Human umbilical mesenchymal stem cells from Wharton's jelly of the umbilical cord were induced to differentiate into oligodendrocyte precursor-like cells in vitro. Oligodendrocyte precursor cells were transplanted in...Human umbilical mesenchymal stem cells from Wharton's jelly of the umbilical cord were induced to differentiate into oligodendrocyte precursor-like cells in vitro. Oligodendrocyte precursor cells were transplanted into contused rat spinal cords. Immunofluorescence double staining indicated that transplanted cells survived in injured spinal cord, and differentiated into mature and immature oligodendrocyte precursor cells. Biotinylated dextran amine tracing results showed that cell transplantation promoted a higher density of the corticospinal tract in the central and caudal parts of the injured spinal cord. Luxol fast blue and toluidine blue staining showed that the volume of residual myelin was significantly increased at 1 and 2 mm rostral and caudal to the lesion epicenter after cell transplantation. Furthermore, immunofluorescence staining verified that the newly regenerated myelin sheath was derived from the central nervous system. Basso, Beattie and Bresnahan testing showed an evident behavioral recovery. These results suggest that human umbilical mesenchymal stem cell-derived oligodendrocyte precursor cells promote the regeneration of spinal axons and myelin sheaths.展开更多
多发性硬化(MS)是以中枢神经系统炎性脱髓鞘为特征的自身免疫性疾病,神经功能障碍与髓鞘和轴索损伤有关。MS 动物模型研究认为:髓鞘修复是治疗 MS 极有前景的途径。中枢神经系统存在少突胶质细胞前体细胞(OPCs),在髓鞘修复和再生过程起...多发性硬化(MS)是以中枢神经系统炎性脱髓鞘为特征的自身免疫性疾病,神经功能障碍与髓鞘和轴索损伤有关。MS 动物模型研究认为:髓鞘修复是治疗 MS 极有前景的途径。中枢神经系统存在少突胶质细胞前体细胞(OPCs),在髓鞘修复和再生过程起关键作用。由于 MS 病人 OPC 分化受抑制,因此,在髓鞘再生过程中调控 OPCs 分化是髓鞘修复的重点。另外,移植外源性的髓鞘形成细胞促进髓鞘修复和神经再生,是修复 MS 脱髓鞘和轴索损伤的重要途径。展开更多
基金supported by the National Natural Science Foundation of China, No. 81100916, 30400464,81271316the Postdoctoral Science Foundation of China,No. 201104901907
文摘Human umbilical mesenchymal stem cells from Wharton's jelly of the umbilical cord were induced to differentiate into oligodendrocyte precursor-like cells in vitro. Oligodendrocyte precursor cells were transplanted into contused rat spinal cords. Immunofluorescence double staining indicated that transplanted cells survived in injured spinal cord, and differentiated into mature and immature oligodendrocyte precursor cells. Biotinylated dextran amine tracing results showed that cell transplantation promoted a higher density of the corticospinal tract in the central and caudal parts of the injured spinal cord. Luxol fast blue and toluidine blue staining showed that the volume of residual myelin was significantly increased at 1 and 2 mm rostral and caudal to the lesion epicenter after cell transplantation. Furthermore, immunofluorescence staining verified that the newly regenerated myelin sheath was derived from the central nervous system. Basso, Beattie and Bresnahan testing showed an evident behavioral recovery. These results suggest that human umbilical mesenchymal stem cell-derived oligodendrocyte precursor cells promote the regeneration of spinal axons and myelin sheaths.
文摘多发性硬化(MS)是以中枢神经系统炎性脱髓鞘为特征的自身免疫性疾病,神经功能障碍与髓鞘和轴索损伤有关。MS 动物模型研究认为:髓鞘修复是治疗 MS 极有前景的途径。中枢神经系统存在少突胶质细胞前体细胞(OPCs),在髓鞘修复和再生过程起关键作用。由于 MS 病人 OPC 分化受抑制,因此,在髓鞘再生过程中调控 OPCs 分化是髓鞘修复的重点。另外,移植外源性的髓鞘形成细胞促进髓鞘修复和神经再生,是修复 MS 脱髓鞘和轴索损伤的重要途径。