We investigated the ability of NK4, an antagonist of human hepatocyte growth factor (HGF), to inhibit the influence of HGF on proliferation, migration, invasion and apoptosis of human prostate cancer cells. Expressi...We investigated the ability of NK4, an antagonist of human hepatocyte growth factor (HGF), to inhibit the influence of HGF on proliferation, migration, invasion and apoptosis of human prostate cancer cells. Expression vector pBudCE4.1-EGFP-NK4 containing NK4 cDNA was used to transfect human prostate cancer DU145 cells, and the effects of the autocrine NK4 on tumor cell proliferation, migration, invasion and apoptosis were assessed in vitro. in vivo, we subcutaneously implanted DU145 cells, mock-transfected clone (DU145/empty vector) cells and NK4- transfected clone (DU145/NK4) cells into nude mice, and then evaluated tumor growth, cell proliferation and cell apoptosis in vivo. We found that DU145/NK4 cells expressed NK4 protein. In the in vitro study, autocrine NK4 at- tenuated the HGF-induced tumor cell proliferation, migration and invasion, and stimulated apoptosis. Furthermore, autocrine NK4 effectively inhibited the HGF-induced phosphorylation of c-Met, extracellular signal-regulated kinase-1 (ERK1). and protein kinase B 1/2 (Aktl/2). Histological examination revealed that autocrine NK4 inhibited prolifera- tion and accelerated apoptosis of prostate cancer cells. These results show that genetic modification of DU145 cells with NK4 cDNA yields a significant effect on their proliferation, migration, invasion and apoptosis. Molecular targeting of HGF/c-Met by NK4 could be applied as a novel therapeutic approach to prostate cancer.展开更多
Aim: To investigate the effect of inhibition of telomerase with human telomerase reverse transcriptase (hTERT) antisense on tumor necrosis factor-α (TNF-α-induced apoptosis in prostate cancer cells (PC3). Meth...Aim: To investigate the effect of inhibition of telomerase with human telomerase reverse transcriptase (hTERT) antisense on tumor necrosis factor-α (TNF-α-induced apoptosis in prostate cancer cells (PC3). Methods: Antisense phosphorothioate oligodeoxynucleotide (AS PS-ODN) was synthesized and purified. Telomerase activity was measured using the telomeric repeat amplification protocol (TRAP) and polymerase chain reaction enzyme-linked immunoassay (PCR-ELISA). hTERT mRNA was measured by reverse transcription PCR (RT-PCR) assay and gel-image system, hTERT protein was detected by immunochemistry and flow cytometry. Cell viability was detected by 3-(4, 5-dimethylthiazol-2-yl)-2,5-Diphenyltetrazolium (MTT) assay. Cell apoptosis was observed by morphological method and determined by flow cytometry. Results: The telomerase activity decreased with time after hTERT AS PS-ODN treatment. The levels of hTERT mRNA decreased with time after hTERT AS PS-ODN treatment, which appeared before the decline of the telomerase activity. The percentage of positive cells of hTERT protein declined with time after hTERT AS PS-ODN treatment, which appeared after the decline of hTERT mRNA. There was no difference in telomerase activity, hTERT mRNA and protein levels between hTERT sense phosphorothioate oligodeoxynucleotide (S PS-ODN) and the control group. The cell viability decreased with time after hTERT AS PS-ODN combined with TNF-α treatment. The percentage of apoptosis increased with time after hTERT AS PS-ODN combined with TNF-α treatment. There was no difference in cell viability and the percentage of apoptosis between hTERT S PS-ODN and the control group. Conclusion: hTERT AS PS-ODN can significantly inhibit telomerase activity by downregulating the hTERT mRNA and protein expression, and inhibition of telomerase with hTERT antisense can enhance TNF-α- induced apoptosis of PC3 cells.展开更多
Our previous results indicated that both the secreted and the intracellular form of full length and 1-97 N-terminal fragment of IGFBP-3 induce apoptosis in PC-3 human prostate cancer cells in an IGF-dependent and inde...Our previous results indicated that both the secreted and the intracellular form of full length and 1-97 N-terminal fragment of IGFBP-3 induce apoptosis in PC-3 human prostate cancer cells in an IGF-dependent and independent manner. This study was undertaken to delineate possible down-stream signaling pathways that are involved in this process. Intact IGFBP-3 and its N-terminal 1-97 fragments with or without a signal propeptide were fused to YFP and expressed in PC-3 human prostate cancer cells. In some cases, the putative IGF-binding site was presented in full length IGFBP-3 and its N-terminal