期刊文献+
共找到467篇文章
< 1 2 24 >
每页显示 20 50 100
Transplantation of human placental chorionic plate-derived mesenchymal stem cells for repair of neurological damage in neonatal hypoxic-ischemic encephalopathy
1
作者 Lulu Xue Ruolan Du +8 位作者 Ning Bi Qiuxia Xiao Yifei Sun Ruize Niu Yaxin Tan Li Chen Jia Liu Tinghua Wang Liulin Xiong 《Neural Regeneration Research》 SCIE CAS CSCD 2024年第9期2027-2035,共9页
Neonatal hypoxic-ischemic encephalopathy is often associated with permanent cerebral palsy,neurosensory impairments,and cognitive deficits,and there is no effective treatment for complications related to hypoxic-ische... Neonatal hypoxic-ischemic encephalopathy is often associated with permanent cerebral palsy,neurosensory impairments,and cognitive deficits,and there is no effective treatment for complications related to hypoxic-ischemic encephalopathy.The therapeutic potential of human placental chorionic plate-derived mesenchymal stem cells for various diseases has been explored.However,the potential use of human placental chorionic plate-derived mesenchymal stem cells for the treatment of neonatal hypoxic-ischemic encephalopathy has not yet been investigated.In this study,we injected human placental chorionic plate-derived mesenchymal stem cells into the lateral ventricle of a neonatal hypoxic-ischemic encephalopathy rat model and observed significant improvements in both cognitive and motor function.Protein chip analysis showed that interleukin-3 expression was significantly elevated in neonatal hypoxic-ischemic encephalopathy model rats.Following transplantation of human placental chorionic plate-derived mesenchymal stem cells,interleukin-3 expression was downregulated.To further investigate the role of interleukin-3 in neonatal hypoxic-ischemic encephalopathy,we established an in vitro SH-SY5Y cell model of hypoxic-ischemic injury through oxygen-glucose deprivation and silenced interleukin-3 expression using small interfering RNA.We found that the activity and proliferation of SH-SY5Y cells subjected to oxygen-glucose deprivation were further suppressed by interleukin-3 knockdown.Furthermore,interleukin-3 knockout exacerbated neuronal damage and cognitive and motor function impairment in rat models of hypoxic-ischemic encephalopathy.The findings suggest that transplantation of hpcMSCs ameliorated behavioral impairments in a rat model of hypoxic-ischemic encephalopathy,and this effect was mediated by interleukin-3-dependent neurological function. 展开更多
关键词 behavioral evaluations gene knockout human neuroblastoma cells(SH-SY5Y) human placental chorionic derived mesenchymal stem cells INTERLEUKIN-3 neonatal hypoxic-ischemic encephalopathy nerve injury oxygen-glucose deprivation protein chip small interfering RNA
下载PDF
Human umbilical cord blood-derived mesenchymal stem cells promote regeneration of crush-injured rat sciatic nerves 被引量:4
2
作者 Mi-Ae Sung Hun Jong Jung +7 位作者 Jung-Woo Lee Jin-Yong Lee Kang-Mi Pang Sang Bae Yoo Mohammad S. Alrashdan Soung-Min Kim Jeong Won Jahng Jong-Ho Lee 《Neural Regeneration Research》 SCIE CAS CSCD 2012年第26期2018-2027,共10页
Several studies have demonstrated that human umbilical cord blood-derived mesenchymal stem cells can promote neural regeneration following brain injury. However, the therapeutic effects of human umbilical cord blood-d... Several studies have demonstrated that human umbilical cord blood-derived mesenchymal stem cells can promote neural regeneration following brain injury. However, the therapeutic effects of human umbilical cord blood-derived mesenchymal stem cells in guiding peripheral nerve regeneration remain poorly understood. This study was designed to investigate the effects of human umbilical cord blood-derived mesenchymal stem cells on neural regeneration using a rat sciatic nerve crush injury model. Human umbilical cord blood-derived mesenchymal stem cells (1 ~ 106) or a PBS control were injected into the crush-injured segment of the sciatic nerve. Four weeks after cell injection, brain-derived neurotrophic factor and tyrosine kinase receptor B mRNA expression at the lesion site was increased in comparison to control. Furthermore, sciatic function index, Fluoro Gold-labeled neuron counts and axon density were also significantly increased when compared with control. Our results indicate that human umbilical cord blood-derived mesenchvmal stem cells promote the functinnal r~.RcJv^rv nf P.n I^h-inillr^4 ~r^i~tit, n^r~e 展开更多
关键词 human umbilical cord blood-derived mesenchymal stem cells sciatic nerve crush injury FLUOROGOLD stem cells peripheral nerve regeneration REGENERATION neural regeneration
下载PDF
Therapeutic capacities of human and mouse skeletal muscle-derived stem cells for a long gap peripheral nerve injury 被引量:4
3
作者 Tetsuro Tamaki 《Neural Regeneration Research》 SCIE CAS CSCD 2017年第11期1811-1813,共3页
