximately 10-15% of treated and untreated cells exhibited L-type Ca^2+ currents. Almost all cells showed outwardly rectifying K^+ currents of rapid or slow activation kinetics. Mean current amplitude at +60 mV doubled after 6 weeks of treatment compared with time-matched controls. Membrane capacitance of treated cells was significantly larger than in controls 2 weeks after treatment and remained high after 6 weeks, Expression levels of mRNAs for the K^+ channels Kv 1,1, Kv 1,5, Kv2,1, Kv4,3 and KCNMA 1 and for the Ca^2+ channel Cav 1.2 were not affected by 5-azacytidine. Treatment with potassium channel blockers tetraethylammonium and clofilium at concentrations shown previously to inhibit rapid or slowly activating K^+ currents of hMSC inhibited proliferation of these cells. Our results suggest that despite the absence of differentiation ofhMSC into cardiomyocytes, treatme.nt with 5-azacytidine caused profound changes in current density.展开更多
Aim: To investigate whether the biological process of superparamagnetic iron oxide (SPIO)-labeled human mesenchymal stem cells (hMSCs) may be monitored non-invasively by using in vivo magnetic resonance (MR) im...Aim: To investigate whether the biological process of superparamagnetic iron oxide (SPIO)-labeled human mesenchymal stem cells (hMSCs) may be monitored non-invasively by using in vivo magnetic resonance (MR) imaging with conventional 1.5-T system examinations in corpus cavernosa of rats and rabbits. Methods: The labeling efficiency and viability of SP10-labeled hMSCs were examined with Prussian blue and Tripan blue, respectively. After SPIO-labeled hMSCs were transplanted to the corpus cavernosa of rats and rabbits, serial T2-weighted MR images were taken and histological examinations were carried out over a 4-week period. Results: hMSCs loaded with SPIO compared to unlabeled cells had a similar viability. For SPIO-labeled hMSCs more than lx 105 concentration in vitro, MR images showed a decrease in signal intensity. MR signal intensity at the areas of SPIO-labeled hMSCs in the rat and rabbit corpus cavernosa decreased and was confined locally. After injection of SPIO-labeled hMSCs into the corpus cavernosum, MR imaging demonstrated that hMSCs could be seen for at least 12 weeks after injection. The presence of iron was confirmed with Prussian blue staining in histological sections. Conclusion: SP10-labeled hMSCs in corpus cavernosa of rats and rabbits can be evaluated non-invasively by molecular MR imaging. Our findings suggest that MR imaging has the ability to test the long-term therapeutic potential of hMSCs in animals in the setting of erectile dysfunction.展开更多
AIM: To investigate the differentiation status and key factors to facilitate hepatic differentiation of human bone-marrow-derived mesenchymal stem cells (MSCs). METHODS: Human MSCs derived from bone marrow were induce...AIM: To investigate the differentiation status and key factors to facilitate hepatic differentiation of human bone-marrow-derived mesenchymal stem cells (MSCs). METHODS: Human MSCs derived from bone marrow were induced into hepatocyte-like cells following a previously published protocol. The differentiation status of the hepatocyte-like cells was compared with various human hepatoma cell lines. Overexpression of hepatocyte nuclear factor (HNF)-4α was mediated by adenovirus infection of these hepatocyte-like cells. The expression of interesting genes was then examined by either re-verse transcription-polymerase chain reaction (RT-PCR) or real-time RT-PCR methods. RESULTS: Our results demonstrated that the differentiation status of hepatocyte-like cells induced from human MSCs was relatively similar to poorly differentiated human hepatoma cell lines. Interestingly, the HNF-4 isoform in induced MSCs and poorly differentiated human hepatoma cell lines was identified as HNF4γ instead of HNF-4α. Overexpression of HNF-4α in induced MSCs significantly enhanced the expression level of hepatic-specific genes, liver-enriched transcription factors, and cytochrome P450 (P450) genes. CONCLUSION: Overexpression of HNF-4α improves the hepatic differentiation of human MSCs from bone marrow and is a simple way of providing better cell sources for clinical applications.展开更多
AIM:To observe the effect of human umbilical cord mesenchymal stem cells(hUCMSCs)secretions on the relevant factors in mouse retinal astrocytes,and to investigate the effect of hUCMSCs on the expression of vascular en...AIM:To observe the effect of human umbilical cord mesenchymal stem cells(hUCMSCs)secretions on the relevant factors in mouse retinal astrocytes,and to investigate the effect of hUCMSCs on the expression of vascular endothelial growth factor-A(VEGF-A)and to observe the therapeutic effect on the mouse model of retinopathy of prematurity(ROP).METHODS:Cultured hUCMSCs and extracted exosomes from them and then retinal astrocytes were divided into control group and hypoxia group.MTT assay,flow cytometry,reverse transcription-polymerase chain reaction(RT-PCR)and Western blot were used to detect related indicators.Possible mechanisms by which hUCMSCs exosomes affect VEGF-A expression in hypoxia-induced mouse retinal astrocytes were explored.At last,the efficacy of exosomes of UCMSCs in a mouse ROP model was explored.Graphpad6 was used to comprehensively process data information.RESULTS:The secretion was successfully extracted from the culture supernatant of hUCMSCs by gradient ultracentrifugation.Reactive oxygen species(ROS)and hypoxia inducible factor-1α(HIF-1α)of mice retinal astrocytes under different hypoxia time and the expression level of VEGF-A protein and VEGF-A mRNA increased,and the ROP cell model was established after 6h of hypoxia.The secretions of medium and high concentrations of hUCMSCs can reduce ROS and HIF-1α,the expression levels of VEGF-A protein and VEGF-A mRNA are statistically significant and concentration dependent.Compared with the ROP cell model group,the expression of phosphatidylinositol 3-kinase(PI3K)/protein kinase B(AKT)/mammalian target of rapamycin(mTOR)signal pathway related factors in the hUCMSCs exocrine group is significantly decreased.The intravitreal injection of the secretions of medium and high concentrations of hUCMSCs can reduce VEGF-A and HIF-1αin ROP model tissues.HE staining shows that the number of retinal neovascularization in ROP mice decreases with the increase of the dose of hUCMSCs secretion.CONCLUSION:In a hypoxia induced mouse retinal astrocyte model,hUCMSCs exosomes are found to effectively reduce the expression of HIF-1αand VEGF-A,which are positively correlated with the concentration of hUCMSCs exosomes.HUCMSCs exosomes can effectively reduce the number of retinal neovascularization and the expression of HIF-1αand VEGF-A proteins in ROP mice,and are positively correlated with drug dosage.Besides,they can reduce the related factors on the PI3K/AKT/mTOR signaling pathway.展开更多
Neonatal hypoxic-ischemic encephalopathy is often associated with permanent cerebral palsy,neurosensory impairments,and cognitive deficits,and there is no effective treatment for complications related to hypoxic-ische...Neonatal hypoxic-ischemic encephalopathy is often associated with permanent cerebral palsy,neurosensory impairments,and cognitive deficits,and there is no effective treatment for complications related to hypoxic-ischemic encephalopathy.The therapeutic potential of human placental chorionic plate-derived mesenchymal stem cells for various diseases has been explored.However,the potential use of human placental chorionic plate-derived mesenchymal stem cells for the treatment of neonatal hypoxic-ischemic encephalopathy has not yet been investigated.In this study,we injected human placental chorionic plate-derived mesenchymal stem cells into the lateral ventricle of a neonatal hypoxic-ischemic encephalopathy rat model and observed significant improvements in both cognitive and motor function.Protein chip analysis showed that interleukin-3 expression was significantly elevated in neonatal hypoxic-ischemic encephalopathy model rats.Following transplantation of human placental chorionic plate-derived mesenchymal stem cells,interleukin-3 expression was downregulated.To further investigate the role of interleukin-3 in neonatal hypoxic-ischemic encephalopathy,we established an in vitro SH-SY5Y cell model of hypoxic-ischemic injury through oxygen-glucose deprivation and silenced interleukin-3 expression using small interfering RNA.We found that the activity and proliferation of SH-SY5Y cells subjected to oxygen-glucose deprivation were further suppressed by interleukin-3 knockdown.Furthermore,interleukin-3 knockout exacerbated neuronal damage and cognitive and motor function impairment in rat models of hypoxic-ischemic encephalopathy.The findings suggest that transplantation of hpcMSCs ameliorated behavioral impairments in a rat model of hypoxic-ischemic encephalopathy,and this effect was mediated by interleukin-3-dependent neurological function.展开更多
Complete transverse injury of peripheral nerves is challenging to treat.Exosomes secreted by human umbilical cord mesenchymal stem cells are considered to play an important role in intercellular communication and regu...Complete transverse injury of peripheral nerves is challenging to treat.Exosomes secreted by human umbilical cord mesenchymal stem cells are considered to play an important role in intercellular communication and regulate tissue regeneration.In previous studies,a collagen/hyaluronic acid sponge was shown to provide a suitable regeneration environment for Schwann cell proliferation and to promote axonal regeneration.This three-dimensional(3D)composite conduit contains a collagen/hyaluronic acid inner sponge enclosed in an electrospun hollow poly(lactic-co-glycolic acid)tube.However,whether there is a synergy between the 3D composite conduit and exosomes in the repair of peripheral nerve injury remains unknown.In this study,we tested a comprehensive strategy for repairing long-gap(10 mm)peripheral nerve injury that combined the 3D composite conduit with human umbilical cord mesenchymal stem cell-derived exosomes.Repair effectiveness was evaluated by sciatic functional index,sciatic nerve compound muscle action potential recording,recovery of muscle mass,measuring the cross-sectional area of the muscle fiber,Masson trichrome staining,and transmission electron microscopy of the regenerated nerve in rats.The results showed that transplantation of the 3D composite conduit loaded with human umbilical cord mesenchymal stem cell-derived exosomes promoted peripheral nerve regeneration and restoration of motor function,similar to autograft transplantation.More CD31-positive endothelial cells were observed in the regenerated nerve after transplantation of the loaded conduit than after transplantation of the conduit without exosomes,which may have contributed to the observed increase in axon regeneration and distal nerve reconnection.Therefore,the use of a 3D composite conduit loaded with human umbilical cord mesenchymal stem cell-derived exosomes represents a promising cell-free therapeutic option for the treatment of peripheral nerve injury.展开更多