fragment was also mutated. Extent of apoptosis was quantified using FACS. Up-regulation of total Stat-1 and activation of phospho-Stat-1 were shown by western blot. TGF-β signal was measured by luciferase reporter assay. Results from inhibitor studies indicated that both the Caspase 8 and caspase 9 pathways are involved in IGFBP-3 (non-secreted form) which induced apoptosis in PC-3 cells. Exogenous addition of IGFBP-3 to PC-3 cells increased Stat-1 protein expression/tyrosine phosphorylation. Interestingly, results also showed that knockdown of Stat-1 by siRNA potentiated the IGFBP-3 induced apoptosis in PC-3 cells. In addition, both full-length IGFBP-3 and its 1-97 Nterminal fragments inhibited TGF-β signaling in these cells. This is the first report that compares the signal transduction pathways involved in apoptotic pathways mediated by IGFBP-3 in PC-3 human prostate cancer cells. Non-secreted form of full length IGFBP-3 and its N-terminal fragments induced apoptosis in PC-3 cells via activation of caspase 8 and caspase 9. Although, only non-secreted form of IGFBP-3 is involved in inducing apoptosis in PC-3 cells via caspase 8 and caspase 9 activation pathways but both secreted and non-secreted forms of IGFBP-3 are involved in modulating Stat-1 and TGF-β pathways to induce apoptotic actions in PC-3 cells. Non-secreted intact IGFBP-3 and its N-terminal fragments induced apoptosis in PC-3 cells via activation of caspase 8 and caspase 9 pathways. Modulation in STAT-1 and TGF-β pathways may also be important for IGFBP-3 induced apoptosis in PC-3 cells in general. These studies clearly demonstrate that secreted and non-secreted FL and 1-97 N-terminal fragments induce apoptosis in PC-3 cells by regulating different mechanistic pathways.展开更多
Prostate cancer, the most frequently diagnosed cancer in men, primarily affects males aged 55 and older and is more common in African Americans than Caucasians. Once the cancer has metastasized, current treatments are...Prostate cancer, the most frequently diagnosed cancer in men, primarily affects males aged 55 and older and is more common in African Americans than Caucasians. Once the cancer has metastasized, current treatments are generally ineffective. We have identified a novel anti-neoplastic agent, a specifically designed nutrient mixture (NM), containing ascorbic acid, lysine, proline and green tea extract that demonstrates a broad spectrum of anti-tumor activity against a number of human cancer cell lines. In a previous study NM significantly inhibited prostate tumor in nude mice. In this study, we tested whether the formulation exerts its anti-tumor effects through induction of apoptosis on prostate cancer cell line DU-145. The effect of the nutrient mixture (NM) on cell growth inhibition in DU-145 cells was examined by 3-(4,5-dimethylthiazole-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. Morphological changes and caspase activation associated with apoptosis induction was checked by H&E staining and Live Green Caspase assay, respectively. The NM was found to be slightly toxic to DU-145 cells at 100 μg/ml, but significantly toxic at 500 μg/ml and 1000 μg/ml. Percentage of cells undergoing apoptosis also increased from 6% at 100 μg/ml to 49% at 500 μg/ml and 83% at 1000 μg/ml, with greater number of cells showing morphological changes such as condensed nuclei and an acidophilic cytoplasm at higher concentrations. For the purpose of comparison, NM was also tested on a normal human dermal fibroblast (NHDF) cell line which exhibited far less apoptosis induction as compared to DU-145 cells. The percentage of cells undergoing apoptosis in case of NHDF cells was 7% at 100 μg/ml, 25.6% at 500 μg/ml and 76.5% at 1000 μg/ml. Our results demonstrate that the NM is effective in inhibiting cancer cell viability and inducing apoptosis in prostate cancer DU-145 cells and can thus be used as an effective treatment for prostate cancer.展开更多