An overview of a long-gap peripheral nerve therapy: A long- gap peripheral nerve transection injury is an irreparable injury to the living body, and mostly leads to permanent loss of re- lated motor and sensory funct... An overview of a long-gap peripheral nerve therapy: A long- gap peripheral nerve transection injury is an irreparable injury to the living body, and mostly leads to permanent loss of re- lated motor and sensory functions. In such long gap injuries, nerve end-to-end suture is physically impossible. Therefore, bridging a long nerve-gap is critical to re-establish adequate mechanical support for separated nerve ends, and prevent the diffusion of neurotrophic and neurotropic factors secreted by transected stumps (Deumens et al., 2010). 展开更多
关键词 Therapeutic capacities of human muscle-derived stem cells
下载PDF
Neural differentiation of human Wharton's jelly-derived mesenchymal stem cells improves the recovery of neurological function after transplantation in ischemic stroke rats 被引量:7
4
作者 Lei Zhang Lin-mei Wang +10 位作者 Wei-wei Chen Zhi Ma Xiao Han Cheng-ming Liu Xiang Cheng Wei Shi Jing-jing Guo Jian-bing Qin Xiao-qing Yang Guo-hua Jin Xin-hua Zhang 《Neural Regeneration Research》 SCIE CAS CSCD 2017年第7期1103-1110,共8页
Human Wharton's jelly-derived mesenchymal stem cells(h WJ-MSCs)have excellent proliferative ability,differentiation ability,low immunogenicity,and can be easily obtained.However,there are few studies on their appli... Human Wharton's jelly-derived mesenchymal stem cells(h WJ-MSCs)have excellent proliferative ability,differentiation ability,low immunogenicity,and can be easily obtained.However,there are few studies on their application in the treatment of ischemic stroke,therefore their therapeutic effect requires further verification.In this study,h WJ-MSCs were transplanted into an ischemic stroke rat model via the tail vein 48 hours after transient middle cerebral artery occlusion.After 4 weeks,neurological functions of the rats implanted with h WJ-MSCs were significantly recovered.Furthermore,many h WJ-MSCs homed to the ischemic frontal cortex whereby they differentiated into neuron-like cells at this region.These results confirm that h WJ-MSCs transplanted into the ischemic stroke rat can differentiate into neuron-like cells to improve rat neurological function and behavior. 展开更多
关键词 nerve regeneration human Wharton's jelly-derived mesenchymal stem cells ischemic stroke cell transplantation middle cerebral arteryocclusion neural differentiation neurological function neural regeneration
下载PDF
Differentiation of human adipose-derived stem cells into neuron-like cells by Radix Angelicae Sinensis 被引量:3
5
作者 Qiaozhi Wang Lile Zhou +3 位作者 Yong Guo Guangyi Liu Jiyan Cheng Hong Yu 《Neural Regeneration Research》 SCIE CAS CSCD 2013年第35期3353-3358,共6页
Human adipose tissues are an ideal source of stem cells. It is important to find inducers that can safely and effectively differentiate stem cells into functional neurons for clinical use. In this study, we investigat... Human adipose tissues are an ideal source of stem cells. It is important to find inducers that can safely and effectively differentiate stem cells into functional neurons for clinical use. In this study, we investigate the use of Radix Angelicae Sinensis as an inducer of neuronal differentiation. Primary human adipose-derived stem cells were obtained from adult subcutaneous fatty tissue, then pre-induced with 10% Radix Angelicae Sinensis injection for 24 hours, and incubated in serum-free Dulbecco's modified Eagle's medium/Nutrient Mixture F-12 containing 40% Radix Angelicae Sinensis to induce its differentiation into neuron-like cells. Butylated hydroxyanisole, a common in- ducer for neuronal differentiation, was used as the control. After human adipose-derived stem cells differentiated into neuron-like cells under the induction of Radix Angelicae Sinensis for 24 hours, the positive expression of neuron-specific enolase was lower than that of the butylated hydroxyani- sole-induced group, and the expression of glial fibrillary acidic protein was negative. Alter they were induced for 48 hours, the positive expression of neuron specific enolase in human adipose-derived stem cells was significantly higher than that of the butylated hydroxyanisole-induced group. Our experimental findings indicate that Radix Angelicae Sinensis can induce human adipose-derived stem cell differentiation into neuron-like cells and produce less cytotoxicity. 展开更多
关键词 neural regeneration stem cells human adipose-derived stem cells Radix Angelicae Sinensis neuron-like cells DIFFERENTIATION ADIPOCYTES cytotoxicity grants-supported paper NEUROREGENERATION
下载PDF
Functional recovery and microenvironmental alterations in a rat model of spinal cord injury following human umbilical cord blood-derived mesenchymal stem cells transplantation 被引量:3
6
作者 Hongtao Zhang Huilin Yang +1 位作者 Huanxiang Zhang Jing Qu 《Neural Regeneration Research》 SCIE CAS CSCD 2010年第3期165-170,共6页