BACKGROUND Ferroptosis can induce low retention and engraftment after mesenchymal stem cell(MSC)delivery,which is considered a major challenge to the effectiveness of MSC-based pulmonary arterial hypertension(PAH)ther...BACKGROUND Ferroptosis can induce low retention and engraftment after mesenchymal stem cell(MSC)delivery,which is considered a major challenge to the effectiveness of MSC-based pulmonary arterial hypertension(PAH)therapy.Interestingly,the cystathionineγ-lyase(CSE)/hydrogen sulfide(H_(2)S)pathway may contribute to mediating ferroptosis.However,the influence of the CSE/H_(2)S pathway on ferroptosis in human umbilical cord MSCs(HUCMSCs)remains unclear.AIM To clarify whether the effect of HUCMSCs on vascular remodelling in PAH mice is affected by CSE/H_(2)S pathway-mediated ferroptosis,and to investigate the functions of the CSE/H_(2)S pathway in ferroptosis in HUCMSCs and the underlying mechanisms.METHODS Erastin and ferrostatin-1(Fer-1)were used to induce and inhibit ferroptosis,respectively.HUCMSCs were transfected with a vector to overexpress or inhibit expression of CSE.A PAH mouse model was established using 4-wk-old male BALB/c nude mice under hypoxic conditions,and pulmonary pressure and vascular remodelling were measured.The survival of HUCMSCs after delivery was observed by in vivo bioluminescence imaging.Cell viability,iron accumulation,reactive oxygen species production,cystine uptake,and lipid peroxidation in HUCMSCs were tested.Ferroptosis-related proteins and S-sulfhydrated Kelchlike ECH-associating protein 1(Keap1)were detected by western blot analysis.RESULTS In vivo,CSE overexpression improved cell survival after erastin-treated HUCMSC delivery in mice with hypoxiainduced PAH.In vitro,CSE overexpression improved H_(2)S production and ferroptosis-related indexes,such as cell viability,iron level,reactive oxygen species production,cystine uptake,lipid peroxidation,mitochondrial membrane density,and ferroptosis-related protein expression,in erastin-treated HUCMSCs.In contrast,in vivo,CSE inhibition decreased cell survival after Fer-1-treated HUCMSC delivery and aggravated vascular remodelling in PAH mice.In vitro,CSE inhibition decreased H_(2)S levels and restored ferroptosis in Fer-1-treated HUCMSCs.Interestingly,upregulation of the CSE/H_(2)S pathway induced Keap1 S-sulfhydration,which contributed to the inhibition of ferroptosis.CONCLUSION Regulation of the CSE/H_(2)S pathway in HUCMSCs contributes to the inhibition of ferroptosis and improves the suppressive effect on vascular remodelling in mice with hypoxia-induced PAH.Moreover,the protective effect of the CSE/H_(2)S pathway against ferroptosis in HUCMSCs is mediated via S-sulfhydrated Keap1/nuclear factor erythroid 2-related factor 2 signalling.The present study may provide a novel therapeutic avenue for improving the protective capacity of transplanted MSCs in PAH.展开更多
BACKGROUND The immunosuppressive capacity of mesenchymal stem cells(MSCs)is dependent on the“license”of several proinflammatory factors to express immunosuppressive factors such as programmed cell death 1 ligand 1(P...BACKGROUND The immunosuppressive capacity of mesenchymal stem cells(MSCs)is dependent on the“license”of several proinflammatory factors to express immunosuppressive factors such as programmed cell death 1 ligand 1(PD-L1),which determines the clinical therapeutic efficacy of MSCs for inflammatory or immune diseases.In MSCs,interferon-gamma(IFN-γ)is a key inducer of PD-L1 expression,which is synergistically enhanced by tumor necrosis factor-alpha(TNF-α);however,the underlying mechanism is unclear.AIM To reveal the mechanism of pretreated MSCs express high PD-L1 and explore the application of pretreated MSCs in ulcerative colitis.METHODS We assessed PD-L1 expression in human umbilical-cord-derived MSCs(hUC-MSCs)induced by IFN-γand TNF-α,alone or in combination.Additionally,we performed signal pathway inhibitor experiments as well as RNA interference experiments to elucidate the molecular mechanism by which IFN-γalone or in combination with TNF-αinduces PD-L1 expression.Moreover,we used luciferase reporter gene experiments to verify the binding sites of the transcription factors of each signal transduction pathway to the targeted gene promoters.Finally,we evaluated the immunosuppressive capacity of hUC-MSCs treated with IFN-γand TNF-αin both an in vitro mixed lymphocyte culture assay,and in vivo in mice with dextran sulfate sodium-induced acute colitis.RESULTS Our results suggest that IFN-γinduction alone upregulates PD-L1 expression in hUC-MSCs while TNF-αalone does not,and that the co-induction of IFN-γand TNF-αpromotes higher expression of PD-L1.IFN-γinduces hUCMSCs to express PD-L1,in which IFN-γactivates the JAK/STAT1 signaling pathway,up-regulates the expression of the interferon regulatory factor 1(IRF1)transcription factor,promotes the binding of IRF1 and the PD-L1 gene promoter,and finally promotes PD-L1 mRNA.Although TNF-αalone did not induce PD-L1 expression in hUCMSCs,the addition of TNF-αsignificantly enhanced IFN-γ-induced JAK/STAT1/IRF1 activation.TNF-αupregulated IFN-γreceptor expression through activation of the nuclear factor kappa-B signaling pathway,which significantly enhanced IFN-γsignaling.Finally,co-induced hUC-MSCs have a stronger inhibitory effect on lymphocyte proliferation,and significantly ameliorate weight loss,mucosal damage,inflammatory cell infiltration,and up-regulation of inflammatory factors in colitis mice.CONCLUSION Overall,our results suggest that IFN-γand TNF-αenhance both the immunosuppressive ability of hUC-MSCs and their efficacy in ulcerative colitis by synergistically inducing high expression of PD-L1.展开更多
BACKGROUND Rapid wound healing remains a pressing clinical challenge,necessitating studies to hasten this process.A promising approach involves the utilization of human umbilical cord mesenchymal stem cells(hUC-MSCs)d...BACKGROUND Rapid wound healing remains a pressing clinical challenge,necessitating studies to hasten this process.A promising approach involves the utilization of human umbilical cord mesenchymal stem cells(hUC-MSCs)derived exosomes.The hypothesis of this study was that these exosomes,when loaded onto a gelatin sponge,a common hemostatic material,would enhance hemostasis and accelerate wound healing.AIM To investigate the hemostatic and wound healing efficacy of gelatin sponges loaded with hUC-MSCs-derived exosomes.METHODS Ultracentrifugation was used to extract exosomes from hUC-MSCs.Nanoparticle tracking analysis(NTA),transmission electron microscopy(TEM),and western blot techniques were used to validate the exosomes.In vitro experiments were performed using L929 cells to evaluate the cytotoxicity of the exosomes and their impact on cell growth and survival.New Zealand rabbits were used for skin irritation experiments to assess whether they caused adverse skin reactions.Hemolysis test was conducted using a 2%rabbit red blood cell suspension to detect whether they caused hemolysis.Moreover,in vivo experiments were carried out by implanting a gelatin sponge loaded with exosomes subcutaneously in Sprague-Dawley(SD)rats to perform biocompatibility tests.In addition,coagulation index test was conducted to evaluate their impact on blood coagulation.Meanwhile,SD rat liver defect hemostasis model and full-thickness skin defect model were used to study whether the gelatin sponge loaded with exosomes effectively stopped bleeding and promoted wound healing.RESULTS The NTA,TEM,and western blot experimental results confirmed that exosomes were successfully isolated from hUC-MSCs.The gelatin sponge loaded with exosomes did not exhibit significant cell toxicity,skin irritation,or hemolysis,and they demonstrated good compatibility in SD rats.Additionally,the effectiveness of the gelatin sponge loaded with exosomes in hemostasis and wound healing was validated.The results of the coagulation index experiment indicated that the gelatin sponge loaded with exosomes had significantly better coagulation effect compared to the regular gelatin sponge,and they showed excellent hemostatic performance in a liver defect hemostasis model.Finally,the full-thickness skin defect healing experiment results showed significant improvement in the healing process of wounds treated with the gelatin sponge loaded with exosomes compared to other groups.CONCLUSION Collectively,the gelatin sponge loaded with hUC-MSCs-derived exosomes is safe and efficacious for promoting hemostasis and accelerating wound healing,warranting further clinical application.展开更多
