The difference between Noggin and basic fibroblast growth factor for the neural precursor differen- tiation from human embryonic stem cells has not been studied. In this study, 100 tJg/L Noggin or 20 IJg/L basic fibro...The difference between Noggin and basic fibroblast growth factor for the neural precursor differen- tiation from human embryonic stem cells has not been studied. In this study, 100 tJg/L Noggin or 20 IJg/L basic fibroblast growth factor in serum-free neural induction medium was used to differen- tiate human embryonic stem cells H14 into neural precursors using monolayer differentiation. Two weeks after induction, significantly higher numbers of neural rosettes formed in the Noggin-induced group than the basic fibroblast growth factor-induced group, as detected by phase contrast micro- scope. Immunofluorescence staining revealed expression levels of Nestin, [3-111 Tubulin and Sox-1 were higher in the induced cells and reverse-transcription PCR showed induced cells expressed Nestin, Sox-1 and Neurofilament mRNA. Protein and mRNA expression in the Noggin-induced group was increased compared with the basic fibroblast growth factor-induced group. Noggin has a greater effect than basic fibroblast growth factor on the induction of human embryonic stem cell differentiation into neural precursors by monolayer differentiation, as Noggin accelerates and in- creases the differentiation of neural precursors.展开更多
Human insulin-like growth factor 1-transfected umbilical cord blood neural stem cells were transplanted into a hypoxic-ischemic neonatal rat model via the tail vein. BrdU-positive cells at day 7 post-transplantation, ...Human insulin-like growth factor 1-transfected umbilical cord blood neural stem cells were transplanted into a hypoxic-ischemic neonatal rat model via the tail vein. BrdU-positive cells at day 7 post-transplantation, as well as nestin- and neuron specific enolase-positive cells at day 14 were increased compared with those of the single neural stem cell transplantation group. In addition, the proportion of neuronal differentiation was enhanced. The genetically modified cell-transplanted rats exhibited enhanced performance in correctly crossing a Y-maze and climbing an angled slope compared with those of the single neural stem cell transplantation group. These results showed that human insulin-like growth factor 1-transfected neural stem cell transplantation promotes the recovery of the leaming, memory and motor functions in hypoxic-ischemic rats.展开更多
Objective To explore the feasibility and effectiveness of the self-assembly cartilage tissue engineered with chondrogenically differentiated human bone mesenchymal stem cells (hBMCs) induced by growth differentiation ...Objective To explore the feasibility and effectiveness of the self-assembly cartilage tissue engineered with chondrogenically differentiated human bone mesenchymal stem cells (hBMCs) induced by growth differentiation factor-5 (GDF-5)展开更多
AIM:To improve hepatic differentiation of human mesenchymal stem cell(MSC)using insulin growth factor 1(IGF-Ⅰ),which has important role in liver development,hepatocyte differentiation and function.METHODS:Bone marrow...AIM:To improve hepatic differentiation of human mesenchymal stem cell(MSC)using insulin growth factor 1(IGF-Ⅰ),which has important role in liver development,hepatocyte differentiation and function.METHODS:Bone marrow of healthy donors was aspirated from the iliac crest.The adherent cells expanded rapidly and were maintained with periodic passages until a relatively homogeneous population was established.The identification of these cells was carried out by immunophenotype analysis and differentiation potential into osteocytes and adipocytes.To effectively induce hepatic differentiation,we designed a protocol based on a combination of IGF-Ⅰ and liver specificfactors(hepatocyte growth factor,oncostatin M and dexamethasone).Morphological features,hepatic functions and cytological staining were assessed to evaluate transdifferentiation of human marrow-derived MSCs.RESULTS:Flow cytometric analysis and the differentiation potential into osteoblasts and adipocytes showed that more than 90% of human MSCs which were isolated and expanded were positive by specif ic markers and functional tests.Morphological assessment and evaluation of glycogen storage,albumin and α-feto protein expression,as well as albumin and urea secretion revealed a statistically signif icant difference between the experimental groups and control.CONCLUSION:In vitro differentiated MSCs using IGF-Ⅰwere able to display advanced liver metabolic functions,supporting the possibility of developing them as potential alternatives to primary hepatocytes.展开更多