BACKGROUND: Transplantation of human umbilical cord blood-derived mesenchymal stem cells (MSCs) has been shown to benefit spinal cord injury (SCI) repair. However, mechanisms of microenvironmental regulation duri... BACKGROUND: Transplantation of human umbilical cord blood-derived mesenchymal stem cells (MSCs) has been shown to benefit spinal cord injury (SCI) repair. However, mechanisms of microenvironmental regulation during differentiation of transplanted MSCs remain poorly understood. OBJECTIVE: To observe changes in nerve growth factor (NGF), brain-derived neurotrophic factor (BDNF), and interleukin-8 (IL-8) expression following transplantation of human umbilical cord-derived MSCs, and to explore the association between microenvironment and neural functional recovery following MSCs transplantation. DESIGN, TIME AND SETTING: A randomized, controlled, animal experiment was performed at the Department of Orthopedics, First Affiliated Hospital of Soochow University from April 2005 to March 2007. MATERIALS: Human cord blood samples were provided by the Department of Gynecology and Obstetrics, First Affiliated Hospital of Soochow University. Written informed consent was obtained. METHODS: A total of 62 Wister rats were randomly assigned to control (n = 18), model (n = 22, SCI + PBS), and transplantation (n = 22, SCI + MSCs) groups. The rat SCI model was established using the weight compression method. MSCs were isolated from human umbilical cord blood and cultured in vitro for several passages. 5-bromodeoxyuridine (BrdU)-Iabeled MSCs (24 hours before injection) were intravascularly transplanted. MAIN OUTCOME MEASURES: The rats were evaluated using the Basso, Beattie and Bresnahan (BBB) locomotor score and inclined plane tests. Transplanted cells were analyzed following immunohistochemistry. Enzyme-linked immunosorbant assay was performed to determine NGF, BDNF, and IL-8 levels prior to and after cell transplantation. RESULTS: A large number of BrdU-positive MSCs were observed in the SCI region of the transplantation group, and MSCs were evenly distributed in injured spinal cord tissue 1 week after transplantation. BBB score and inclined plane test results revealed significant functional improvement in the transplantation group compared to the model group (P 〈 0.05), which was maintained for 2-3 weeks. Compared to the model group, NGF and BDNF levels were significantly increased in the injured region following MSCs transplantation at 3 weeks (P 〈 0.05), but IL-8 levels remained unchanged (P 〉 0.05). CONCLUSION: MSCs transplantation increased NGF and BDNF expression in injured spinal cord tissue. MSCs could promote neurological function recovery in SCI rats by upregulating NGF expression and improving regional microenvironments. 展开更多
关键词 human umbilical cord blood-derived mesenchymal stem cells nerve growth factor brain-derived neurotrophic factor INTERLEUKIN-8 spinal cord injury neural stem cells neural regeneration
下载PDF
Xeno-free culture of human spermatogonial stem cells supported by human embryonic stem cell-derived fibroblast-like cells 被引量:3
7
作者 Bin Chen Yu-Bin Wang +8 位作者 Zhi-Ling Zhang Wei-Liang Xia Hong-Xiang Wang Zu-Qiong Xiang Kai Hu Yin-Fa Han Yi-Xin Wang Yi-Ran Huang Zheng Wang 《Asian Journal of Andrology》 SCIE CAS CSCD 2009年第5期557-565,I0002,共10页
Spermatogonial stem cells (SSCs) divide continuously to support spermatogenesis throughout postnatal life and transmit genetic information to the next generation. Here, we report the successful establishment of the ... Spermatogonial stem cells (SSCs) divide continuously to support spermatogenesis throughout postnatal life and transmit genetic information to the next generation. Here, we report the successful establishment of the method for the isolation and identification of human SSCs from testicular tissue, and to determine the culture conditions required to expand SSCs on human embryonic stem cell-derived fibroblast-like cells (hdFs). Large-scale cultures of SSCs were maintained on hdF feeder layers and expanded in the presence of a combination of cytokines and glial cell line-derived neurotrophic factor for at least 2 months. Cell surface marker analysis showed that SSCs retained high levels of alkaline phosphatase activity and stained strongly for anti-stage-specific embryonic antigen (SSEA)-1, OCT4 and CD49f. They also expressed the genes OCT4, SOX3 and STRA8 as detected by reverse transcription polymerase chain reaction (RT-PCR) analysis. These data clearly illustrate a novel approach for the growth of human SSCs using hdFs as feeder cells, potentially eliminating xenogeneic contaminants. This system provides a new opportunity for the study of the regulatory mechanism of the ‘niche' that governs SSC self-renewal, and will be a valuable source of SSCs for potential clinical applications. 展开更多
关键词 human embryonic stem cell-derived fibroblast-like cells (hdFs) spermatogonial stem cells (SSCs) xeno-free culture
下载PDF
Mesenchymal Stromal Cells Derived from Human Embryonic Stem Cells, Fetal Limb and Bone Marrow Share a Common Phenotype but Are Transcriptionally and Biologically Different 被引量:2
8
作者 Candida Vaz Betty Tan Bee Tee +2 位作者 Delicia Yong Qian Yi Lee Vivek Tanavde 《Stem Cell Discovery》 2017年第1期1-26,共26页