Animal expe riments have shown that injectable collagen scaffold with human umbilical cord-derived mesenchymal stem cells can promote recovery from spinal cord injury.To investigate whether injectable collagen scaffol...Animal expe riments have shown that injectable collagen scaffold with human umbilical cord-derived mesenchymal stem cells can promote recovery from spinal cord injury.To investigate whether injectable collagen scaffold with human umbilical cord-derived mesenchymal stem cells can be used to treat spontaneous intracerebral hemorrhage,this non-randomized phase I clinical trial recruited patients who met the inclusion criteria and did not meet the exclusion crite ria of spontaneous intracerebral hemorrhage treated in the Characteristic Medical Center of Chinese People’s Armed Police Force from May 2016 to December 2020.Patients were divided into three groups according to the clinical situation and patient benefit:control(n=18),human umbilical cord-derived mesenchymal stem cells(n=4),and combination(n=8).The control group did not receive any transplantation.The human umbilical cord-derived mesenchymal stem cells group received human umbilical cord-derived mesenchymal stem cell transplantation.The combination group received injectable collagen scaffold with human umbilical cord-derived mesenchymal stem cells.Patients who received injectable collagen scaffold with human umbilical cord-derived mesenchymal stem cells had more remarkable improvements in activities of daily living and cognitive function and smaller foci of intra cerebral hemorrhage-related encephalomalacia.Severe adve rse events associated with cell transplantation were not observed.Injectable collagen scaffold with human umbilical cord-derived mesenchymal stem cells appears to have great potential treating spontaneous intracerebral hemorrhage.展开更多
[Objectives]To study the effect of human umbilical cord mesenchymal stem cells(hUC-MSCs)on GRP78/ATF4 pathway in APP/PS1 mice.[Methods]Twelve 6-month-old female APP/PS1 mice were randomly divided into model group(MOD,...[Objectives]To study the effect of human umbilical cord mesenchymal stem cells(hUC-MSCs)on GRP78/ATF4 pathway in APP/PS1 mice.[Methods]Twelve 6-month-old female APP/PS1 mice were randomly divided into model group(MOD,n=6)and human umbilical cord mesenchymal stem cell treatment group(MSC,n=6);six 6-month-old C57BL/6N mice were used as control group(CON,n=6).The mice in each group were treated with the fourth generation of human umbilical cord mesenchymal stem cells through tail vein.Four weeks later,the mice in each group were killed.The expression of GFP78 and ATF4 in the cortex of mice in each group was detected by Western blotting and real-time fluorescence quantitative PCR.[Results]The results of immunoblotting and real-time fluorescence quantitative PCR showed that the expression of GRP78 in MOD group was lower than that in CON group and the expression of ATF4 increased.The expression of GRP78 protein in MSC group was higher than that in MOD group,but the expression of ATF4 protein was lower.The results of real-time fluorescence quantitative PCR showed that the mRNA level of GRP78 decreased and the mRNA level of ATF4 increased in MOD group compared with CON group.The mRNA level of GRP78 in MSC group was higher than that in MOD group,while the mRNA level of ATF4 in MSC group was lower than that in MOD group.[Conclusions]Human umbilical cord mesenchymal stem cells can regulate the expression of GRP78/ATF4 pathway in APP/PSI mice,which may be related to the stress level of endoplasmic reticulum in the brain of APP/PS1 mice mediated by human umbilical cord mesenchymal stem cells.展开更多
Objective:To explore the mechanism of circRNA-vgll3 in osteogenic differentiation of human bone marrow mesenchymal stem cells.Methods:BMSCs cells were transfected with circRNA-vgll3,and divided into circRNA-vgll3 high...Objective:To explore the mechanism of circRNA-vgll3 in osteogenic differentiation of human bone marrow mesenchymal stem cells.Methods:BMSCs cells were transfected with circRNA-vgll3,and divided into circRNA-vgll3 high-level group,circRNA-vgll3 low-level group,and negative control group(circRNA-vgll3 not transfected)according to the amount of transfection.The proliferation and apoptosis of BMSCs osteoblasts in each group were analyzed,and the alkaline phosphatase(ALP)activity,type I collagen gray value,bone morphogenetic protein 2(BMP-2),Runx2 protein,and mRNA expression levels were detected.Results:The circRNA-vgll3 low-level group had a significant inhibitory effect on the proliferation of BMSCs osteoblasts,and the apoptosis rate of the circRNA-vgll3 low-level group was significantly higher than that of the circRNA-vgll3 high-level group(P<0.05);ALP activity,type I collagen gray value,BMP-2,Runx2 protein,and mRNA expression levels in the high-level circRNA-vgll3 group were significantly higher than those in the low-level circRNA-vgll3 group,and the difference was statistically significant(P<0.05).Conclusion:Overexpression of circRNA-vgll3 can promote the osteogenic differentiation ability of BMSCs,while low expression of circRNA-vgll3 can inhibit the osteogenic differentiation ability of BMSCs.The main mechanism of action is that circRNA-vgll3 can affect osteogenic differentiation by regulating the Runx2 protein.展开更多
Human umbilical cord-derived mesenchymal stem cells (hUCMSCs) represent a promising young-state stem cell source for cell-based therapy. hUCMSC transplantation into the transected sciatic nerve promotes axonal regen...Human umbilical cord-derived mesenchymal stem cells (hUCMSCs) represent a promising young-state stem cell source for cell-based therapy. hUCMSC transplantation into the transected sciatic nerve promotes axonal regeneration and functional recovery. To further clarify the para-crine effects of hUCMSCs on nerve regeneration, we performed human cytokine antibody array analysis, which revealed that hUCMSCs express 14 important neurotrophic factors. Enzyme-linked immunosorbent assay and immunohistochemistry showed that brain-derived neurotrophic factor, glial-derived neurotrophic factor, hepatocyte growth factor, neurotrophin-3, basic fibroblast growth factor, type I collagen, fibronectin and laminin were highly expressed. Treatment with hUCMSC-conditioned medium enhanced Schwann cell viability and proliferation, increased nerve growth factor and brain-derived neurotrophic factor expression in Schwann cells, and enhanced neurite growth from dorsal root ganglion explants. These ifndings suggest that paracrine action may be a key mechanism underlying the effects of hUCMSCs in peripheral nerve repair.展开更多
Human umbilical cord mesenchymal stem cells(hUC-MSCs)support revascularization,inhibition of inflammation,regulation of apoptosis,and promotion of the release of beneficial factors.Thus,they are regarded as a promisin...Human umbilical cord mesenchymal stem cells(hUC-MSCs)support revascularization,inhibition of inflammation,regulation of apoptosis,and promotion of the release of beneficial factors.Thus,they are regarded as a promising candidate for the treatment of intractable spinal cord injury(SCI).Clinical studies on patients with early chronic SCI(from 2 months to 1 year post-injury),which is clinically common,are rare;therefore,we will conduct a prospective,multicenter,randomized,placebo-controlled,single-blinded clinical trial at the Third Affiliated Hospital of Sun Yat-sen University,West China Hospital of Sichuan University,and Shanghai East Hospital,Tongji University School of Medicine,China.The trial plans to recruit 66 early chronic SCI patients.Eligible patients will undergo randomization at a 2:1 ratio to two arms:the observation group and the control group.Subjects in the observation group will receive four intrathecal transplantations of stem cells,with a dosage of 1×106/kg,at one calendar month intervals.Subjects in the control group will receive intrathecal administrations of 10 mL sterile normal saline in place of the stem cell transplantations.Clinical safety will be assessed by the analysis of adverse events and laboratory tests.The American Spinal Injury Association(ASIA)total score will be the primary efficacy endpoint,and the secondary efficacy outcomes will be the following:ASIA impairment scale,International Association of Neural Restoration-Spinal Cord Injury Functional Rating Scale,muscle tension,electromyogram,cortical motor and cortical sensory evoked potentials,residual urine volume,magnetic resonance imaging–diffusion tensor imaging,T cell subtypes in serum,neurotrophic factors and inflammatory factors in both serum and cerebrospinal fluid.All evaluations will be performed at 1,3,6,and 12 months following the final intrathecal administration.During the entire study procedure,all adverse events will be reported as soon as they are noted.This trial is designed to evaluate the clinical safety and efficacy of subarachnoid transplantation of hUC-MSCs to treat early chronic SCI.Moreover,it will establish whether cytotherapy can ameliorate local hostile microenvironments,promote tracking fiber regeneration,and strengthen spinal conduction ability,thus improving overall motor,sensory,and micturition/defecation function in patients with early chronic SCI.This study was approved by the Stem Cell Research Ethics Committee of the Third Affiliated Hospital of Sun Yat-sen University,China(approval No.[2018]-02)on March 30,2018,and was registered with ClinicalTrials.gov(registration No.NCT03521323)on April 12,2018.The revised trial protocol(protocol version 4.0)was approved by the Stem Cell Research Ethics Committee of the Third Affiliated Hospital of Sun Yat-sen University,China(approval No.[2019]-10)on February 25,2019,and released on ClinicalTrials.gov on April 29,2019.展开更多
Mesenchymal stem cells (MSCs) of nonembryonic origins possess the proliferation and multi-lineage differentiation potentials. It has been established that epigenetic mechanisms could be critical for determining the ...Mesenchymal stem cells (MSCs) of nonembryonic origins possess the proliferation and multi-lineage differentiation potentials. It has been established that epigenetic mechanisms could be critical for determining the fate of stem cells, and MSCs derived from different origins exhibited different expression profiles individually to a certain extent. In this study, ChiP-on-chip was used to generate genome-wide histone H3-Lys9 acetylation and dimethylation profiles at gene promoters in human bone marrow MSCs. We showed that modifications of histone H3-Lys9 at gene promoters correlated well with mRNA expression in human bone marrow MSCs. Functional analysis revealed that many key cellular pathways in human bone marrow MSC self-renewal, such as the canonical signaling pathways, cell cycle pathways and cytokine related pathways may be regulated by H3-Lys9 modifications. These data suggest that gene activation and silencing affected by H3-Lys9 acetylation and dimethylation, respectively, may be essential to the maintenance of human bone marrow MSC self-renewal and multi-potency.展开更多