In the present study, human umbilical cord blood mesenchymal stem cells were injected into a rat model of traumatic brain injury via the tail vein. Results showed that 5-bromodeoxyuridine-labeled cells aggregated arou...In the present study, human umbilical cord blood mesenchymal stem cells were injected into a rat model of traumatic brain injury via the tail vein. Results showed that 5-bromodeoxyuridine-labeled cells aggregated around the injury site, surviving up to 4 weeks post-transplantation. In addition, transplantation-related death did not occur, and neurological functions significantly improved. Histological detection revealed attenuated pathological injury in rat brain tissues following human umbilical cord blood mesenchymal stem cell transplantation. In addition, the number of apoptotic cells decreased. Immunohistochemistry and in situ hybridization showed increased expression of brain-derived neurotrophic factor, nerve growth factor, basic fibroblast growth factor, and vascular endothelial growth factor, along with increased microvessel density in surrounding areas of brain injury. Results demonstrated migration of transplanted human umbilical cord blood mesenchymal stem cells into the lesioned boundary zone of rats, as well as increased angiogenesis and expression of related neurotrophic factors in the lesioned boundary zone.展开更多
BACKGROUND: Transplantation of human umbilical cord blood-derived mesenchymal stem cells (MSCs) has been shown to benefit spinal cord injury (SCI) repair. However, mechanisms of microenvironmental regulation duri...BACKGROUND: Transplantation of human umbilical cord blood-derived mesenchymal stem cells (MSCs) has been shown to benefit spinal cord injury (SCI) repair. However, mechanisms of microenvironmental regulation during differentiation of transplanted MSCs remain poorly understood. OBJECTIVE: To observe changes in nerve growth factor (NGF), brain-derived neurotrophic factor (BDNF), and interleukin-8 (IL-8) expression following transplantation of human umbilical cord-derived MSCs, and to explore the association between microenvironment and neural functional recovery following MSCs transplantation. DESIGN, TIME AND SETTING: A randomized, controlled, animal experiment was performed at the Department of Orthopedics, First Affiliated Hospital of Soochow University from April 2005 to March 2007. MATERIALS: Human cord blood samples were provided by the Department of Gynecology and Obstetrics, First Affiliated Hospital of Soochow University. Written informed consent was obtained. METHODS: A total of 62 Wister rats were randomly assigned to control (n = 18), model (n = 22, SCI + PBS), and transplantation (n = 22, SCI + MSCs) groups. The rat SCI model was established using the weight compression method. MSCs were isolated from human umbilical cord blood and cultured in vitro for several passages. 5-bromodeoxyuridine (BrdU)-Iabeled MSCs (24 hours before injection) were intravascularly transplanted. MAIN OUTCOME MEASURES: The rats were evaluated using the Basso, Beattie and Bresnahan (BBB) locomotor score and inclined plane tests. Transplanted cells were analyzed following immunohistochemistry. Enzyme-linked immunosorbant assay was performed to determine NGF, BDNF, and IL-8 levels prior to and after cell transplantation. RESULTS: A large number of BrdU-positive MSCs were observed in the SCI region of the transplantation group, and MSCs were evenly distributed in injured spinal cord tissue 1 week after transplantation. BBB score and inclined plane test results revealed significant functional improvement in the transplantation group compared to the model group (P 〈 0.05), which was maintained for 2-3 weeks. Compared to the model group, NGF and BDNF levels were significantly increased in the injured region following MSCs transplantation at 3 weeks (P 〈 0.05), but IL-8 levels remained unchanged (P 〉 0.05). CONCLUSION: MSCs transplantation increased NGF and BDNF expression in injured spinal cord tissue. MSCs could promote neurological function recovery in SCI rats by upregulating NGF expression and improving regional microenvironments.展开更多