Mesenchymal stromal cells (MSCs) can be obtained from several sources and the significant differences in their properties make it crucial to investigate the differentiation potential of MSCs from different sources to ... Mesenchymal stromal cells (MSCs) can be obtained from several sources and the significant differences in their properties make it crucial to investigate the differentiation potential of MSCs from different sources to determine the optimal source of MSCs. We investigated if this biological heterogeneity in MSCs from different sources results in different mechanisms for their differentiation. In this study, we compared the gene expression patterns of phenotypically defined MSCs derived from three ontogenically different sources: Embryonic stem cells (hES-MSCs), Fetal limb (Flb-MSCs) and Bone Marrow (BM-MSCs). Differentially expressed genes between differentiated cells and undifferentiated controls were compared across the three MSC sources. We found minimal overlap (5% - 16%) in differentially expressed gene sets among the three sources. Flb-MSCs were similar to BM-MSCs based on differential gene expression patterns. Pathway analysis of the differentially expressed genes using Ingenuity Pathway Analysis (IPA) revealed a large variation in the canonical pathways leading to MSC differentiation. The similar canonical pathways among the three sources were lineage specific. The Flb-MSCs showed maximum overlap of canonical pathways with the BM-MSCs, indicating that the Flb-MSCs are an intermediate source between the less specialised hES-MSC source and the more specialised BM-MSC source. The source specific pathways prove that MSCs from the three ontogenically different sources use different biological pathways to obtain similar differentiation outcomes. Thus our study advocates the understanding of biological pathways to obtain optimal sources of MSCs for various clinical applications. 展开更多
关键词 Mesenchymal Stromal cells (MSCs) human Embryonic stem cells derived MSCS (hES-MSCs) FETAL LIMB derived MSCS (Flb-MSCs) Bone Marrow derived MSCS (BM-MSCs) Ontogenically DIFFERENT Sources Source Specific Canonical Pathways
下载PDF
Neural differentiation of human placenta-derived mesenchymal stem cells following neural cell co-culture 被引量:2
9
作者 Nailong Yang Hongyan Zhang Xiaojuan Sun Lili Xu 《Neural Regeneration Research》 SCIE CAS CSCD 2011年第1期23-28,共6页
We induced human placenta-derived mesenchymal stem cells (hPMSCs) to differentiate into neural cells by adding chemical reagents, despite the fact that toxic chemicals induce cell shrinkage or cytoskeletal formation... We induced human placenta-derived mesenchymal stem cells (hPMSCs) to differentiate into neural cells by adding chemical reagents, despite the fact that toxic chemicals induce cell shrinkage or cytoskeletal formation, which does not represent a proper cell differentiation process. The present study established a co-culture system with hPMSCs and neural cells and analyzed the influence of neural cells on hPMSC differentiation in a co-culture system, hPMSCs were isolated and purified from human full-term placenta using collagenase digestion. Fetal neural cells were co-cultured with hPMSCs for 48 hours using the Transwell co-culture system, hPMSCs co-cultured with neural cells exhibited a slender morphology with a filament. After 96 hours, hPMSCs expressed neuron-specific enolase, which suggested that co-culture of hPMSCs and neural cells induced neural differentiation of hPMSCs. 展开更多
关键词 human placenta-derived mesenchymal stem cells TRANSWELL CO-CULTURE DIFFERENTIATION neural cells
下载PDF
Human umbilical cord blood stem cells and brainderived neurotrophic factor for optic nerve injury: a biomechanical evaluation 被引量:13
10
作者 Zhong-jun Zhang Ya-jun Li +5 位作者 Xiao-guang Liu Feng-xiao Huang Tie-jun Liu Dong-mei Jiang Xue-man Lv Min Luo 《Neural Regeneration Research》 SCIE CAS CSCD 2015年第7期1134-1138,共5页
Treatment for optic nerve injury by brain-derived neurotrophic factor or the transplantation of human umbilical cord blood stem cells has gained progress, but analysis by biomechanical indicators is rare. Rabbit model... Treatment for optic nerve injury by brain-derived neurotrophic factor or the transplantation of human umbilical cord blood stem cells has gained progress, but analysis by biomechanical indicators is rare. Rabbit models of optic nerve injury were established by a clamp. At 7 days after injury, the vitreous body received a one-time injection of 50 μg brain-derived neurotrophic factor or 1 × 10^6 human umbilical cord blood stem cells. After 30 days, the maximum load, maximum stress, maximum strain, elastic limit load, elastic limit stress, and elastic limit strain had clearly improved in rabbit models of optical nerve injury after treatment with brain-derived neurotrophic factor or human umbilical cord blood stem cells. The damage to the ultrastructure of the optic nerve had also been reduced. These findings suggest that human umbilical cord blood stem cells and brain-derived neurotrophic factor effectively repair the injured optical nerve, improve biomechanical properties, and contribute to the recovery after injury. 展开更多