Human umbilical cord mesenchymal stem cells(hUC-MSCs)are a promising candidate for spinal cord injury(SCI)repair owing to their advantages of low immunogenicity and easy accessibility over other MSC sources.However,mo...Human umbilical cord mesenchymal stem cells(hUC-MSCs)are a promising candidate for spinal cord injury(SCI)repair owing to their advantages of low immunogenicity and easy accessibility over other MSC sources.However,modest clinical efficacy hampered the progression of these cells to clinical translation.This discrepancy may be due to many variables,such as cell source,timing of implantation,route of administration,and relevant efficacious cell dose,which are critical factors that affect the efficacy of treatment of patients with SCI.Previously,we have evaluated the safety and efficacy of 4×10^(6) hUC-MSCs/kg in the treatment of subacute SCI by intrathecal implantation in rat models.To search for a more accurate dose range for clinical translation,we compared the effects of three different doses of hUC-MSCs-low(0.25×10^(6) cells/kg),medium(1×10^(6) cells/kg)and high(4×10^(6) cells/kg)-on subacute SCI repair through an elaborate combination of behavioral analyses,anatomical analyses,magnetic resonance imaging-diffusion tensor imaging(MRI-DTI),biotinylated dextran amine(BDA)tracing,electrophysiology,and quantification of mRNA levels of ion channels and neurotransmitter receptors.Our study demonstrated that the medium dose,but not the low dose,is as efficient as the high dose in producing the desired therapeutic outcomes.Furthermore,partial restoration of theγ-aminobutyric acid type A(GABAA)receptor expression by the effective doses indicates that GABAA receptors are possible candidates for therapeutic targeting of dormant relay pathways in injured spinal cord.Overall,this study revealed that intrathecal implantation of 1×10^(6) hUC-MSCs/kg is an alternative approach for treating subacute SCI.展开更多
Objective High glucose(HG)can influence the osteogenic differentiation ability of periodontal ligament stem cells(PDLSCs).Human umbilical cord mesenchymal stem cell-derived exosomes(hUCMSC-exo)have broad application p...Objective High glucose(HG)can influence the osteogenic differentiation ability of periodontal ligament stem cells(PDLSCs).Human umbilical cord mesenchymal stem cell-derived exosomes(hUCMSC-exo)have broad application prospects in tissue healing.The current study aimed to explore whether hUCMSC-exo could promote the osteogenic differentiation of hPDLSCs under HG conditions and the underlying mechanism.Methods We used a 30 mmol/L glucose concentration to simulate HG conditions.CCK-8 assay was performed to evaluate the effect of hUCMSC-exo on the proliferation of hPDLSCs.Alkaline phosphatase(ALP)staining,ALP activity,and qRT-PCR were performed to evaluate the pro-osteogenic effect of hUCMSC-exo on hPDLSCs.Western blot analysis was conducted to evaluate the underlying mechanism.Results The results of the CCK-8 assay,ALP staining,ALP activity,and qRT-PCR assay showed that hUCMSC-exo significantly promoted cell proliferation and osteogenic differentiation in a dosedependent manner.The Western blot results revealed that hUCMSC-exo significantly increased the levels of p-PI3K and p-AKT in cells,and the effect was inhibited by LY294002(PI3K inhibitor)or MK2206(AKT inhibitor),respectively.Moreover,the increases in osteogenic indicators induced by hUCMSC-exo were significantly suppressed by LY294002 and MK2206.Conclusion hUCMSC-exo promote the osteogenic differentiation of hPDLSCs under HG conditions through the PI3K/AKT signaling pathway.展开更多
Various methods are currently under investigation to preserve fertility in males treated with high-dose chemotherapy and radiation for malignant and nonmalignant disorders. Human umbilical cord mesenchymal stem cells ...Various methods are currently under investigation to preserve fertility in males treated with high-dose chemotherapy and radiation for malignant and nonmalignant disorders. Human umbilical cord mesenchymal stem cells (HUC-MSCs), which possess potent immunosuppressive function and secrete various cytokines and growth factors, have the potential clinical applications. As a potential alternative, we investigate whether injection of HUC-MSCs into the interstitial compartment of the testes to promote spermatogenic regeneration efficiently. HUC-MSCs were isolated from different sources of umbilical cords and injected into the interstitial space of one testis from 10 busulfan-treated mice (saline and HEK293 cells injections were performed in a separate set of mice) and the other testis remained uninjected. Three weeks after MSCs injection, Relative quantitative reverse transcription polymerase chain reaction was used to identify the expression of 10 of germ cell associated, which are all related to meiosis, demonstrated higher levels of spermatogenic gene expression (2-8 fold) in HUC-MSCs injected testes compared to the contralateral uninjected testes (five mice). Protein levels for germ cell-specific genes, miwi, vasa and synaptonemal complex protein (Scp3) were also higher in MSC-treated testes compared to injected controls 3 weeks after treatment. However, no different expression was detected in saline water and HEK293 cells injection control group. We have demonstrated HUC-MSCs could affect mouse germ cell-specific genes expression. The results also provide a possibility that the transplanted HUC-MSCs may promote the recovery of spermatogenesis. This study provides further evidence for preclinical therapeutic effects of HUC-MSCs, and explores a new approach to the treatment of azoospermia.展开更多
Several studies have demonstrated that human umbilical cord blood-derived mesenchymal stem cells can promote neural regeneration following brain injury. However, the therapeutic effects of human umbilical cord blood-d...Several studies have demonstrated that human umbilical cord blood-derived mesenchymal stem cells can promote neural regeneration following brain injury. However, the therapeutic effects of human umbilical cord blood-derived mesenchymal stem cells in guiding peripheral nerve regeneration remain poorly understood. This study was designed to investigate the effects of human umbilical cord blood-derived mesenchymal stem cells on neural regeneration using a rat sciatic nerve crush injury model. Human umbilical cord blood-derived mesenchymal stem cells (1 ~ 106) or a PBS control were injected into the crush-injured segment of the sciatic nerve. Four weeks after cell injection, brain-derived neurotrophic factor and tyrosine kinase receptor B mRNA expression at the lesion site was increased in comparison to control. Furthermore, sciatic function index, Fluoro Gold-labeled neuron counts and axon density were also significantly increased when compared with control. Our results indicate that human umbilical cord blood-derived mesenchvmal stem cells promote the functinnal r~.RcJv^rv nf P.n I^h-inillr^4 ~r^i~tit, n^r~e展开更多
In the present study, human umbilical cord blood mesenchymal stem cells were injected into a rat model of traumatic brain injury via the tail vein. Results showed that 5-bromodeoxyuridine-labeled cells aggregated arou...In the present study, human umbilical cord blood mesenchymal stem cells were injected into a rat model of traumatic brain injury via the tail vein. Results showed that 5-bromodeoxyuridine-labeled cells aggregated around the injury site, surviving up to 4 weeks post-transplantation. In addition, transplantation-related death did not occur, and neurological functions significantly improved. Histological detection revealed attenuated pathological injury in rat brain tissues following human umbilical cord blood mesenchymal stem cell transplantation. In addition, the number of apoptotic cells decreased. Immunohistochemistry and in situ hybridization showed increased expression of brain-derived neurotrophic factor, nerve growth factor, basic fibroblast growth factor, and vascular endothelial growth factor, along with increased microvessel density in surrounding areas of brain injury. Results demonstrated migration of transplanted human umbilical cord blood mesenchymal stem cells into the lesioned boundary zone of rats, as well as increased angiogenesis and expression of related neurotrophic factors in the lesioned boundary zone.展开更多
文摘Previously, mouse bone marrow-derived stem cells (MSC) treated with the unspecific DNA methyltransferase inhibitor 5-azacytidine were reported to differentiate into cardiomyocytes. The aim of the present study was to investigate the efficiency of a similar differentiation strategy in human mononuclear cells obtained from healthy bone marrow donors. After 1-3 passages, cultures were exposed for 24 h to 5-azacytidine (3 μM) followed by 6 weeks of further culture. Drug treatment did not induce expression of myogenic marker MyoD or cardiac markers Nkx2.5 and GATA-4 and did not yield beating cells during follow-up. In patch clamp experiments, approximately 10-15% of treated and untreated cells exhibited L-type Ca^2+ currents. Almost all cells showed outwardly rectifying K^+ currents of rapid or slow activation kinetics. Mean current amplitude at +60 mV doubled after 6 weeks of treatment compared with time-matched controls. Membrane capacitance of treated cells was significantly larger than in controls 2 weeks after treatment and remained high after 6 weeks, Expression levels of mRNAs for the K^+ channels Kv 1,1, Kv 1,5, Kv2,1, Kv4,3 and KCNMA 1 and for the Ca^2+ channel Cav 1.2 were not affected by 5-azacytidine. Treatment with potassium channel blockers tetraethylammonium and clofilium at concentrations shown previously to inhibit rapid or slowly activating K^+ currents of hMSC inhibited proliferation of these cells. Our results suggest that despite the absence of differentiation ofhMSC into cardiomyocytes, treatme.nt with 5-azacytidine caused profound changes in current density.