AIM: To observe the effects of intravitreal injections of different concentrations of human umbilical mesenchymal stem cells on retinopathy in rats with diabetes mellitus.METHODS: Healthy and adult male Sprague-Dawley...AIM: To observe the effects of intravitreal injections of different concentrations of human umbilical mesenchymal stem cells on retinopathy in rats with diabetes mellitus.METHODS: Healthy and adult male Sprague-Dawley(SD) rats were randomly assigned to a normal control group(group A), a diabetic retinopathy(DR) blank control group(group B), a high-concentration transplantation group(group C), a low-concentration transplantation group(group D) and a placebo transplantation group(group E). The expression of nerve growth factor(NGF)protein in the retinal layers was detected by immunohistochemical staining at 2, 4, 6 and 8wk.RESULTS: The expression of NGF was positive in group A and most positive in the retinal ganglion cell layer. In groups B and E, the expression of NGF was positive 2wk after transplantation and showed an increase in all layers. However, the level of expression had decreased in all layers at 4wk and was significantly reduced at 8wk. In groups C and D, the expression of NGF had increased at 2wk and continued to increase up to 8wk. The level of expression in group C was much higher than that in group D.CONCLUSION: DR can be improved by intravitreal injection of human umbilical mesenchymal stem cells.High concentrations of human umbilical mesenchymal stem cells confer a better protective effect on DR than low concentrations.展开更多
Umbilical cord mesenchymal stem cells were isolated by a double enzyme digestion method. The third passage of umbilical cord mesenchymal stem cells was induced with heparin and/or basic fi- broblast growth factor. Res...Umbilical cord mesenchymal stem cells were isolated by a double enzyme digestion method. The third passage of umbilical cord mesenchymal stem cells was induced with heparin and/or basic fi- broblast growth factor. Results confirmed that cell morphology did not change after induction with basic fibroblast growth factor alone. However, neuronal morphology was visible, and micro- tubule-associated protein-2 expression and acetylcholine levels increased following induction with heparin alone or heparin combined with basic fibroblast growth factor. Hb9 and choline acetyl- transferase expression was high following inductive with heparin combined with basic fibroblast growth factor. Results indicate that the inductive effect of basic fibroblast growth factor alone was not obvious. Heparin combined with basic fibroblast growth factor noticeably promoted the differen- tiation of umbilical cord mesenchymal stem cells into motor neuron-like cells. Simultaneously, um- bilical cord mesenchymal stem cells could secrete acetylcholine.展开更多
Background:Steady-state bone marrow (SS-BM) and granulocyte colony-stimulating growth factor-primed BM/peripheral blood stem-cell (G-BM/G-PBSC) are the main stem-cell sources used in allogeneic hematopoietic stem...Background:Steady-state bone marrow (SS-BM) and granulocyte colony-stimulating growth factor-primed BM/peripheral blood stem-cell (G-BM/G-PBSC) are the main stem-cell sources used in allogeneic hematopoietic stem-cell transplantation.Here,we evaluated the treatment effects of SS-BM and G-BM/G-PBSC in human leucocyte antigen (HLA)-identical sibling transplantation.Methods:A total of 226 patients (acute myelogenous leukemia-complete remission 1,chronic myelogenous leukemia-chronic phase 1) received SS-BM,G-BM,or G-PBSC from an HLA-identical sibling.Clinical outcomes (graft-versus-host disease [GVHD],overall survival,transplant-related mortality [TRM],and leukemia-free survival [LFS]) were analyzed.Results:When compared to SS-BM,G-BM gave faster recovery time to neutrophil or platelet (P 〈 0.05).Incidence of grade Ⅲ-Ⅳ acute GVHD and extensive chronic GVHD (cGVHD) was lower than seen with SS-BM (P 〈 0.05) and similar to G-PBSC.Although the incidence of cGVHD in the G-BM group was similar to SS-BM,both were lower than G-PBSC (P 〈 0.05).G-BM and G-PBSC exhibited similar survival,LFS,and TRM,but were significantly different from SS-BM (P 〈 0.05).There were no significant differences in leukemia relapse rates among the groups (P 〉 0.05).Conclusions:G-CSF-primed bone marrow shared the advantages of G-PBSC and SS-BM.We conclude that G-BM is an excellent stem-cell source that may be preferable to G-PBSC or SS-BM in patients receiving HLA-identical sibling hematopoietic stem-cell transplantation.展开更多
