An overview of a long-gap peripheral nerve therapy: A long- gap peripheral nerve transection injury is an irreparable injury to the living body, and mostly leads to permanent loss of re- lated motor and sensory funct...An overview of a long-gap peripheral nerve therapy: A long- gap peripheral nerve transection injury is an irreparable injury to the living body, and mostly leads to permanent loss of re- lated motor and sensory functions. In such long gap injuries, nerve end-to-end suture is physically impossible. Therefore, bridging a long nerve-gap is critical to re-establish adequate mechanical support for separated nerve ends, and prevent the diffusion of neurotrophic and neurotropic factors secreted by transected stumps (Deumens et al., 2010).展开更多
Skeletal muscle-derived cells have strong secretory function,while skeletal muscle-derived stem cells,which are included in muscle-derived cells,can differentiate into Schwann cell-like cells and other cell types.Howe...Skeletal muscle-derived cells have strong secretory function,while skeletal muscle-derived stem cells,which are included in muscle-derived cells,can differentiate into Schwann cell-like cells and other cell types.However,the effect of muscle-derived cells on peripheral nerve defects has not been reported.In this study,5-mm-long nerve defects were created in the right sciatic nerves of mice to construct a peripheral nerve defect model.Adult female C57BL/6 mice were randomly divided into four groups.For the muscle-derived cell group,muscle-derived cells were injected into the catheter after the cut nerve ends were bridged with a polyurethane catheter.For external oblique muscle-fabricated nerve conduit and polyurethane groups,an external oblique muscle-fabricated nerve conduit or polyurethane catheter was used to bridge the cut nerve ends,respectively.For the sham group,the sciatic nerves on the right side were separated but not excised.At 8 and 12 weeks post-surgery,distributions of axons and myelin sheaths were observed,and the nerve diameter was calculated using immunofluorescence staining.The number,diameter,and thickness of myelinated nerve fibers were detected by toluidine blue staining and transmission electron microscopy.Muscle fiber area ratios were calculated by Masson’s trichrome staining of gastrocnemius muscle sections.Sciatic functional index was recorded using walking footprint analysis at 4,8,and 12 weeks after operation.The results showed that,at 8 and 12 weeks after surgery,myelin sheaths and axons of regenerating nerves were evenly distributed in the muscle-derived cell group.The number,diameter,and myelin sheath thickness of myelinated nerve fibers,as well as gastrocnemius muscle wet weight and muscle area ratio,were significantly higher in the muscle-derived cell group compared with the polyurethane group.At 4,8,and 12 weeks post-surgery,sciatic functional index was notably increased in the muscle-derived cell group compared with the polyurethane group.These criteria of the muscle-derived cell group were not significantly different from the external oblique muscle-fabricated nerve conduit group.Collectively,these data suggest that muscle-derived cells effectively accelerated peripheral nerve regeneration.This study was approved by the Animal Ethics Committee of Plastic Surgery Hospital,Chinese Academy of Medical Sciences(approval No.040)on September 28,2016.展开更多
Adult stem cells from skeletal muscle cells were induced to differentiate into cardiocytes to see if stem cells from another different but histologically-comparable tissues can differentiate to the target cells. Skele...Adult stem cells from skeletal muscle cells were induced to differentiate into cardiocytes to see if stem cells from another different but histologically-comparable tissues can differentiate to the target cells. Skeletal muscles-derived stem cells (MDSCs) were isolated from adult skeleton muscle tissues by differential adhesion, and immunocytochemically identified by using Sca-1. In order to induce the proliferation but not differentiation of MDSCs, the cells were cultured in Dulbecco’s modified Eagle’s medium/F12 (DMEM/F12) supplemented with 1:50 B27, 20 ng/mL basic fibroblast growth factor (bFGF), 20 ng/mL epidermal growth factor (EGF) in a suspension for 6 days. Then these stem cells were treated with 5 μmol/L 5-azacytidine for 24 h in an adherence culture. The characteristics of induced cells were examined by immunocytochemistry, quantitative real time RT-PCR and morphological observation of cell phenotype. Our results showed that the appearance of some cells gradually changed from spindle-shape into polygonal or short-column-shape. Some of these post-treated cells could contract spontaneously and rhythmically. The expression of GATA-4 and cTnT was increased 1 and 2 week(s) after the treatment. And about 16.6% of post-treated cells were cTnT-positive. Therefore, we are led to conclude that skeletal muscle-derived stem cells could differentiate into cardiocyte-like cells, which exhibited some characteristics of cardiocytes.展开更多