关键词 nerve regeneration optic nerve injury human umbilical cord blood stem cells brain-derived neurotrophic factor biomechanical properties neural regeneration
下载PDF
Human umbilical cord blood-derived stem cells and brain-derived neurotrophic factor protect injured optic nerve:viscoelasticity characterization 被引量:10
11
作者 Xue-man Lv Yan Liu +2 位作者 Fei Wu Yi Yuan Min Luo 《Neural Regeneration Research》 SCIE CAS CSCD 2016年第4期652-656,共5页
The optic nerve is a viscoelastic solid-like biomaterial.Its normal stress relaxation and creep properties enable the nerve to resist constant strain and protect it from injury.We hypothesized that stress relaxation a... The optic nerve is a viscoelastic solid-like biomaterial.Its normal stress relaxation and creep properties enable the nerve to resist constant strain and protect it from injury.We hypothesized that stress relaxation and creep properties of the optic nerve change after injury.Moreover,human brain-derived neurotrophic factor or umbilical cord blood-derived stem cells may restore these changes to normal.To validate this hypothesis,a rabbit model of optic nerve injury was established using a clamp approach.At 7 days after injury,the vitreous body received a one-time injection of 50 μg human brain-derived neurotrophic factor or 1 × 106 human umbilical cord blood-derived stem cells.At 30 days after injury,stress relaxation and creep properties of the optic nerve that received treatment had recovered greatly,with pathological changes in the injured optic nerve also noticeably improved.These results suggest that human brain-derived neurotrophic factor or umbilical cord blood-derived stem cell intervention promotes viscoelasticity recovery of injured optic nerves,and thereby contributes to nerve recovery. 展开更多
关键词 nerve regeneration optic nerve injury human umbilical cord blood-derived stem cells brain-derived neurotrophic factors creep histomorphology stress relaxation viscoelasticity neural regeneration
下载PDF
Anti-osteoarthritis effect of a combination treatment with human adipose tissue-derived mesenchymal stem cells and thrombospondin 2 in rabbits 被引量:2
12
作者 Kyungha Shin Yeseul Cha +6 位作者 Young-Hwan Ban Da Woom Seo Ehn-Kyoung Choi Dongsun Park Sung Keun Kang Jeong Chan Ra Yun-Bae Kim 《World Journal of Stem Cells》 SCIE 2019年第12期1115-1129,共15页
BACKGROUND Osteoarthritis(OA),a chronic age-related disease characterized by the slowly progressive destruction of articular cartilage,is one of the leading causes of disability.As a new strategy for treatment of OA,m... BACKGROUND Osteoarthritis(OA),a chronic age-related disease characterized by the slowly progressive destruction of articular cartilage,is one of the leading causes of disability.As a new strategy for treatment of OA,mesenchymal stem cells(MSCs)have the potential for articular cartilage regeneration.Meanwhile,thrombospondin 2(TSP2)promotes the chondrogenic differentiation of MSCs.AIM To investigate whether TSP2 induces chondrogenic differentiation of human adipose-derived MSCs(hADMSCs)and potentiates the therapeutic effects of hADMSCs in OA rabbits.METHODS We investigated the chondrogenic potential of TSP2 in hADMSCs by analyzing the expression of chondrogenic markers as well as NOTCH signaling genes in normal and TSP2 small interfering RNA(siRNA)-treated stem cells.Anterior cruciate ligament transection surgery was performed in male New Zealand white rabbits,and 8 wk later,hADMSCs(1.7×10^6 or 1.7×10^7 cells)were injected into the injured knees alone or in combination with intra-articular injection of TSP2(100 ng/knee)at 2-d intervals.OA progression was monitored by gross,radiological,and histological examinations.RESULTS In hADMSC culture,treatment with TSP2 increased the expression of chondrogenic markers(SOX9 and collagen Ⅱ)as well as NOTCH signaling genes(JAGGED1 and NOTCH3),which were inhibited by TSP2 siRNA treatment.In vivo,OA rabbits treated with hADMSCs or TSP2 alone exhibited lower degree of cartilage degeneration,osteophyte formation,and extracellular matrix loss 8 wk after cell transplantation.Notably,such cartilage damage was further alleviated by the combination of hADMSCs and TSP2.In addition,synovial inflammatory cytokines,especially tumor-necrosis factor-α,markedly decreased following the combination treatment.CONCLUSION The results indicate that TSP2 enhances chondrogenic differentiation of hADMSCs via JAGGED1/NOTCH3 signaling,and that combination therapy with hADMSCs and TSP2 exerts synergistic effects in the cartilage regeneration of OA joints. 展开更多
关键词 Osteoarthritis Anterior CRUCIATE LIGAMENT TRANSECTION human ADIPOSE tissuederived mesenchymal stem cell THROMBOSPONDIN 2 Notch signaling Cartilage regeneration
下载PDF
In vivo tracking of human adipose-derived stem cells labeled with ferumoxytol in rats with middle cerebral artery occlusion by magnetic resonance imaging 被引量:7
13
作者 Yan Yin Xiang Zhou +3 位作者 Xin Guan Yang Liu Chang-bin Jiang Jing Liu 《Neural Regeneration Research》 SCIE CAS CSCD 2015年第6期909-915,共7页