文摘Aim: To investigate whether the biological process of superparamagnetic iron oxide (SPIO)-labeled human mesenchymal stem cells (hMSCs) may be monitored non-invasively by using in vivo magnetic resonance (MR) imaging with conventional 1.5-T system examinations in corpus cavernosa of rats and rabbits. Methods: The labeling efficiency and viability of SP10-labeled hMSCs were examined with Prussian blue and Tripan blue, respectively. After SPIO-labeled hMSCs were transplanted to the corpus cavernosa of rats and rabbits, serial T2-weighted MR images were taken and histological examinations were carried out over a 4-week period. Results: hMSCs loaded with SPIO compared to unlabeled cells had a similar viability. For SPIO-labeled hMSCs more than lx 105 concentration in vitro, MR images showed a decrease in signal intensity. MR signal intensity at the areas of SPIO-labeled hMSCs in the rat and rabbit corpus cavernosa decreased and was confined locally. After injection of SPIO-labeled hMSCs into the corpus cavernosum, MR imaging demonstrated that hMSCs could be seen for at least 12 weeks after injection. The presence of iron was confirmed with Prussian blue staining in histological sections. Conclusion: SP10-labeled hMSCs in corpus cavernosa of rats and rabbits can be evaluated non-invasively by molecular MR imaging. Our findings suggest that MR imaging has the ability to test the long-term therapeutic potential of hMSCs in animals in the setting of erectile dysfunction.
基金Supported by Grant MG-098-PP-08 from the National Health Research Institutes, Taiwan
文摘AIM: To investigate the differentiation status and key factors to facilitate hepatic differentiation of human bone-marrow-derived mesenchymal stem cells (MSCs). METHODS: Human MSCs derived from bone marrow were induced into hepatocyte-like cells following a previously published protocol. The differentiation status of the hepatocyte-like cells was compared with various human hepatoma cell lines. Overexpression of hepatocyte nuclear factor (HNF)-4α was mediated by adenovirus infection of these hepatocyte-like cells. The expression of interesting genes was then examined by either re-verse transcription-polymerase chain reaction (RT-PCR) or real-time RT-PCR methods. RESULTS: Our results demonstrated that the differentiation status of hepatocyte-like cells induced from human MSCs was relatively similar to poorly differentiated human hepatoma cell lines. Interestingly, the HNF-4 isoform in induced MSCs and poorly differentiated human hepatoma cell lines was identified as HNF4γ instead of HNF-4α. Overexpression of HNF-4α in induced MSCs significantly enhanced the expression level of hepatic-specific genes, liver-enriched transcription factors, and cytochrome P450 (P450) genes. CONCLUSION: Overexpression of HNF-4α improves the hepatic differentiation of human MSCs from bone marrow and is a simple way of providing better cell sources for clinical applications.
基金Supported by Tianjin Key Medical Discipline Specialty Construction Project(No.TJXZDXK-016A)Science Foundation of Tianjin Eye Hospital(No.YKZD1901).
文摘AIM:To observe the effect of human umbilical cord mesenchymal stem cells(hUCMSCs)secretions on the relevant factors in mouse retinal astrocytes,and to investigate the effect of hUCMSCs on the expression of vascular endothelial growth factor-A(VEGF-A)and to observe the therapeutic effect on the mouse model of retinopathy of prematurity(ROP).METHODS:Cultured hUCMSCs and extracted exosomes from them and then retinal astrocytes were divided into control group and hypoxia group.MTT assay,flow cytometry,reverse transcription-polymerase chain reaction(RT-PCR)and Western blot were used to detect related indicators.Possible mechanisms by which hUCMSCs exosomes affect VEGF-A expression in hypoxia-induced mouse retinal astrocytes were explored.At last,the efficacy of exosomes of UCMSCs in a mouse ROP model was explored.Graphpad6 was used to comprehensively process data information.RESULTS:The secretion was successfully extracted from the culture supernatant of hUCMSCs by gradient ultracentrifugation.Reactive oxygen species(ROS)and hypoxia inducible factor-1α(HIF-1α)of mice retinal astrocytes under different hypoxia time and the expression level of VEGF-A protein and VEGF-A mRNA increased,and the ROP cell model was established after 6h of hypoxia.The secretions of medium and high concentrations of hUCMSCs can reduce ROS and HIF-1α,the expression levels of VEGF-A protein and VEGF-A mRNA are statistically significant and concentration dependent.Compared with the ROP cell model group,the expression of phosphatidylinositol 3-kinase(PI3K)/protein kinase B(AKT)/mammalian target of rapamycin(mTOR)signal pathway related factors in the hUCMSCs exocrine group is significantly decreased.The intravitreal injection of the secretions of medium and high concentrations of hUCMSCs can reduce VEGF-A and HIF-1αin ROP model tissues.HE staining shows that the number of retinal neovascularization in ROP mice decreases with the increase of the dose of hUCMSCs secretion.CONCLUSION:In a hypoxia induced mouse retinal astrocyte model,hUCMSCs exosomes are found to effectively reduce the expression of HIF-1αand VEGF-A,which are positively correlated with the concentration of hUCMSCs exosomes.HUCMSCs exosomes can effectively reduce the number of retinal neovascularization and the expression of HIF-1αand VEGF-A proteins in ROP mice,and are positively correlated with drug dosage.Besides,they can reduce the related factors on the PI3K/AKT/mTOR signaling pathway.
基金supported by the National Natural Science Foundation of China,No.82001604Guizhou Provincial Higher Education Science and Technology Innovation Team,No.[2023]072+1 种基金Guizhou Province Distinguished Young Scientific and Technological Talent Program,No.YQK[2023]040Guizhou Provincial Basic Research Program(Natural Science),No.ZK[2021]-368(all to LXiong),and Zunyi City Innovative Talent Team Training Plan,No.[2022]-2.
文摘Neonatal hypoxic-ischemic encephalopathy is often associated with permanent cerebral palsy,neurosensory impairments,and cognitive deficits,and there is no effective treatment for complications related to hypoxic-ischemic encephalopathy.The therapeutic potential of human placental chorionic plate-derived mesenchymal stem cells for various diseases has been explored.However,the potential use of human placental chorionic plate-derived mesenchymal stem cells for the treatment of neonatal hypoxic-ischemic encephalopathy has not yet been investigated.In this study,we injected human placental chorionic plate-derived mesenchymal stem cells into the lateral ventricle of a neonatal hypoxic-ischemic encephalopathy rat model and observed significant improvements in both cognitive and motor function.Protein chip analysis showed that interleukin-3 expression was significantly elevated in neonatal hypoxic-ischemic encephalopathy model rats.Following transplantation of human placental chorionic plate-derived mesenchymal stem cells,interleukin-3 expression was downregulated.To further investigate the role of interleukin-3 in neonatal hypoxic-ischemic encephalopathy,we established an in vitro SH-SY5Y cell model of hypoxic-ischemic injury through oxygen-glucose deprivation and silenced interleukin-3 expression using small interfering RNA.We found that the activity and proliferation of SH-SY5Y cells subjected to oxygen-glucose deprivation were further suppressed by interleukin-3 knockdown.Furthermore,interleukin-3 knockout exacerbated neuronal damage and cognitive and motor function impairment in rat models of hypoxic-ischemic encephalopathy.The findings suggest that transplantation of hpcMSCs ameliorated behavioral impairments in a rat model of hypoxic-ischemic encephalopathy,and this effect was mediated by interleukin-3-dependent neurological function.