基金sponsored by Shanghai Key Projects of Basic Research,No.08JC1413900
文摘The difference between Noggin and basic fibroblast growth factor for the neural precursor differen- tiation from human embryonic stem cells has not been studied. In this study, 100 tJg/L Noggin or 20 IJg/L basic fibroblast growth factor in serum-free neural induction medium was used to differen- tiate human embryonic stem cells H14 into neural precursors using monolayer differentiation. Two weeks after induction, significantly higher numbers of neural rosettes formed in the Noggin-induced group than the basic fibroblast growth factor-induced group, as detected by phase contrast micro- scope. Immunofluorescence staining revealed expression levels of Nestin, [3-111 Tubulin and Sox-1 were higher in the induced cells and reverse-transcription PCR showed induced cells expressed Nestin, Sox-1 and Neurofilament mRNA. Protein and mRNA expression in the Noggin-induced group was increased compared with the basic fibroblast growth factor-induced group. Noggin has a greater effect than basic fibroblast growth factor on the induction of human embryonic stem cell differentiation into neural precursors by monolayer differentiation, as Noggin accelerates and in- creases the differentiation of neural precursors.
基金the National Natural Science Foundation of China, No.30770758, 81071114
文摘Human insulin-like growth factor 1-transfected umbilical cord blood neural stem cells were transplanted into a hypoxic-ischemic neonatal rat model via the tail vein. BrdU-positive cells at day 7 post-transplantation, as well as nestin- and neuron specific enolase-positive cells at day 14 were increased compared with those of the single neural stem cell transplantation group. In addition, the proportion of neuronal differentiation was enhanced. The genetically modified cell-transplanted rats exhibited enhanced performance in correctly crossing a Y-maze and climbing an angled slope compared with those of the single neural stem cell transplantation group. These results showed that human insulin-like growth factor 1-transfected neural stem cell transplantation promotes the recovery of the leaming, memory and motor functions in hypoxic-ischemic rats.
文摘Objective To explore the feasibility and effectiveness of the self-assembly cartilage tissue engineered with chondrogenically differentiated human bone mesenchymal stem cells (hBMCs) induced by growth differentiation factor-5 (GDF-5)
基金Supported by A grant from Stem Cell Organization:www.stem cell.ir
文摘AIM:To improve hepatic differentiation of human mesenchymal stem cell(MSC)using insulin growth factor 1(IGF-Ⅰ),which has important role in liver development,hepatocyte differentiation and function.METHODS:Bone marrow of healthy donors was aspirated from the iliac crest.The adherent cells expanded rapidly and were maintained with periodic passages until a relatively homogeneous population was established.The identification of these cells was carried out by immunophenotype analysis and differentiation potential into osteocytes and adipocytes.To effectively induce hepatic differentiation,we designed a protocol based on a combination of IGF-Ⅰ and liver specificfactors(hepatocyte growth factor,oncostatin M and dexamethasone).Morphological features,hepatic functions and cytological staining were assessed to evaluate transdifferentiation of human marrow-derived MSCs.RESULTS:Flow cytometric analysis and the differentiation potential into osteoblasts and adipocytes showed that more than 90% of human MSCs which were isolated and expanded were positive by specif ic markers and functional tests.Morphological assessment and evaluation of glycogen storage,albumin and α-feto protein expression,as well as albumin and urea secretion revealed a statistically signif icant difference between the experimental groups and control.CONCLUSION:In vitro differentiated MSCs using IGF-Ⅰwere able to display advanced liver metabolic functions,supporting the possibility of developing them as potential alternatives to primary hepatocytes.