Ferumoxytol, an iron replacement product, is a new type of superparamagnetic iron oxide ap- proved by the US Food and Drug Administration. Herein, we assessed the feasibility of tracking transplanted human adipose-der... Ferumoxytol, an iron replacement product, is a new type of superparamagnetic iron oxide ap- proved by the US Food and Drug Administration. Herein, we assessed the feasibility of tracking transplanted human adipose-derived stem cells labeled with ferumoxytol in middle cerebral artery occlusion-injured rats by 3.0 T MRI in vivo. 1 × 104 human adipose-derived stem cells labeled with ferumoxytol-heparin-protamine were transplanted into the brains of rats with middle cerebral artery occlusion. Neurologic impairment was scored at 1, 7, 14, and 28 days after transplantation. T2-weighted imaging and enhanced susceptibility-weighted angiography were used to observe transplanted cells. Results of imaging tests were compared with results of Prussian blue staining. The modified neurologic impairment scores were significantly lower in rats transplanted with cells at all time points except I day post-transplantation compared with rats without transplantation. Regions with hypointense signals on T2-weighted and enhanced susceptibility-weighted angiography images corresponded with areas stained by Prussian blue, suggesting the presence of superparamagnetic iron oxide particles within the engrafted cells. Enhanced susceptibility-weighted angiography image exhibited better sensitivity and contrast in tracing ferumoxytol-heparin-protamine-labeled human adipose-derived stem ceils compared with T2-weighted imaging in routine MRI. 展开更多
关键词 nerve regeneration brain injury NEUROIMAGING FERUMOXYTOL superparamagnetic ironoxide particles human adipose-derived stem cells middle cerebral artery occlusion intracerebralinjection magnetic resonance imaging enhanced susceptibility-weighted angiography image modifiedneurological severity scores RATS Prussian blue staining neural regeneration
下载PDF
Uric acid promotes neuronal differentiation of human placenta-derived mesenchymal stem cells in a time- and concentration-dependent manner
14
作者 Nailong Yang Lili Xu +1 位作者 Peng Lin Jing Cui 《Neural Regeneration Research》 SCIE CAS CSCD 2012年第10期756-760,共5页
Uric acid is an important, naturally occurring serum antioxidant. The present study investigates the use of uric acid for promoting proliferation and neuronal differentiation of mesenchymal stem cells derived from hum... Uric acid is an important, naturally occurring serum antioxidant. The present study investigates the use of uric acid for promoting proliferation and neuronal differentiation of mesenchymal stem cells derived from human placenta tissue. Human placenta-derived mesenchymal stem cells were pre-induced in the presence of either 0, 0.2, 0.4 or 0.8 mM uric acid in combination with 1 mM β-mercaptoethanol for 24 hours, followed by exposure to identical uric acid concentrations and 5 mM β-mercaptoethanol for 6 and 10 hours. Cells developed a neuronal-like morphology, with formation of interconnected process extensions, typical of neural cells. Immunocytochemistry and immunofluorescence staining showed neuron specific enolase positive cells were present in each group except the control group. A greater number of neuron specific enolase positive cells were observed in 0.8 mM uric acid in combination with 5 mM β-mercaptoethanol at 10 hours. After 24 hours of induction, Nissl bodies were detected in the cytoplasm of all differentiated cell groups except the control group and Nissl body numbers were greatest in human placenta-derived mesenchymal stem cells grown in the presence of 0.8 mM uric acid and 5 mM β-mercaptoethanol. These results suggest uric acid accelerates differentiation of human placenta-derived mesenchymal stem cells into neuronal-like cells in a time-and concentration-dependent manner. 展开更多
关键词 uric acid human placenta-derived mesenchymal stem cells DIFFERENTIATION neural cells
下载PDF
<i>In vitro</i>differentiation of human umbilical cord-derived mesenchymal stem cells into CD34<sup>+</sup>cells via CD34 antibody
15
作者 Shengnan Guo Libin Guo +3 位作者 Maoxiang Sun Wenyue Ma Yujia Lu Ying Liu 《Journal of Biomedical Science and Engineering》 2013年第8期53-58,共6页
CD34+cells differentiated from mesenchymal stem cells (MSCs) have a strong biological function in cardiovascular regeneration. However, the molecular mechanisms of and the methods to improve the CD34+ cell differentia... CD34+cells differentiated from mesenchymal stem cells (MSCs) have a strong biological function in cardiovascular regeneration. However, the molecular mechanisms of and the methods to improve the CD34+ cell differentiation from MSCs, especially from human MSCs (hUC-MSCs) are still unclear. In the current study, the effect of CD34 antibody on the CD34+ cell differentiation from human umbilical cord (UC)-derived MSCs (hUC-MSCs) is determined. The results have demonstrated that the expression of cd34 protein is significantly increased in hUC-MSCs treated with CD34 antibody. In addition, the cell proliferation is increased in hUC-MSCs after treatment with CD34 antibody. Moreover, the expression of PI3K, AKT, p-AKT proteins, which are signaling molecules related to stem cell differentiation, is increased by CD34 antibody. The results suggest that CD34 antibody could promote the differentiation of hUC-MSCs into CD34+ cells and PI3K/AKT may be involved in this important process. 展开更多