Human induced pluripotent stem cells(hiPS cells or hiPSCs) can be derived from cells of patients with severe muscle disease. If skeletal muscle induced from patientiPSCs shows disease-specific phenotypes, it can be us...Human induced pluripotent stem cells(hiPS cells or hiPSCs) can be derived from cells of patients with severe muscle disease. If skeletal muscle induced from patientiPSCs shows disease-specific phenotypes, it can be useful for studying the disease pathogenesis and for drug development. On the other hand, human iPSCs from healthy donors or hereditary muscle diseaseiPSCs whose genomes are edited to express normal protein are expected to be a cell source for cell therapy. Several protocols for the derivation of skeletal muscle from human iPSCs have been reported to allow the development of efficient treatments for devastating muscle diseases. In 2017, the focus of research is shifting to another stage:(1) the establishment of mature myofibers that are suitable for study of the pathogenesis of muscle disease;(2) setting up a highthroughput drug screening system; and(3) the preparation of highly regenerative, non-oncogenic cells in large quantities for cell transplantation, etc.展开更多
The focus of this review is to highlight the importance of glial cell line-derived neurotrophic factor (GDNF) for the motor nervous system. GDNF is the most potent survival factor for motor neurons, where it enhance...The focus of this review is to highlight the importance of glial cell line-derived neurotrophic factor (GDNF) for the motor nervous system. GDNF is the most potent survival factor for motor neurons, where it enhances maintenance and survival of both developing and mature motor neurons in vivo and in vitro. GDNF aids in neuromuscular junction formation, maintenance, and plasticity, where skeletal muscle-derived GDNF may be responsible for this phenomenon. Increased levels of physical activity can increase GDNF protein levels in skeletal muscle, where alterations in acetylcholine and acetylcholine receptor activation may be involved in regulation of these changes observed. With inactivity and disuse, GDNF expression shows different patterns of regulation in the central and peripheral nervous systems. Due to its potent effects for motor neurons, GDNF is being extensively studied in neuromuscular diseases.展开更多
OBJECTIVE: To investigate the reasons for the rarity of metastases in skeletal muscle. METHODS: By injecting tumor cells (Walker256 rat carcinosarcoma) through the iliac artery (experimental group) and the tail vein (...OBJECTIVE: To investigate the reasons for the rarity of metastases in skeletal muscle. METHODS: By injecting tumor cells (Walker256 rat carcinosarcoma) through the iliac artery (experimental group) and the tail vein (control group), animal models of blood-borne metastases were established. The quadriceps femoris muscle and lungs were observed grossly and microscopically. Immunohistochemistry was applied to investigate the expression of vascular cell adhesion molecule-1 (VCAM-1) in the microvascular endothelium of these organs. Primary culture of rat skeletal muscle cells was established and conditioned medium (MCM) was collected. Effects of MCM on several tumor cell lines and the biochemical characteristics of skeletal muscle delivered tumor factor(s) were tested by MTT assay. Apoptosis and morphological examination were carried out to investigate the antitumor mechanisms of MCM. RESULTS: In the experimental group, there were no definite metastases observed in muscle cells. In the control group, lung metastases were present in the lungs of all rats that were sacrificed at the 14th day or died spontaneously (17 rats in all). There was no significant difference between the increase in VCAM-1 in quadriceps femoris muscle 7 days after iliac artery injection and that in lungs 7 days after tail vein injection (P > 0.05). In vitro studies showed that the proliferation of tumor cell lines of mouse SP2/0 myeloma, rat Walker256 carcinosarcoma or human chronic granulocytic leukemia K562, human acute lymphatic leukemia HL-60, LS-174-T colon adenocarcinoma, PC3-M prostatic carcinoma and lung giant cell carcinoma with different metastatic potency (PLA801-C with low metastatic potency, PLA801-D with high metastatic potency) was significantly inhibited when cultured with MCM (P展开更多
文摘An overview of a long-gap peripheral nerve therapy: A long- gap peripheral nerve transection injury is an irreparable injury to the living body, and mostly leads to permanent loss of re- lated motor and sensory functions. In such long gap injuries, nerve end-to-end suture is physically impossible. Therefore, bridging a long nerve-gap is critical to re-establish adequate mechanical support for separated nerve ends, and prevent the diffusion of neurotrophic and neurotropic factors secreted by transected stumps (Deumens et al., 2010).