基金supported by Medical Scientific Research Program of Hebei Province in 2010, Hebei Provincial Health Department, No. 20100131
文摘In the present study, human umbilical cord blood mesenchymal stem cells were injected into a rat model of traumatic brain injury via the tail vein. Results showed that 5-bromodeoxyuridine-labeled cells aggregated around the injury site, surviving up to 4 weeks post-transplantation. In addition, transplantation-related death did not occur, and neurological functions significantly improved. Histological detection revealed attenuated pathological injury in rat brain tissues following human umbilical cord blood mesenchymal stem cell transplantation. In addition, the number of apoptotic cells decreased. Immunohistochemistry and in situ hybridization showed increased expression of brain-derived neurotrophic factor, nerve growth factor, basic fibroblast growth factor, and vascular endothelial growth factor, along with increased microvessel density in surrounding areas of brain injury. Results demonstrated migration of transplanted human umbilical cord blood mesenchymal stem cells into the lesioned boundary zone of rats, as well as increased angiogenesis and expression of related neurotrophic factors in the lesioned boundary zone.
基金the National Natural Science Foundation of China, No. 3067104130870642
文摘BACKGROUND: Transplantation of human umbilical cord blood-derived mesenchymal stem cells (MSCs) has been shown to benefit spinal cord injury (SCI) repair. However, mechanisms of microenvironmental regulation during differentiation of transplanted MSCs remain poorly understood. OBJECTIVE: To observe changes in nerve growth factor (NGF), brain-derived neurotrophic factor (BDNF), and interleukin-8 (IL-8) expression following transplantation of human umbilical cord-derived MSCs, and to explore the association between microenvironment and neural functional recovery following MSCs transplantation. DESIGN, TIME AND SETTING: A randomized, controlled, animal experiment was performed at the Department of Orthopedics, First Affiliated Hospital of Soochow University from April 2005 to March 2007. MATERIALS: Human cord blood samples were provided by the Department of Gynecology and Obstetrics, First Affiliated Hospital of Soochow University. Written informed consent was obtained. METHODS: A total of 62 Wister rats were randomly assigned to control (n = 18), model (n = 22, SCI + PBS), and transplantation (n = 22, SCI + MSCs) groups. The rat SCI model was established using the weight compression method. MSCs were isolated from human umbilical cord blood and cultured in vitro for several passages. 5-bromodeoxyuridine (BrdU)-Iabeled MSCs (24 hours before injection) were intravascularly transplanted. MAIN OUTCOME MEASURES: The rats were evaluated using the Basso, Beattie and Bresnahan (BBB) locomotor score and inclined plane tests. Transplanted cells were analyzed following immunohistochemistry. Enzyme-linked immunosorbant assay was performed to determine NGF, BDNF, and IL-8 levels prior to and after cell transplantation. RESULTS: A large number of BrdU-positive MSCs were observed in the SCI region of the transplantation group, and MSCs were evenly distributed in injured spinal cord tissue 1 week after transplantation. BBB score and inclined plane test results revealed significant functional improvement in the transplantation group compared to the model group (P 〈 0.05), which was maintained for 2-3 weeks. Compared to the model group, NGF and BDNF levels were significantly increased in the injured region following MSCs transplantation at 3 weeks (P 〈 0.05), but IL-8 levels remained unchanged (P 〉 0.05). CONCLUSION: MSCs transplantation increased NGF and BDNF expression in injured spinal cord tissue. MSCs could promote neurological function recovery in SCI rats by upregulating NGF expression and improving regional microenvironments.