Vitamin D co-regulates cell proliferation, differentiation and apoptosis in numerous tissues, including cancers. The known anti-proliferative and pro-apoptotic actions of the active metabolite of vitamin D, 1,25-dihyd...Vitamin D co-regulates cell proliferation, differentiation and apoptosis in numerous tissues, including cancers. The known anti-proliferative and pro-apoptotic actions of the active metabolite of vitamin D, 1,25-dihydroxy-vitamin D [1,25(OH)2D] are mediated through binding to the vitamin D receptor (VDR). Here, we report on the unexpected finding that stable knockdown of VDR expression in the human breast and prostate cancer cell lines, MDA-MB-231 and PC3, strongly induces cell apoptosis and inhibits cell proliferation in vitro. Implantation of these VDR knockdown cells into the mammary fat pad (MDA-MB-231), subcutaneously (PC3) or intra-tibially (both cell lines) in immune-incompetent nude mice resulted in reduced tumor growth associated with increased apoptosis and reduced cell proliferation compared with controls. These growth-retarding effects of VDR knockdown occur in the presence and absence of vitamin D and are independent of whether cells were grown in bone or soft tissues. Transcriptome analysis of VDR knockdown and non-target control cell lines demonstrated that loss of the VDR was associated with significant attenuation in the Wnt/0-catenin signaling pathway. In particular, cytoplasmic and nuclear β-catenin protein levels were reduced with a corresponding downregulation of downstream genes such as Axin2, Cyclin D1, interleukin-6 (IL-6), and IL-8. Stabilization of 0-catenin using the GSK-3β inhibitor BIO partly reversed the growth-retarding effects of VDR knockdown. Our results indicate that the unliganded VDR possesses hitherto unknown functions to promote breast and prostate cancer growth, which appear to be operational not only within but also outside the bone environment. These novel functions contrast with the known anti-proliferative nuclear actions of the liganded VDR and may represent targets for new diagnostic and therapeutic approaches in breast and prostate cancer.展开更多
Objective: To investigate the inhibitory effect of apogossypolone (ApoG2) on prostate cancer cell line PC-3 in vivo, and explore its mechanism. Methods: The models of transplantation tumors in Balb/c nu/nu mice were e...Objective: To investigate the inhibitory effect of apogossypolone (ApoG2) on prostate cancer cell line PC-3 in vivo, and explore its mechanism. Methods: The models of transplantation tumors in Balb/c nu/nu mice were established via subcutaneous injection of PC-3 cells and the tumor-transplanted mice were divided into 4 groups: control group and three ApoG2 treatment groups, with 10 mice in each group. Volumes of the tumor were estimated every 2 d and the morphology of tumor tissues was observed. Immunohistochemistry was employed to observe the expression of Bcl-2, PCNA, CD31, caspase-3 and caspase-8 in tumor tissues. Results: ApoG2 (2.5 mg/kg-10 mg/kg) given intraperitoneally once a day can obviously inhibit the growth of subcutaneous prostatic carcinoma implant. The tumor volume decreased obviously when the treatment dosage was bigger than 5.0 mg/kg (P<0.01). Meanwhile, ApoG2 decreased the expression of PCNA and CD31, and enhanced the expression of caspases-3, caspase-8 in tumor tissues. Conclusion: ApoG2 exert an inhibitory effect on prostatic carcinoma possibly by inducing apoptosis and inhibiting tumor angiogenesis.展开更多
The differences in intracellular and extracellular protein expressions between human prostate cancer lines LNCap and DU145 were examined, The proteins of the two cell lines were extracted and condensed by using protei...The differences in intracellular and extracellular protein expressions between human prostate cancer lines LNCap and DU145 were examined, The proteins of the two cell lines were extracted and condensed by using protein extraction kits. And the intracellular and extracellular proteins were quantitatively detected on a micro-plate reader by using bicinchoninic acid (BCA) method. The proteins in cell culture fluid were qualitatively assayed by SELDI-TOF-MS, The results showed that the intracellular protein contents of LNCap cells were extremely higher than those of DU145 cells. After serum-free culture, both intracellular and extracellular protein contents of LNCap and DU145 were decreased to some extent. And the intracellular proteins were decreased by 5% in LNCap and by 36% in DU145 respectively, while the extracellular proteins were decreased by 89% in LNCap and 96% in DU145 respectively. SELDI assay revealed that there were 5 marker proteins in LNCap and 6 in DU145. Although both LNCap and DU145 cell lines originated from human prostate cancer, they had some differences in protein expression.展开更多