基金supported by the National Key Research and Development Project of Stem Cell and Transformation Research,No.2019YFA0112100(to SF)the National Natural Science Foundation of China No.81930070(to SF)+1 种基金Multi-fund Investment Key Projects,No.21JCZDJC01100(to ZW)the Tianjin Science and Technology Planning Project,No.22JRRCRC00010(to SF)。
文摘Complete transverse injury of peripheral nerves is challenging to treat.Exosomes secreted by human umbilical cord mesenchymal stem cells are considered to play an important role in intercellular communication and regulate tissue regeneration.In previous studies,a collagen/hyaluronic acid sponge was shown to provide a suitable regeneration environment for Schwann cell proliferation and to promote axonal regeneration.This three-dimensional(3D)composite conduit contains a collagen/hyaluronic acid inner sponge enclosed in an electrospun hollow poly(lactic-co-glycolic acid)tube.However,whether there is a synergy between the 3D composite conduit and exosomes in the repair of peripheral nerve injury remains unknown.In this study,we tested a comprehensive strategy for repairing long-gap(10 mm)peripheral nerve injury that combined the 3D composite conduit with human umbilical cord mesenchymal stem cell-derived exosomes.Repair effectiveness was evaluated by sciatic functional index,sciatic nerve compound muscle action potential recording,recovery of muscle mass,measuring the cross-sectional area of the muscle fiber,Masson trichrome staining,and transmission electron microscopy of the regenerated nerve in rats.The results showed that transplantation of the 3D composite conduit loaded with human umbilical cord mesenchymal stem cell-derived exosomes promoted peripheral nerve regeneration and restoration of motor function,similar to autograft transplantation.More CD31-positive endothelial cells were observed in the regenerated nerve after transplantation of the loaded conduit than after transplantation of the conduit without exosomes,which may have contributed to the observed increase in axon regeneration and distal nerve reconnection.Therefore,the use of a 3D composite conduit loaded with human umbilical cord mesenchymal stem cell-derived exosomes represents a promising cell-free therapeutic option for the treatment of peripheral nerve injury.
基金the Natural Science Foundation of Shandong Province of China,No.ZR2021QH179 and ZR2020MH014.
文摘BACKGROUND Ferroptosis can induce low retention and engraftment after mesenchymal stem cell(MSC)delivery,which is considered a major challenge to the effectiveness of MSC-based pulmonary arterial hypertension(PAH)therapy.Interestingly,the cystathionineγ-lyase(CSE)/hydrogen sulfide(H_(2)S)pathway may contribute to mediating ferroptosis.However,the influence of the CSE/H_(2)S pathway on ferroptosis in human umbilical cord MSCs(HUCMSCs)remains unclear.AIM To clarify whether the effect of HUCMSCs on vascular remodelling in PAH mice is affected by CSE/H_(2)S pathway-mediated ferroptosis,and to investigate the functions of the CSE/H_(2)S pathway in ferroptosis in HUCMSCs and the underlying mechanisms.METHODS Erastin and ferrostatin-1(Fer-1)were used to induce and inhibit ferroptosis,respectively.HUCMSCs were transfected with a vector to overexpress or inhibit expression of CSE.A PAH mouse model was established using 4-wk-old male BALB/c nude mice under hypoxic conditions,and pulmonary pressure and vascular remodelling were measured.The survival of HUCMSCs after delivery was observed by in vivo bioluminescence imaging.Cell viability,iron accumulation,reactive oxygen species production,cystine uptake,and lipid peroxidation in HUCMSCs were tested.Ferroptosis-related proteins and S-sulfhydrated Kelchlike ECH-associating protein 1(Keap1)were detected by western blot analysis.RESULTS In vivo,CSE overexpression improved cell survival after erastin-treated HUCMSC delivery in mice with hypoxiainduced PAH.In vitro,CSE overexpression improved H_(2)S production and ferroptosis-related indexes,such as cell viability,iron level,reactive oxygen species production,cystine uptake,lipid peroxidation,mitochondrial membrane density,and ferroptosis-related protein expression,in erastin-treated HUCMSCs.In contrast,in vivo,CSE inhibition decreased cell survival after Fer-1-treated HUCMSC delivery and aggravated vascular remodelling in PAH mice.In vitro,CSE inhibition decreased H_(2)S levels and restored ferroptosis in Fer-1-treated HUCMSCs.Interestingly,upregulation of the CSE/H_(2)S pathway induced Keap1 S-sulfhydration,which contributed to the inhibition of ferroptosis.CONCLUSION Regulation of the CSE/H_(2)S pathway in HUCMSCs contributes to the inhibition of ferroptosis and improves the suppressive effect on vascular remodelling in mice with hypoxia-induced PAH.Moreover,the protective effect of the CSE/H_(2)S pathway against ferroptosis in HUCMSCs is mediated via S-sulfhydrated Keap1/nuclear factor erythroid 2-related factor 2 signalling.The present study may provide a novel therapeutic avenue for improving the protective capacity of transplanted MSCs in PAH.
基金Supported by the National Natural Science Foundation of China,No.81871568,No.32100643COVID-19 Infection and Prevention Emergency Special Project of Chongqing Education Commission,No.KYYJ202009.
文摘BACKGROUND The immunosuppressive capacity of mesenchymal stem cells(MSCs)is dependent on the“license”of several proinflammatory factors to express immunosuppressive factors such as programmed cell death 1 ligand 1(PD-L1),which determines the clinical therapeutic efficacy of MSCs for inflammatory or immune diseases.In MSCs,interferon-gamma(IFN-γ)is a key inducer of PD-L1 expression,which is synergistically enhanced by tumor necrosis factor-alpha(TNF-α);however,the underlying mechanism is unclear.AIM To reveal the mechanism of pretreated MSCs express high PD-L1 and explore the application of pretreated MSCs in ulcerative colitis.METHODS We assessed PD-L1 expression in human umbilical-cord-derived MSCs(hUC-MSCs)induced by IFN-γand TNF-α,alone or in combination.Additionally,we performed signal pathway inhibitor experiments as well as RNA interference experiments to elucidate the molecular mechanism by which IFN-γalone or in combination with TNF-αinduces PD-L1 expression.Moreover,we used luciferase reporter gene experiments to verify the binding sites of the transcription factors of each signal transduction pathway to the targeted gene promoters.Finally,we evaluated the immunosuppressive capacity of hUC-MSCs treated with IFN-γand TNF-αin both an in vitro mixed lymphocyte culture assay,and in vivo in mice with dextran sulfate sodium-induced acute colitis.RESULTS Our results suggest that IFN-γinduction alone upregulates PD-L1 expression in hUC-MSCs while TNF-αalone does not,and that the co-induction of IFN-γand TNF-αpromotes higher expression of PD-L1.IFN-γinduces hUCMSCs to express PD-L1,in which IFN-γactivates the JAK/STAT1 signaling pathway,up-regulates the expression of the interferon regulatory factor 1(IRF1)transcription factor,promotes the binding of IRF1 and the PD-L1 gene promoter,and finally promotes PD-L1 mRNA.Although TNF-αalone did not induce PD-L1 expression in hUCMSCs,the addition of TNF-αsignificantly enhanced IFN-γ-induced JAK/STAT1/IRF1 activation.TNF-αupregulated IFN-γreceptor expression through activation of the nuclear factor kappa-B signaling pathway,which significantly enhanced IFN-γsignaling.Finally,co-induced hUC-MSCs have a stronger inhibitory effect on lymphocyte proliferation,and significantly ameliorate weight loss,mucosal damage,inflammatory cell infiltration,and up-regulation of inflammatory factors in colitis mice.CONCLUSION Overall,our results suggest that IFN-γand TNF-αenhance both the immunosuppressive ability of hUC-MSCs and their efficacy in ulcerative colitis by synergistically inducing high expression of PD-L1.
基金the National Key R&D Program of China,No.2018YFA0108304the National Natural Science Foundation of China,No.81771721 and 81971505the Innovation Project of Guangxi Graduate Education,No.YCBZ2022004 and YCBZ2022045。
文摘BACKGROUND Rapid wound healing remains a pressing clinical challenge,necessitating studies to hasten this process.A promising approach involves the utilization of human umbilical cord mesenchymal stem cells(hUC-MSCs)derived exosomes.The hypothesis of this study was that these exosomes,when loaded onto a gelatin sponge,a common hemostatic material,would enhance hemostasis and accelerate wound healing.AIM To investigate the hemostatic and wound healing efficacy of gelatin sponges loaded with hUC-MSCs-derived exosomes.METHODS Ultracentrifugation was used to extract exosomes from hUC-MSCs.Nanoparticle tracking analysis(NTA),transmission electron microscopy(TEM),and western blot techniques were used to validate the exosomes.In vitro experiments were performed using L929 cells to evaluate the cytotoxicity of the exosomes and their impact on cell growth and survival.New Zealand rabbits were used for skin irritation experiments to assess whether they caused adverse skin reactions.Hemolysis test was conducted using a 2%rabbit red blood cell suspension to detect whether they caused hemolysis.Moreover,in vivo experiments were carried out by implanting a gelatin sponge loaded with exosomes subcutaneously in Sprague-Dawley(SD)rats to perform biocompatibility tests.In addition,coagulation index test was conducted to evaluate their impact on blood coagulation.Meanwhile,SD rat liver defect hemostasis model and full-thickness skin defect model were used to study whether the gelatin sponge loaded with exosomes effectively stopped bleeding and promoted wound healing.RESULTS The NTA,TEM,and western blot experimental results confirmed that exosomes were successfully isolated from hUC-MSCs.The gelatin sponge loaded with exosomes did not exhibit significant cell toxicity,skin irritation,or hemolysis,and they demonstrated good compatibility in SD rats.Additionally,the effectiveness of the gelatin sponge loaded with exosomes in hemostasis and wound healing was validated.The results of the coagulation index experiment indicated that the gelatin sponge loaded with exosomes had significantly better coagulation effect compared to the regular gelatin sponge,and they showed excellent hemostatic performance in a liver defect hemostasis model.Finally,the full-thickness skin defect healing experiment results showed significant improvement in the healing process of wounds treated with the gelatin sponge loaded with exosomes compared to other groups.CONCLUSION Collectively,the gelatin sponge loaded with hUC-MSCs-derived exosomes is safe and efficacious for promoting hemostasis and accelerating wound healing,warranting further clinical application.