关键词 DIFFERENTIATION human Umbilical Cord-derived Mesenchymal stem cells CD34+ cells
下载PDF
Human adipose tissue-derived stem cells in breast reconstruction following surgery for cancer: A controversial issue
16
作者 Maria Giovanna Scioli Valerio Cervelli +3 位作者 Pietro Gentile Alessandra Bielli Roberto Bellini Augusto Orlandi 《Stem Cell Discovery》 2013年第3期164-166,共3页
Breast cancer is the most common cancer in women. Patients, in particular young women, after surgical removal of the tumor have a poorer quality of life and psychological problems. Plastic surgery procedures for breas... Breast cancer is the most common cancer in women. Patients, in particular young women, after surgical removal of the tumor have a poorer quality of life and psychological problems. Plastic surgery procedures for breast reconstruction, including autologous fat grafting, concur to reduce cosmetic and psychological problems. The maintenance of the transplanted fat is partially due to the presence of resident adipose derived-stem cells (ASCs). The latter can be isolated by digestion and centrifugation from the stromal vascular fraction (SVF) of subcutaneous adipose tissue. Intraoperatory SVF/ASC enrichment has been proposed to stabilize and optimalize autologous fat engraftment for breast reconstructive surgery after mastectomy, but the safety of these procedures is still uncertain. Although the literature offers contrasting opinions concerning the effects of ASCs on cancer growth according to the tumor type, at the present time ASC implementation for regenerative medicine therapies should be carefully considered in patients previously treated for breast cancer. At the present, reconstructive therapy utilizing ASC-enriched fat grafting should be postponed until there is no evidence of active disease. 展开更多
关键词 human Adipose-derived stem cells BREAST CANCER BREAST Reconstruction FAT GRAFTING
下载PDF
Therapeutic effects of human umbilical cord-derived mesenchymal stem cells against acute tubular necrosis quantified through measures of iNOS, BMP-7 and Bcl-2
17
作者 Fang Li Feng Xiong +6 位作者 Yun Zhang Yuying Li Hongmei Zhao S. Charles Cho Thomas E. Ichim Xiaofei Yang Xiang Hu 《Open Journal of Regenerative Medicine》 2013年第2期31-38,共8页
Introduction: Acute tubular necrosis (ATN) is the most prevalent cause of acute renal failure (ARF). Mesenchymal stem cell transplantation has been studied as a potential treatment for renal dysfunction due to ATN. In... Introduction: Acute tubular necrosis (ATN) is the most prevalent cause of acute renal failure (ARF). Mesenchymal stem cell transplantation has been studied as a potential treatment for renal dysfunction due to ATN. Inducible nitric oxide synthase (iNOS), bone morphogenetic protein-7 (BMP-7) and B-cell lymphoma 2 (Bcl-2) are surrogate markers of renal tubular epithelial regeneration and subsequent recovery of renal function following ATN. Methods: Serum creatinine (Scr) and blood urea nitrogen (BUN), as well as expression of iNOS, BMP-7 and Bcl-2 in gentamycin-induced ATN rat kidneys was investigated after human umbilical cord-derived mesenchymal stem cell (HUC-MSC) transplantation. Immunohistochemical staining was performed in 3 groups of rats: gentamycin-induced ATN treated with HUC-MSC, gentamycin-induced ATN without HUC-MSC, and untreated rats not receiving any treatments. Results: HUC-MSC transplantation led to a reduction in Scr and BUN in the kidneys of rats with gentamycin-induced ATN. Expression of iNOS in the HUC-MSC treated group occurred later and the expression levels were much lower during gentamycin-induced ATN compared to rats with ATN that were not treated with HUC-MSC. The expression of BMP-7 and Bcl-2 in the MSC-transplanted group was significantly increased compared to both control groups of rats with injured and healthy renal tubules. Conclusions: HUC-MSCs induce renal protection in a rat model of gentamycin-induced ATN, which is associated with reduced iNOS expression and up-regulation of Bcl-2 and BMP-7. 展开更多
关键词 Acute Tubular Necrosis (ATN) human Umbilical Cord-derived Mesenchymal stem cell (HUC-MSC) stem cell Transplantation Inducible Nitric Oxide Synthase (INOS) Bone Morphogenetic Protein-7 (BMP-7) B-cell Lymphoma 2 (Bcl-2)
下载PDF
Are human dental papilla-derived stem cell and human brain-derived neural stem cell transplantations suitable for treatment of Parkinson’s disease? 被引量:5
18
作者 Hyung Ho Yoon Joongkee Min +6 位作者 Nari Shin Yong Hwan Kim Jin-Mo Kim Yu-Shik Hwang Jun-Kyo Francis Suh Onyou Hwang Sang Ryong Jeon 《Neural Regeneration Research》 SCIE CAS CSCD 2013年第13期1190-1200,共11页