microRNAs (miRNAs) have played a key role in human tumorigenesis, tumor progression, and metastasis. On the one hand, miRNAs are aberrantly expressed in many types of human cancer; on the other hand, miRNAs can func...microRNAs (miRNAs) have played a key role in human tumorigenesis, tumor progression, and metastasis. On the one hand, miRNAs are aberrantly expressed in many types of human cancer; on the other hand, miRNAs can function as tumor suppressors or oncogenes that target many cancer-related genes. This study aimed to investigate the effects of miRNA-200c (miR-200c) on the biological behavior and mechanism of proliferation, migration, and invasion in the prostate cancer cell line Du145. In this study, Du145 cells were transfected with miR-200c mimics or negative control miR-NC by using an X-tremeGENE siRNA transfection reagent. The relative expression of miR-200c was measured by RT-PCR. The proliferation, migration, and invasion abilities of Du145 cells were detected by CCK8 assays, migration assays and invasion assays, respectively. The expressions of ZEB1, E-cadherin, and vimentin were observed by western blot. Results showed that DU145 cells exhibited a high expression of miR-200e compared with immortalized normal prostate epithelial cell RWPE-1. Du145 cells were then transfected with miR-200c mimics and displayed lower abilities of proliferation, migration, and invasion than those transfected with the negative control. The protein levels of ZEB1 and vimentin were expressed at a low extent in Du145 cells, which were transfected with miR-200c mimics; by contrast, E-cadherin was highly expressed. Hence, miR-200c could significantly inhibit the proliferation of the prostate cancer cell line Du145; likewise, miR- 200c could inhibit migration and invasion by epithelial-mesenchymal transition.展开更多
The proteasome inhibitor, bortezomib, has been demonstrated to sensitize tumor cells to tumor necrosis factor-related apoptosis-inducing ligand (TRAIL)-mediated apoptosis. Natural killer (NK) cells represent poten...The proteasome inhibitor, bortezomib, has been demonstrated to sensitize tumor cells to tumor necrosis factor-related apoptosis-inducing ligand (TRAIL)-mediated apoptosis. Natural killer (NK) cells represent potent antitumor effector cells. They also express TRAIL. Therefore, we investigated whether bortezomib could sensitize tumor cells to NK cell-mediated killing, and have the same effect in human prostate cancer cell lines (LNCaP and DU145). We found that bortezomib strongly inhibits proliferation in both cell lines. Furthermore, compared with LNCaP cells, DU145 cells are more sensitive to bortezomib-induced apoptosis. However, bortezomib is unable to sensitize these two cell lines to NK cell-mediated killing in short-term assays. In long-term assays, we found that killing mediated by activated NK cells following bortezomib treatment leads to greater antitumor effects than either treatment alone. In addition, treatment with bortezomib causes these cells to upregulate apoptosis-related mRNA as well as death receptors and downregulate the major histocompatibility class (MHC)-I molecule on the cell surface of DU145 cells. In contrast, LNCaP cells are not sensitized by this treatment. Death receptors and the MHC-I molecule did not change in this cell line. These data suggest that bortezomib can be used to sensitize prostate cancer cells to NK cell-mediated killing and improve current cancer therapies. This theral)eutic stratelzv may be more effective in I)atients with androeen-insensitive orostate cancer.展开更多
文摘We investigated the ability of NK4, an antagonist of human hepatocyte growth factor (HGF), to inhibit the influence of HGF on proliferation, migration, invasion and apoptosis of human prostate cancer cells. Expression vector pBudCE4.1-EGFP-NK4 containing NK4 cDNA was used to transfect human prostate cancer DU145 cells, and the effects of the autocrine NK4 on tumor cell proliferation, migration, invasion and apoptosis were assessed in vitro. in vivo, we subcutaneously implanted DU145 cells, mock-transfected clone (DU145/empty vector) cells and NK4- transfected clone (DU145/NK4) cells into nude mice, and then evaluated tumor growth, cell proliferation and cell apoptosis in vivo. We found that DU145/NK4 cells expressed NK4 protein. In the in vitro study, autocrine NK4 at- tenuated the HGF-induced tumor cell proliferation, migration and invasion, and stimulated apoptosis. Furthermore, autocrine NK4 effectively inhibited the HGF-induced phosphorylation of c-Met, extracellular signal-regulated kinase-1 (ERK1). and protein kinase B 1/2 (Aktl/2). Histological examination revealed that autocrine NK4 inhibited prolifera- tion and accelerated apoptosis of prostate cancer cells. These results show that genetic modification of DU145 cells with NK4 cDNA yields a significant effect on their proliferation, migration, invasion and apoptosis. Molecular targeting of HGF/c-Met by NK4 could be applied as a novel therapeutic approach to prostate cancer.