基金supported by the National Key Research and Development Plan of China,No.2016YFC1101500 (to ZS)the National Natural Science Foundation of China,Nos.11932013 and 11672332 (both to XYC)。
文摘Animal expe riments have shown that injectable collagen scaffold with human umbilical cord-derived mesenchymal stem cells can promote recovery from spinal cord injury.To investigate whether injectable collagen scaffold with human umbilical cord-derived mesenchymal stem cells can be used to treat spontaneous intracerebral hemorrhage,this non-randomized phase I clinical trial recruited patients who met the inclusion criteria and did not meet the exclusion crite ria of spontaneous intracerebral hemorrhage treated in the Characteristic Medical Center of Chinese People’s Armed Police Force from May 2016 to December 2020.Patients were divided into three groups according to the clinical situation and patient benefit:control(n=18),human umbilical cord-derived mesenchymal stem cells(n=4),and combination(n=8).The control group did not receive any transplantation.The human umbilical cord-derived mesenchymal stem cells group received human umbilical cord-derived mesenchymal stem cell transplantation.The combination group received injectable collagen scaffold with human umbilical cord-derived mesenchymal stem cells.Patients who received injectable collagen scaffold with human umbilical cord-derived mesenchymal stem cells had more remarkable improvements in activities of daily living and cognitive function and smaller foci of intra cerebral hemorrhage-related encephalomalacia.Severe adve rse events associated with cell transplantation were not observed.Injectable collagen scaffold with human umbilical cord-derived mesenchymal stem cells appears to have great potential treating spontaneous intracerebral hemorrhage.
基金Supported by Major Project of Basic Scientific Research in Chengde Medical University(KY202217).
文摘[Objectives]To study the effect of human umbilical cord mesenchymal stem cells(hUC-MSCs)on GRP78/ATF4 pathway in APP/PS1 mice.[Methods]Twelve 6-month-old female APP/PS1 mice were randomly divided into model group(MOD,n=6)and human umbilical cord mesenchymal stem cell treatment group(MSC,n=6);six 6-month-old C57BL/6N mice were used as control group(CON,n=6).The mice in each group were treated with the fourth generation of human umbilical cord mesenchymal stem cells through tail vein.Four weeks later,the mice in each group were killed.The expression of GFP78 and ATF4 in the cortex of mice in each group was detected by Western blotting and real-time fluorescence quantitative PCR.[Results]The results of immunoblotting and real-time fluorescence quantitative PCR showed that the expression of GRP78 in MOD group was lower than that in CON group and the expression of ATF4 increased.The expression of GRP78 protein in MSC group was higher than that in MOD group,but the expression of ATF4 protein was lower.The results of real-time fluorescence quantitative PCR showed that the mRNA level of GRP78 decreased and the mRNA level of ATF4 increased in MOD group compared with CON group.The mRNA level of GRP78 in MSC group was higher than that in MOD group,while the mRNA level of ATF4 in MSC group was lower than that in MOD group.[Conclusions]Human umbilical cord mesenchymal stem cells can regulate the expression of GRP78/ATF4 pathway in APP/PSI mice,which may be related to the stress level of endoplasmic reticulum in the brain of APP/PS1 mice mediated by human umbilical cord mesenchymal stem cells.
文摘Objective:To explore the mechanism of circRNA-vgll3 in osteogenic differentiation of human bone marrow mesenchymal stem cells.Methods:BMSCs cells were transfected with circRNA-vgll3,and divided into circRNA-vgll3 high-level group,circRNA-vgll3 low-level group,and negative control group(circRNA-vgll3 not transfected)according to the amount of transfection.The proliferation and apoptosis of BMSCs osteoblasts in each group were analyzed,and the alkaline phosphatase(ALP)activity,type I collagen gray value,bone morphogenetic protein 2(BMP-2),Runx2 protein,and mRNA expression levels were detected.Results:The circRNA-vgll3 low-level group had a significant inhibitory effect on the proliferation of BMSCs osteoblasts,and the apoptosis rate of the circRNA-vgll3 low-level group was significantly higher than that of the circRNA-vgll3 high-level group(P<0.05);ALP activity,type I collagen gray value,BMP-2,Runx2 protein,and mRNA expression levels in the high-level circRNA-vgll3 group were significantly higher than those in the low-level circRNA-vgll3 group,and the difference was statistically significant(P<0.05).Conclusion:Overexpression of circRNA-vgll3 can promote the osteogenic differentiation ability of BMSCs,while low expression of circRNA-vgll3 can inhibit the osteogenic differentiation ability of BMSCs.The main mechanism of action is that circRNA-vgll3 can affect osteogenic differentiation by regulating the Runx2 protein.
基金supported by the National Natural Science Foundation of China,No.31100696,31170946a grant from the National High Technology Research and Development Program of China(863 Program),No.2012AA020502+1 种基金a grant from the National Program on Key Basic Research Project of China(973 Program),No.2014CB542201a grant from Beijing Metropolis Beijing Nova Program,No.2011115
文摘Human umbilical cord-derived mesenchymal stem cells (hUCMSCs) represent a promising young-state stem cell source for cell-based therapy. hUCMSC transplantation into the transected sciatic nerve promotes axonal regeneration and functional recovery. To further clarify the para-crine effects of hUCMSCs on nerve regeneration, we performed human cytokine antibody array analysis, which revealed that hUCMSCs express 14 important neurotrophic factors. Enzyme-linked immunosorbent assay and immunohistochemistry showed that brain-derived neurotrophic factor, glial-derived neurotrophic factor, hepatocyte growth factor, neurotrophin-3, basic fibroblast growth factor, type I collagen, fibronectin and laminin were highly expressed. Treatment with hUCMSC-conditioned medium enhanced Schwann cell viability and proliferation, increased nerve growth factor and brain-derived neurotrophic factor expression in Schwann cells, and enhanced neurite growth from dorsal root ganglion explants. These ifndings suggest that paracrine action may be a key mechanism underlying the effects of hUCMSCs in peripheral nerve repair.
基金supported by the National Key Research and Development Program of China,No.2017YFA0105403(to LMR)the Key Research and Development Program of Guangdong Province of China,No.2019B020236002(to LMR)+4 种基金The Clinical Innovation Research Program of Guangzhou Regenerative Medicine and Health Guangdong Laboratory of China,No.2018GZR0201006(to LMR)the National Natural Science Foundation of China,Nos.81772349(to BL),31470949(to BL)the Guangzhou Science and Technology Project of China,Nos.201704020221(to LMR),201707010115(to BL)the Natural Science Foundation of Guangdong Province of China,No.2017A030313594(to BL)the Medical Scientific Research Foundation of Guangdong Province of China,No.A2018547(to MP)
文摘Human umbilical cord mesenchymal stem cells(hUC-MSCs)support revascularization,inhibition of inflammation,regulation of apoptosis,and promotion of the release of beneficial factors.Thus,they are regarded as a promising candidate for the treatment of intractable spinal cord injury(SCI).Clinical studies on patients with early chronic SCI(from 2 months to 1 year post-injury),which is clinically common,are rare;therefore,we will conduct a prospective,multicenter,randomized,placebo-controlled,single-blinded clinical trial at the Third Affiliated Hospital of Sun Yat-sen University,West China Hospital of Sichuan University,and Shanghai East Hospital,Tongji University School of Medicine,China.The trial plans to recruit 66 early chronic SCI patients.Eligible patients will undergo randomization at a 2:1 ratio to two arms:the observation group and the control group.Subjects in the observation group will receive four intrathecal transplantations of stem cells,with a dosage of 1×106/kg,at one calendar month intervals.Subjects in the control group will receive intrathecal administrations of 10 mL sterile normal saline in place of the stem cell transplantations.Clinical safety will be assessed by the analysis of adverse events and laboratory tests.The American Spinal Injury Association(ASIA)total score will be the primary efficacy endpoint,and the secondary efficacy outcomes will be the following:ASIA impairment scale,International Association of Neural Restoration-Spinal Cord Injury Functional Rating Scale,muscle tension,electromyogram,cortical motor and cortical sensory evoked potentials,residual urine volume,magnetic resonance imaging–diffusion tensor imaging,T cell subtypes in serum,neurotrophic factors and inflammatory factors in both serum and cerebrospinal fluid.All evaluations will be performed at 1,3,6,and 12 months following the final intrathecal administration.During the entire study procedure,all adverse events will be reported as soon as they are noted.This trial is designed to evaluate the clinical safety and efficacy of subarachnoid transplantation of hUC-MSCs to treat early chronic SCI.Moreover,it will establish whether cytotherapy can ameliorate local hostile microenvironments,promote tracking fiber regeneration,and strengthen spinal conduction ability,thus improving overall motor,sensory,and micturition/defecation function in patients with early chronic SCI.This study was approved by the Stem Cell Research Ethics Committee of the Third Affiliated Hospital of Sun Yat-sen University,China(approval No.[2018]-02)on March 30,2018,and was registered with ClinicalTrials.gov(registration No.NCT03521323)on April 12,2018.The revised trial protocol(protocol version 4.0)was approved by the Stem Cell Research Ethics Committee of the Third Affiliated Hospital of Sun Yat-sen University,China(approval No.[2019]-10)on February 25,2019,and released on ClinicalTrials.gov on April 29,2019.