Transplantation of neural stem cells has been reported as a possible approach for replacing impaired dopaminergic neurons. In this study, we tested the efficacy of early-stage human dental papilla-derived stem cells a... Transplantation of neural stem cells has been reported as a possible approach for replacing impaired dopaminergic neurons. In this study, we tested the efficacy of early-stage human dental papilla-derived stem cells and human brain-derived neural stem cells in rat models of 6-hydroxydopamine-induced Parkinson's disease. Rats received a unilateral injection of 6-hydroxydopamine into right medial forebrain bundle, followed 3 weeks later by injections of PBS, early-stage human dental papilla-derived stem cells, or human brain-derived neural stem cells into the ipsilateral striatum. All of the rats in the human dental papilla-derived stem cell group died from tumor formation at around 2 weeks following cell transplantation. Postmortem examinations revealed homogeneous malignant tumors in the striatum of the human dental papilla-derived stem cell group. Stepping tests revealed that human brain-derived neural stem cell transplantation did not improve motor dysfunction. In apomorphine-induced rotation tests, neither the human brain-derived neural stem cell group nor the control groups (PBS injection) demonstrated significant changes. Glucose metabolism in the lesioned side of striatum was reduced by human brain-derived neural stem cell transplantation. [18F]-FP-CIT PET scans in the striatum did not demonstrate a significant increase in the human brain-derived neural stem cell group. Tyrosine hydroxylase (dopaminergic neuronal marker) staining and G protein-activated inward rectifier potassium channel 2 (A9 dopaminergic neuronal marker) were positive in the lesioned side of striatum in the human brain-derived neural stem cell group. The use of early-stage human dental papilla-derived stern cells confirmed its tendency to form tumors. Human brain-derived neural stem cells could be partially differentiated into dopaminergic neurons, but they did not secrete dopamine. 展开更多
关键词 neural regeneration stern cells cell transplantation glucose metabolism human brain-derivedneural stem cells human dental papilla-derived stem cells Parkinson's disease positron emissiontomography grants-supported paper NEUROREGENERATION
下载PDF
Deriving striatal projection neurons from human pluripotent stem cells with Activin A 被引量:1
19
作者 Zoe Noakes Marija Fjodorova Meng Li 《Neural Regeneration Research》 SCIE CAS CSCD 2015年第12期1914-1916,共3页
The striatum is the main input structure of the basal ganglia and is involved in voluntary motor control,habit learning and reward processing.Medium spiny neurons(MSNs)comprise80%and 95%of striatal neurons in primat... The striatum is the main input structure of the basal ganglia and is involved in voluntary motor control,habit learning and reward processing.Medium spiny neurons(MSNs)comprise80%and 95%of striatal neurons in primates and rodents,respectively. 展开更多
关键词 cell MSNs PSCs deriving striatal projection neurons from human pluripotent stem cells with Activin A stem
下载PDF
Beat-to-Beat Variability in Field Potential Duration in Human Embryonic Stem Cell-Derived Cardiomyocyte Clusters for Assessment of Arrhythmogenic Risk, and a Case Study of Its Application 被引量:1
20
作者 Kazuto Yamazaki Taro Hihara +7 位作者 Hiroshi Kato Tatsuto Fukushima Kazuyuki Fukushima Tomohiko Taniguchi Takashi Yoshinaga Norimasa Miyamoto Masashi Ito Kohei Sawada 《Pharmacology & Pharmacy》 2014年第1期117-128,共12页
We established a QT interval assessment system that uses human embryonic stem cell-derived cardiomyocyte clusters (hES-CMCs) in which the field potential duration (FPD) or corrected FPD (FPDc) was measured as an indic... We established a QT interval assessment system that uses human embryonic stem cell-derived cardiomyocyte clusters (hES-CMCs) in which the field potential duration (FPD) or corrected FPD (FPDc) was measured as an indicator of drug-induced QT interval prolongation. To investigate the applicability of the hES-CMC system to drug safety assessment, we investigated short-term variability in FPDc (STVFPDc) (beat rate rhythmicity) as a marker of torsadogenic risk. We investigated the FPDc and STVFPDc of hES-CMCs treated with hERG channel blockers (E-4031 or cisapride) or with our proprietary compounds X, Y, and Z. We also evaluated the electrocardiograms and hemodynamics of dogs treated with compound X, Y, or Z. The torsadogenic hERG channel blockers increased STVFPDc and prolonged FPDc. Compounds X, Y, and Z had hERG inhibitory activity. Compound X prolonged FPDc with increased STVFPDc, whereas compounds Y and Z tended to shorten FPDc in the hES-CMC system. In the in vivo canine study, compound X prolonged corrected QT (QTc), and compounds Y and Z tended to shorten QTc, showing a good correlation with the results in hES-CMCs. These findings suggest that combined assessment of FPDc and STVFPDc in the hES-CMC system increases the predictability of torsadogenic risk. 展开更多
关键词 human Embryonic stem cell-derived Cardiomyocytes Field Potential DURATION Short-Term VARIABILITY QT Interval Torsades de POINTES RISK ASSESSMENT
下载PDF
上一页 1 2 24 下一页 到第
使用帮助 返回顶部