文摘Aim: To investigate the effect of inhibition of telomerase with human telomerase reverse transcriptase (hTERT) antisense on tumor necrosis factor-α (TNF-α-induced apoptosis in prostate cancer cells (PC3). Methods: Antisense phosphorothioate oligodeoxynucleotide (AS PS-ODN) was synthesized and purified. Telomerase activity was measured using the telomeric repeat amplification protocol (TRAP) and polymerase chain reaction enzyme-linked immunoassay (PCR-ELISA). hTERT mRNA was measured by reverse transcription PCR (RT-PCR) assay and gel-image system, hTERT protein was detected by immunochemistry and flow cytometry. Cell viability was detected by 3-(4, 5-dimethylthiazol-2-yl)-2,5-Diphenyltetrazolium (MTT) assay. Cell apoptosis was observed by morphological method and determined by flow cytometry. Results: The telomerase activity decreased with time after hTERT AS PS-ODN treatment. The levels of hTERT mRNA decreased with time after hTERT AS PS-ODN treatment, which appeared before the decline of the telomerase activity. The percentage of positive cells of hTERT protein declined with time after hTERT AS PS-ODN treatment, which appeared after the decline of hTERT mRNA. There was no difference in telomerase activity, hTERT mRNA and protein levels between hTERT sense phosphorothioate oligodeoxynucleotide (S PS-ODN) and the control group. The cell viability decreased with time after hTERT AS PS-ODN combined with TNF-α treatment. The percentage of apoptosis increased with time after hTERT AS PS-ODN combined with TNF-α treatment. There was no difference in cell viability and the percentage of apoptosis between hTERT S PS-ODN and the control group. Conclusion: hTERT AS PS-ODN can significantly inhibit telomerase activity by downregulating the hTERT mRNA and protein expression, and inhibition of telomerase with hTERT antisense can enhance TNF-α- induced apoptosis of PC3 cells.
文摘Our previous results indicated that both the secreted and the intracellular form of full length and 1-97 N-terminal fragment of IGFBP-3 induce apoptosis in PC-3 human prostate cancer cells in an IGF-dependent and independent manner. This study was undertaken to delineate possible down-stream signaling pathways that are involved in this process. Intact IGFBP-3 and its N-terminal 1-97 fragments with or without a signal propeptide were fused to YFP and expressed in PC-3 human prostate cancer cells. In some cases, the putative IGF-binding site was presented in full length IGFBP-3 and its N-terminal fragment was also mutated. Extent of apoptosis was quantified using FACS. Up-regulation of total Stat-1 and activation of phospho-Stat-1 were shown by western blot. TGF-β signal was measured by luciferase reporter assay. Results from inhibitor studies indicated that both the Caspase 8 and caspase 9 pathways are involved in IGFBP-3 (non-secreted form) which induced apoptosis in PC-3 cells. Exogenous addition of IGFBP-3 to PC-3 cells increased Stat-1 protein expression/tyrosine phosphorylation. Interestingly, results also showed that knockdown of Stat-1 by siRNA potentiated the IGFBP-3 induced apoptosis in PC-3 cells. In addition, both full-length IGFBP-3 and its 1-97 Nterminal fragments inhibited TGF-β signaling in these cells. This is the first report that compares the signal transduction pathways involved in apoptotic pathways mediated by IGFBP-3 in PC-3 human prostate cancer cells. Non-secreted form of full length IGFBP-3 and its N-terminal fragments induced apoptosis in PC-3 cells via activation of caspase 8 and caspase 9. Although, only non-secreted form of IGFBP-3 is involved in inducing apoptosis in PC-3 cells via caspase 8 and caspase 9 activation pathways but both secreted and non-secreted forms of IGFBP-3 are involved in modulating Stat-1 and TGF-β pathways to induce apoptotic actions in PC-3 cells. Non-secreted intact IGFBP-3 and its N-terminal fragments induced apoptosis in PC-3 cells via activation of caspase 8 and caspase 9 pathways. Modulation in STAT-1 and TGF-β pathways may also be important for IGFBP-3 induced apoptosis in PC-3 cells in general. These studies clearly demonstrate that secreted and non-secreted FL and 1-97 N-terminal fragments induce apoptosis in PC-3 cells by regulating different mechanistic pathways.