基金the National Basic Research Program of China (No 2005CB522404 and 2006CB910506)the Program for Changjiang Scholars and Innovative Research Team (PCSIRT) in Universities (No IRT0519)the National Natural Science Founda-tion of China (No 30771232 and 30671184)
文摘Mesenchymal stem cells (MSCs) of nonembryonic origins possess the proliferation and multi-lineage differentiation potentials. It has been established that epigenetic mechanisms could be critical for determining the fate of stem cells, and MSCs derived from different origins exhibited different expression profiles individually to a certain extent. In this study, ChiP-on-chip was used to generate genome-wide histone H3-Lys9 acetylation and dimethylation profiles at gene promoters in human bone marrow MSCs. We showed that modifications of histone H3-Lys9 at gene promoters correlated well with mRNA expression in human bone marrow MSCs. Functional analysis revealed that many key cellular pathways in human bone marrow MSC self-renewal, such as the canonical signaling pathways, cell cycle pathways and cytokine related pathways may be regulated by H3-Lys9 modifications. These data suggest that gene activation and silencing affected by H3-Lys9 acetylation and dimethylation, respectively, may be essential to the maintenance of human bone marrow MSC self-renewal and multi-potency.
基金supported by the National Key Research and Development Program of China,No.2017YFA0105401(to LMR)the National Natural Science Foundation of China,Nos.31671420 and 81602482(to MML)a grant from the Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases.
文摘Human umbilical cord mesenchymal stem cells(hUC-MSCs)are a promising candidate for spinal cord injury(SCI)repair owing to their advantages of low immunogenicity and easy accessibility over other MSC sources.However,modest clinical efficacy hampered the progression of these cells to clinical translation.This discrepancy may be due to many variables,such as cell source,timing of implantation,route of administration,and relevant efficacious cell dose,which are critical factors that affect the efficacy of treatment of patients with SCI.Previously,we have evaluated the safety and efficacy of 4×10^(6) hUC-MSCs/kg in the treatment of subacute SCI by intrathecal implantation in rat models.To search for a more accurate dose range for clinical translation,we compared the effects of three different doses of hUC-MSCs-low(0.25×10^(6) cells/kg),medium(1×10^(6) cells/kg)and high(4×10^(6) cells/kg)-on subacute SCI repair through an elaborate combination of behavioral analyses,anatomical analyses,magnetic resonance imaging-diffusion tensor imaging(MRI-DTI),biotinylated dextran amine(BDA)tracing,electrophysiology,and quantification of mRNA levels of ion channels and neurotransmitter receptors.Our study demonstrated that the medium dose,but not the low dose,is as efficient as the high dose in producing the desired therapeutic outcomes.Furthermore,partial restoration of theγ-aminobutyric acid type A(GABAA)receptor expression by the effective doses indicates that GABAA receptors are possible candidates for therapeutic targeting of dormant relay pathways in injured spinal cord.Overall,this study revealed that intrathecal implantation of 1×10^(6) hUC-MSCs/kg is an alternative approach for treating subacute SCI.
文摘Objective High glucose(HG)can influence the osteogenic differentiation ability of periodontal ligament stem cells(PDLSCs).Human umbilical cord mesenchymal stem cell-derived exosomes(hUCMSC-exo)have broad application prospects in tissue healing.The current study aimed to explore whether hUCMSC-exo could promote the osteogenic differentiation of hPDLSCs under HG conditions and the underlying mechanism.Methods We used a 30 mmol/L glucose concentration to simulate HG conditions.CCK-8 assay was performed to evaluate the effect of hUCMSC-exo on the proliferation of hPDLSCs.Alkaline phosphatase(ALP)staining,ALP activity,and qRT-PCR were performed to evaluate the pro-osteogenic effect of hUCMSC-exo on hPDLSCs.Western blot analysis was conducted to evaluate the underlying mechanism.Results The results of the CCK-8 assay,ALP staining,ALP activity,and qRT-PCR assay showed that hUCMSC-exo significantly promoted cell proliferation and osteogenic differentiation in a dosedependent manner.The Western blot results revealed that hUCMSC-exo significantly increased the levels of p-PI3K and p-AKT in cells,and the effect was inhibited by LY294002(PI3K inhibitor)or MK2206(AKT inhibitor),respectively.Moreover,the increases in osteogenic indicators induced by hUCMSC-exo were significantly suppressed by LY294002 and MK2206.Conclusion hUCMSC-exo promote the osteogenic differentiation of hPDLSCs under HG conditions through the PI3K/AKT signaling pathway.
文摘Various methods are currently under investigation to preserve fertility in males treated with high-dose chemotherapy and radiation for malignant and nonmalignant disorders. Human umbilical cord mesenchymal stem cells (HUC-MSCs), which possess potent immunosuppressive function and secrete various cytokines and growth factors, have the potential clinical applications. As a potential alternative, we investigate whether injection of HUC-MSCs into the interstitial compartment of the testes to promote spermatogenic regeneration efficiently. HUC-MSCs were isolated from different sources of umbilical cords and injected into the interstitial space of one testis from 10 busulfan-treated mice (saline and HEK293 cells injections were performed in a separate set of mice) and the other testis remained uninjected. Three weeks after MSCs injection, Relative quantitative reverse transcription polymerase chain reaction was used to identify the expression of 10 of germ cell associated, which are all related to meiosis, demonstrated higher levels of spermatogenic gene expression (2-8 fold) in HUC-MSCs injected testes compared to the contralateral uninjected testes (five mice). Protein levels for germ cell-specific genes, miwi, vasa and synaptonemal complex protein (Scp3) were also higher in MSC-treated testes compared to injected controls 3 weeks after treatment. However, no different expression was detected in saline water and HEK293 cells injection control group. We have demonstrated HUC-MSCs could affect mouse germ cell-specific genes expression. The results also provide a possibility that the transplanted HUC-MSCs may promote the recovery of spermatogenesis. This study provides further evidence for preclinical therapeutic effects of HUC-MSCs, and explores a new approach to the treatment of azoospermia.
基金supported by a grant of the Seoul National University Dental Hospital,Republic of Korea,No.03-2010-0020
文摘Several studies have demonstrated that human umbilical cord blood-derived mesenchymal stem cells can promote neural regeneration following brain injury. However, the therapeutic effects of human umbilical cord blood-derived mesenchymal stem cells in guiding peripheral nerve regeneration remain poorly understood. This study was designed to investigate the effects of human umbilical cord blood-derived mesenchymal stem cells on neural regeneration using a rat sciatic nerve crush injury model. Human umbilical cord blood-derived mesenchymal stem cells (1 ~ 106) or a PBS control were injected into the crush-injured segment of the sciatic nerve. Four weeks after cell injection, brain-derived neurotrophic factor and tyrosine kinase receptor B mRNA expression at the lesion site was increased in comparison to control. Furthermore, sciatic function index, Fluoro Gold-labeled neuron counts and axon density were also significantly increased when compared with control. Our results indicate that human umbilical cord blood-derived mesenchvmal stem cells promote the functinnal r~.RcJv^rv nf P.n I^h-inillr^4 ~r^i~tit, n^r~e
基金supported by Medical Scientific Research Program of Hebei Province in 2010, Hebei Provincial Health Department, No. 20100131
文摘In the present study, human umbilical cord blood mesenchymal stem cells were injected into a rat model of traumatic brain injury via the tail vein. Results showed that 5-bromodeoxyuridine-labeled cells aggregated around the injury site, surviving up to 4 weeks post-transplantation. In addition, transplantation-related death did not occur, and neurological functions significantly improved. Histological detection revealed attenuated pathological injury in rat brain tissues following human umbilical cord blood mesenchymal stem cell transplantation. In addition, the number of apoptotic cells decreased. Immunohistochemistry and in situ hybridization showed increased expression of brain-derived neurotrophic factor, nerve growth factor, basic fibroblast growth factor, and vascular endothelial growth factor, along with increased microvessel density in surrounding areas of brain injury. Results demonstrated migration of transplanted human umbilical cord blood mesenchymal stem cells into the lesioned boundary zone of rats, as well as increased angiogenesis and expression of related neurotrophic factors in the lesioned boundary zone.