基金financially supported by the National Natural Science Foundation of China,No.81671908(to ZLQ)and No.81571921(to XNY)the Fundamental Research Fund for the Central Universities of China,No.2016ZX310197(to ZLQ)+1 种基金the Union Youth Science&Research Foundation of China,No.3332015155(to XNY)the Science Fund of Plastic Surgery Hospital,Chinese Academy of Medical Sciences,and Peking Union Medical College of China,No.Q2015013(to XNY)
文摘Skeletal muscle-derived cells have strong secretory function,while skeletal muscle-derived stem cells,which are included in muscle-derived cells,can differentiate into Schwann cell-like cells and other cell types.However,the effect of muscle-derived cells on peripheral nerve defects has not been reported.In this study,5-mm-long nerve defects were created in the right sciatic nerves of mice to construct a peripheral nerve defect model.Adult female C57BL/6 mice were randomly divided into four groups.For the muscle-derived cell group,muscle-derived cells were injected into the catheter after the cut nerve ends were bridged with a polyurethane catheter.For external oblique muscle-fabricated nerve conduit and polyurethane groups,an external oblique muscle-fabricated nerve conduit or polyurethane catheter was used to bridge the cut nerve ends,respectively.For the sham group,the sciatic nerves on the right side were separated but not excised.At 8 and 12 weeks post-surgery,distributions of axons and myelin sheaths were observed,and the nerve diameter was calculated using immunofluorescence staining.The number,diameter,and thickness of myelinated nerve fibers were detected by toluidine blue staining and transmission electron microscopy.Muscle fiber area ratios were calculated by Masson’s trichrome staining of gastrocnemius muscle sections.Sciatic functional index was recorded using walking footprint analysis at 4,8,and 12 weeks after operation.The results showed that,at 8 and 12 weeks after surgery,myelin sheaths and axons of regenerating nerves were evenly distributed in the muscle-derived cell group.The number,diameter,and myelin sheath thickness of myelinated nerve fibers,as well as gastrocnemius muscle wet weight and muscle area ratio,were significantly higher in the muscle-derived cell group compared with the polyurethane group.At 4,8,and 12 weeks post-surgery,sciatic functional index was notably increased in the muscle-derived cell group compared with the polyurethane group.These criteria of the muscle-derived cell group were not significantly different from the external oblique muscle-fabricated nerve conduit group.Collectively,these data suggest that muscle-derived cells effectively accelerated peripheral nerve regeneration.This study was approved by the Animal Ethics Committee of Plastic Surgery Hospital,Chinese Academy of Medical Sciences(approval No.040)on September 28,2016.
基金supported by a grant from the National Natural Sciences Foundation of China (No 30872627)Hubei Provincial Natural Sciences Foundation (No 2007ABA133)
文摘Adult stem cells from skeletal muscle cells were induced to differentiate into cardiocytes to see if stem cells from another different but histologically-comparable tissues can differentiate to the target cells. Skeletal muscles-derived stem cells (MDSCs) were isolated from adult skeleton muscle tissues by differential adhesion, and immunocytochemically identified by using Sca-1. In order to induce the proliferation but not differentiation of MDSCs, the cells were cultured in Dulbecco’s modified Eagle’s medium/F12 (DMEM/F12) supplemented with 1:50 B27, 20 ng/mL basic fibroblast growth factor (bFGF), 20 ng/mL epidermal growth factor (EGF) in a suspension for 6 days. Then these stem cells were treated with 5 μmol/L 5-azacytidine for 24 h in an adherence culture. The characteristics of induced cells were examined by immunocytochemistry, quantitative real time RT-PCR and morphological observation of cell phenotype. Our results showed that the appearance of some cells gradually changed from spindle-shape into polygonal or short-column-shape. Some of these post-treated cells could contract spontaneously and rhythmically. The expression of GATA-4 and cTnT was increased 1 and 2 week(s) after the treatment. And about 16.6% of post-treated cells were cTnT-positive. Therefore, we are led to conclude that skeletal muscle-derived stem cells could differentiate into cardiocyte-like cells, which exhibited some characteristics of cardiocytes.