文摘Prostate cancer, the most frequently diagnosed cancer in men, primarily affects males aged 55 and older and is more common in African Americans than Caucasians. Once the cancer has metastasized, current treatments are generally ineffective. We have identified a novel anti-neoplastic agent, a specifically designed nutrient mixture (NM), containing ascorbic acid, lysine, proline and green tea extract that demonstrates a broad spectrum of anti-tumor activity against a number of human cancer cell lines. In a previous study NM significantly inhibited prostate tumor in nude mice. In this study, we tested whether the formulation exerts its anti-tumor effects through induction of apoptosis on prostate cancer cell line DU-145. The effect of the nutrient mixture (NM) on cell growth inhibition in DU-145 cells was examined by 3-(4,5-dimethylthiazole-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. Morphological changes and caspase activation associated with apoptosis induction was checked by H&E staining and Live Green Caspase assay, respectively. The NM was found to be slightly toxic to DU-145 cells at 100 μg/ml, but significantly toxic at 500 μg/ml and 1000 μg/ml. Percentage of cells undergoing apoptosis also increased from 6% at 100 μg/ml to 49% at 500 μg/ml and 83% at 1000 μg/ml, with greater number of cells showing morphological changes such as condensed nuclei and an acidophilic cytoplasm at higher concentrations. For the purpose of comparison, NM was also tested on a normal human dermal fibroblast (NHDF) cell line which exhibited far less apoptosis induction as compared to DU-145 cells. The percentage of cells undergoing apoptosis in case of NHDF cells was 7% at 100 μg/ml, 25.6% at 500 μg/ml and 76.5% at 1000 μg/ml. Our results demonstrate that the NM is effective in inhibiting cancer cell viability and inducing apoptosis in prostate cancer DU-145 cells and can thus be used as an effective treatment for prostate cancer.
基金supported by Cancer Institute NSW CDF fellowship (YZ)Cure Cancer Foundation of Australia (YZ)+3 种基金Cancer Council New South Wales (MJS, YZ, HZ, and CRD)Prostate Cancer Foundation of Australia (MJS, YZ, HZ, and CRD)NH and MRC Early Career Fellowship 596870 (YZ)German Research Foundation HO 5109/2-1 and HO 5109/2-2 (KH)
文摘Vitamin D co-regulates cell proliferation, differentiation and apoptosis in numerous tissues, including cancers. The known anti-proliferative and pro-apoptotic actions of the active metabolite of vitamin D, 1,25-dihydroxy-vitamin D [1,25(OH)2D] are mediated through binding to the vitamin D receptor (VDR). Here, we report on the unexpected finding that stable knockdown of VDR expression in the human breast and prostate cancer cell lines, MDA-MB-231 and PC3, strongly induces cell apoptosis and inhibits cell proliferation in vitro. Implantation of these VDR knockdown cells into the mammary fat pad (MDA-MB-231), subcutaneously (PC3) or intra-tibially (both cell lines) in immune-incompetent nude mice resulted in reduced tumor growth associated with increased apoptosis and reduced cell proliferation compared with controls. These growth-retarding effects of VDR knockdown occur in the presence and absence of vitamin D and are independent of whether cells were grown in bone or soft tissues. Transcriptome analysis of VDR knockdown and non-target control cell lines demonstrated that loss of the VDR was associated with significant attenuation in the Wnt/0-catenin signaling pathway. In particular, cytoplasmic and nuclear β-catenin protein levels were reduced with a corresponding downregulation of downstream genes such as Axin2, Cyclin D1, interleukin-6 (IL-6), and IL-8. Stabilization of 0-catenin using the GSK-3β inhibitor BIO partly reversed the growth-retarding effects of VDR knockdown. Our results indicate that the unliganded VDR possesses hitherto unknown functions to promote breast and prostate cancer growth, which appear to be operational not only within but also outside the bone environment. These novel functions contrast with the known anti-proliferative nuclear actions of the liganded VDR and may represent targets for new diagnostic and therapeutic approaches in breast and prostate cancer.