基金Supported by Tianjin Science and Technology ProjectChina(No.13ZCZDSY01500)
文摘AIM: To observe the effects of intravitreal injections of different concentrations of human umbilical mesenchymal stem cells on retinopathy in rats with diabetes mellitus.METHODS: Healthy and adult male Sprague-Dawley(SD) rats were randomly assigned to a normal control group(group A), a diabetic retinopathy(DR) blank control group(group B), a high-concentration transplantation group(group C), a low-concentration transplantation group(group D) and a placebo transplantation group(group E). The expression of nerve growth factor(NGF)protein in the retinal layers was detected by immunohistochemical staining at 2, 4, 6 and 8wk.RESULTS: The expression of NGF was positive in group A and most positive in the retinal ganglion cell layer. In groups B and E, the expression of NGF was positive 2wk after transplantation and showed an increase in all layers. However, the level of expression had decreased in all layers at 4wk and was significantly reduced at 8wk. In groups C and D, the expression of NGF had increased at 2wk and continued to increase up to 8wk. The level of expression in group C was much higher than that in group D.CONCLUSION: DR can be improved by intravitreal injection of human umbilical mesenchymal stem cells.High concentrations of human umbilical mesenchymal stem cells confer a better protective effect on DR than low concentrations.
文摘Umbilical cord mesenchymal stem cells were isolated by a double enzyme digestion method. The third passage of umbilical cord mesenchymal stem cells was induced with heparin and/or basic fi- broblast growth factor. Results confirmed that cell morphology did not change after induction with basic fibroblast growth factor alone. However, neuronal morphology was visible, and micro- tubule-associated protein-2 expression and acetylcholine levels increased following induction with heparin alone or heparin combined with basic fibroblast growth factor. Hb9 and choline acetyl- transferase expression was high following inductive with heparin combined with basic fibroblast growth factor. Results indicate that the inductive effect of basic fibroblast growth factor alone was not obvious. Heparin combined with basic fibroblast growth factor noticeably promoted the differen- tiation of umbilical cord mesenchymal stem cells into motor neuron-like cells. Simultaneously, um- bilical cord mesenchymal stem cells could secrete acetylcholine.
文摘Background:Steady-state bone marrow (SS-BM) and granulocyte colony-stimulating growth factor-primed BM/peripheral blood stem-cell (G-BM/G-PBSC) are the main stem-cell sources used in allogeneic hematopoietic stem-cell transplantation.Here,we evaluated the treatment effects of SS-BM and G-BM/G-PBSC in human leucocyte antigen (HLA)-identical sibling transplantation.Methods:A total of 226 patients (acute myelogenous leukemia-complete remission 1,chronic myelogenous leukemia-chronic phase 1) received SS-BM,G-BM,or G-PBSC from an HLA-identical sibling.Clinical outcomes (graft-versus-host disease [GVHD],overall survival,transplant-related mortality [TRM],and leukemia-free survival [LFS]) were analyzed.Results:When compared to SS-BM,G-BM gave faster recovery time to neutrophil or platelet (P 〈 0.05).Incidence of grade Ⅲ-Ⅳ acute GVHD and extensive chronic GVHD (cGVHD) was lower than seen with SS-BM (P 〈 0.05) and similar to G-PBSC.Although the incidence of cGVHD in the G-BM group was similar to SS-BM,both were lower than G-PBSC (P 〈 0.05).G-BM and G-PBSC exhibited similar survival,LFS,and TRM,but were significantly different from SS-BM (P 〈 0.05).There were no significant differences in leukemia relapse rates among the groups (P 〉 0.05).Conclusions:G-CSF-primed bone marrow shared the advantages of G-PBSC and SS-BM.We conclude that G-BM is an excellent stem-cell source that may be preferable to G-PBSC or SS-BM in patients receiving HLA-identical sibling hematopoietic stem-cell transplantation.