基金Supported by The Program for Intractable Diseases Research utilizing Disease-specific iPS cells(Japan Agency for Medical Research and Development:AMED),No.15652069Projects for Technological Development(K1),from the Research Center Network for Realization of Regenerative Medicine(AMED),Intramural Research Grants for Neurological and Psychiatric Disorders of NCNP,No.27-7+1 种基金Grant-in-Aid for Scientific Research(C)(Japan Society for the Promotion of Science)No.16744921
文摘Human induced pluripotent stem cells(hiPS cells or hiPSCs) can be derived from cells of patients with severe muscle disease. If skeletal muscle induced from patientiPSCs shows disease-specific phenotypes, it can be useful for studying the disease pathogenesis and for drug development. On the other hand, human iPSCs from healthy donors or hereditary muscle diseaseiPSCs whose genomes are edited to express normal protein are expected to be a cell source for cell therapy. Several protocols for the derivation of skeletal muscle from human iPSCs have been reported to allow the development of efficient treatments for devastating muscle diseases. In 2017, the focus of research is shifting to another stage:(1) the establishment of mature myofibers that are suitable for study of the pathogenesis of muscle disease;(2) setting up a highthroughput drug screening system; and(3) the preparation of highly regenerative, non-oncogenic cells in large quantities for cell transplantation, etc.
文摘The focus of this review is to highlight the importance of glial cell line-derived neurotrophic factor (GDNF) for the motor nervous system. GDNF is the most potent survival factor for motor neurons, where it enhances maintenance and survival of both developing and mature motor neurons in vivo and in vitro. GDNF aids in neuromuscular junction formation, maintenance, and plasticity, where skeletal muscle-derived GDNF may be responsible for this phenomenon. Increased levels of physical activity can increase GDNF protein levels in skeletal muscle, where alterations in acetylcholine and acetylcholine receptor activation may be involved in regulation of these changes observed. With inactivity and disuse, GDNF expression shows different patterns of regulation in the central and peripheral nervous systems. Due to its potent effects for motor neurons, GDNF is being extensively studied in neuromuscular diseases.
文摘OBJECTIVE: To investigate the reasons for the rarity of metastases in skeletal muscle. METHODS: By injecting tumor cells (Walker256 rat carcinosarcoma) through the iliac artery (experimental group) and the tail vein (control group), animal models of blood-borne metastases were established. The quadriceps femoris muscle and lungs were observed grossly and microscopically. Immunohistochemistry was applied to investigate the expression of vascular cell adhesion molecule-1 (VCAM-1) in the microvascular endothelium of these organs. Primary culture of rat skeletal muscle cells was established and conditioned medium (MCM) was collected. Effects of MCM on several tumor cell lines and the biochemical characteristics of skeletal muscle delivered tumor factor(s) were tested by MTT assay. Apoptosis and morphological examination were carried out to investigate the antitumor mechanisms of MCM. RESULTS: In the experimental group, there were no definite metastases observed in muscle cells. In the control group, lung metastases were present in the lungs of all rats that were sacrificed at the 14th day or died spontaneously (17 rats in all). There was no significant difference between the increase in VCAM-1 in quadriceps femoris muscle 7 days after iliac artery injection and that in lungs 7 days after tail vein injection (P > 0.05). In vitro studies showed that the proliferation of tumor cell lines of mouse SP2/0 myeloma, rat Walker256 carcinosarcoma or human chronic granulocytic leukemia K562, human acute lymphatic leukemia HL-60, LS-174-T colon adenocarcinoma, PC3-M prostatic carcinoma and lung giant cell carcinoma with different metastatic potency (PLA801-C with low metastatic potency, PLA801-D with high metastatic potency) was significantly inhibited when cultured with MCM (P