文摘Objective: To investigate the inhibitory effect of apogossypolone (ApoG2) on prostate cancer cell line PC-3 in vivo, and explore its mechanism. Methods: The models of transplantation tumors in Balb/c nu/nu mice were established via subcutaneous injection of PC-3 cells and the tumor-transplanted mice were divided into 4 groups: control group and three ApoG2 treatment groups, with 10 mice in each group. Volumes of the tumor were estimated every 2 d and the morphology of tumor tissues was observed. Immunohistochemistry was employed to observe the expression of Bcl-2, PCNA, CD31, caspase-3 and caspase-8 in tumor tissues. Results: ApoG2 (2.5 mg/kg-10 mg/kg) given intraperitoneally once a day can obviously inhibit the growth of subcutaneous prostatic carcinoma implant. The tumor volume decreased obviously when the treatment dosage was bigger than 5.0 mg/kg (P<0.01). Meanwhile, ApoG2 decreased the expression of PCNA and CD31, and enhanced the expression of caspases-3, caspase-8 in tumor tissues. Conclusion: ApoG2 exert an inhibitory effect on prostatic carcinoma possibly by inducing apoptosis and inhibiting tumor angiogenesis.
文摘The differences in intracellular and extracellular protein expressions between human prostate cancer lines LNCap and DU145 were examined, The proteins of the two cell lines were extracted and condensed by using protein extraction kits. And the intracellular and extracellular proteins were quantitatively detected on a micro-plate reader by using bicinchoninic acid (BCA) method. The proteins in cell culture fluid were qualitatively assayed by SELDI-TOF-MS, The results showed that the intracellular protein contents of LNCap cells were extremely higher than those of DU145 cells. After serum-free culture, both intracellular and extracellular protein contents of LNCap and DU145 were decreased to some extent. And the intracellular proteins were decreased by 5% in LNCap and by 36% in DU145 respectively, while the extracellular proteins were decreased by 89% in LNCap and 96% in DU145 respectively. SELDI assay revealed that there were 5 marker proteins in LNCap and 6 in DU145. Although both LNCap and DU145 cell lines originated from human prostate cancer, they had some differences in protein expression.
文摘microRNAs (miRNAs) have played a key role in human tumorigenesis, tumor progression, and metastasis. On the one hand, miRNAs are aberrantly expressed in many types of human cancer; on the other hand, miRNAs can function as tumor suppressors or oncogenes that target many cancer-related genes. This study aimed to investigate the effects of miRNA-200c (miR-200c) on the biological behavior and mechanism of proliferation, migration, and invasion in the prostate cancer cell line Du145. In this study, Du145 cells were transfected with miR-200c mimics or negative control miR-NC by using an X-tremeGENE siRNA transfection reagent. The relative expression of miR-200c was measured by RT-PCR. The proliferation, migration, and invasion abilities of Du145 cells were detected by CCK8 assays, migration assays and invasion assays, respectively. The expressions of ZEB1, E-cadherin, and vimentin were observed by western blot. Results showed that DU145 cells exhibited a high expression of miR-200e compared with immortalized normal prostate epithelial cell RWPE-1. Du145 cells were then transfected with miR-200c mimics and displayed lower abilities of proliferation, migration, and invasion than those transfected with the negative control. The protein levels of ZEB1 and vimentin were expressed at a low extent in Du145 cells, which were transfected with miR-200c mimics; by contrast, E-cadherin was highly expressed. Hence, miR-200c could significantly inhibit the proliferation of the prostate cancer cell line Du145; likewise, miR- 200c could inhibit migration and invasion by epithelial-mesenchymal transition.
文摘The proteasome inhibitor, bortezomib, has been demonstrated to sensitize tumor cells to tumor necrosis factor-related apoptosis-inducing ligand (TRAIL)-mediated apoptosis. Natural killer (NK) cells represent potent antitumor effector cells. They also express TRAIL. Therefore, we investigated whether bortezomib could sensitize tumor cells to NK cell-mediated killing, and have the same effect in human prostate cancer cell lines (LNCaP and DU145). We found that bortezomib strongly inhibits proliferation in both cell lines. Furthermore, compared with LNCaP cells, DU145 cells are more sensitive to bortezomib-induced apoptosis. However, bortezomib is unable to sensitize these two cell lines to NK cell-mediated killing in short-term assays. In long-term assays, we found that killing mediated by activated NK cells following bortezomib treatment leads to greater antitumor effects than either treatment alone. In addition, treatment with bortezomib causes these cells to upregulate apoptosis-related mRNA as well as death receptors and downregulate the major histocompatibility class (MHC)-I molecule on the cell surface of DU145 cells. In contrast, LNCaP cells are not sensitized by this treatment. Death receptors and the MHC-I molecule did not change in this cell line. These data suggest that bortezomib can be used to sensitize prostate cancer cells to NK cell-mediated killing and improve current cancer therapies. This theral)eutic stratelzv may be more effective in I)atients with androeen-insensitive orostate cancer.