Avirulence effectors(Avrs),encoded by plant pathogens,can be recognized by plants harboring the corresponding resistance proteins,thereby initiating effector-triggered immunity(ETI).In susceptible plants,however,Avrs ...Avirulence effectors(Avrs),encoded by plant pathogens,can be recognized by plants harboring the corresponding resistance proteins,thereby initiating effector-triggered immunity(ETI).In susceptible plants,however,Avrs can function as effectors,facilitating infection via effector-triggered susceptibility(ETS).Mechanisms of Avr-mediated ETS remain largely unexplored.Here we report that the Magnaporthe oryzae effector Avr-PikD enters rice cells via the canonical cytoplasmic secretion pathway and suppresses rice basal defense.Avr-PikD interacts with an LSD1-like transcriptional activator AKIP30 of rice,and AKIP30 is also a positive regulator of rice immunity,whereas Avr-PikD impedes its nuclear localization and suppresses its transcriptional activity.In summary,M.oryzae delivers Avr-PikD into rice cells to facilitate ETS by inhibiting AKIP30-mediated transcriptional regulation of immune response against M.oryzae.展开更多
BACKGROUND Alveolar bone defects caused by inflammation are an urgent issue in oral implant surgery that must be solved.Regulating the various phenotypes of macrophages to enhance the inflammatory environment can sign...BACKGROUND Alveolar bone defects caused by inflammation are an urgent issue in oral implant surgery that must be solved.Regulating the various phenotypes of macrophages to enhance the inflammatory environment can significantly affect the progression of diseases and tissue engineering repair process.AIM To assess the influence of interleukin-10(IL-10)on the osteogenic differentiation of bone marrow mesenchymal stem cells(BMSCs)following their interaction with macrophages in an inflammatory environment.METHODS IL-10 modulates the differentiation of peritoneal macrophages in Wistar rats in an inflammatory environment.In this study,we investigated its impact on the proliferation,migration,and osteogenesis of BMSCs.The expression levels of signal transducer and activator of transcription 3(STAT3)and its activated form,phos-phorylated-STAT3,were examined in IL-10-stimulated macrophages.Subsequently,a specific STAT3 signaling inhibitor was used to impede STAT3 signal activation to further investigate the role of STAT3 signaling.RESULTS IL-10-stimulated macrophages underwent polarization to the M2 type through substitution,and these M2 macrophages actively facilitated the osteogenic differentiation of BMSCs.Mechanistically,STAT3 signaling plays a crucial role in the process by which IL-10 influences macrophages.Specifically,IL-10 stimulated the activation of the STAT3 signaling pathway and reduced the macrophage inflammatory response,as evidenced by its diminished impact on the osteogenic differentiation of BMSCs.CONCLUSION Stimulating macrophages with IL-10 proved effective in improving the inflammatory environment and promoting the osteogenic differentiation of BMSCs.The IL-10/STAT3 signaling pathway has emerged as a key regulator in the macrophage-mediated control of BMSCs’osteogenic differentiation.展开更多
AIM:To investigate the roles and mechanism of signal transducer and activator of transcription 3 (STAT3) in invasion of human colon cancer cells by RNA interference. METHODS: Small interfering RNA (siRNA) targeting Si...AIM:To investigate the roles and mechanism of signal transducer and activator of transcription 3 (STAT3) in invasion of human colon cancer cells by RNA interference. METHODS: Small interfering RNA (siRNA) targeting Signal transducer and activator of transcription 3 (STAT3) was transfected into HT29 colon cancer cells. STAT3 protein level and DNA-binding activity of STAT3 was evaluated by western blotting and electrophoretic mobility shift assay (EMSA), respectively. We studied the anchorage-independent growth using colony formation in soft agar, and invasion using the boyden chamber model, anoikis using DNA fragmentation assay and terminal deoxynucleotidyltransferase-mediated dUTP nick-end labeling (TUNEL), respectively. Western blot assay was used to observe the protein expression of Bcl-xL and survivin in colon cancer HT29 cells. RESULTS: RNA interference (RNAi) mediated by siRNA leads to suppression of STAT3 expression in colon cancer cell lines. Suppression of STAT3 expression by siRNA could inhibit anchorage-independent growth, and invasion ability, and induces anoikis in the colon cancer cell line HT29. It has been shown that knockdown of STAT3 expression by siRNA results in a reduction in expression of Bcl-xL and survivin in HT29 cells. CONCLUSION: These results suggest that STAT3 siRNA can inhibit the invasion ability of colon cancer cells through inducing anoikis, which antiapoptotic genes survivin and Bcl-xL contribute to regulation of anoikis.These studies indicate STAT3 siRNA could be a useful therapeutic tool for the treatment of colon cancer.展开更多
AIM: To explore the effect of silencing of signal transducer and activator of transcription 3 (STAT3) expression by RNA interference (RNAi) on growth of human hepatocellular carcinoma (HCC) in tumorbearing nude...AIM: To explore the effect of silencing of signal transducer and activator of transcription 3 (STAT3) expression by RNA interference (RNAi) on growth of human hepatocellular carcinoma (HCC) in tumorbearing nude mice in vivo.METHODS: To construct the recombinant plasmid of pSilencer 3.0-H1-STAT3-siRNA-GFP (pSHI-siRNA- STAT3) and establish the tumor-bearing nude mouse model of the HCC cell line SMMC7721, we used intratumoral injection together with electroblotting to transfect the recombinant plasmid pSHI-siRNA- STAT3 into the transplanted tumor. The weight of the nude mice and tumor volumes were recorded. STAT3 gene transcription was detected by semi-quantitative reverse transcription polymerase chain reaction (RT- PCR). Level of protein expression and location of STAT3 were determined by Western blotting and immunohistochemical staining. STAT3-related genes such as survivin, c-myc, VEGF, p53 and caspase3 mRNA and protein expression were detected in tumor tissues at the same time. The terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling (TUNEL) assay was used to detect apoptosis of tumor cells.RESULTS: The weight of the treated nude mice increased, and the tumor volume decreased markedly compared with those of the mock-treated and negative control groups (P 〈 0.01). The results of RT-PCR and Western blotting showed that mRNA and protein levels of STAT3 declined markedly in the treated group. The change in STAT3-related gene expression in tumor tissues at the mRNA and protein level also varied, the expression of survivin, VEGF and c-myc were obviously reduced, and expression of p53 and caspase3 increased (P 〈 0.01). Most of the tumor tissue ceils in the treated group developed apoptosis that was detected by TUNEL assay.CONCLUSION: Silencing of STAT3 expression by RNAi significantly inhibits expression of STAT3 mRNA and protein, and suppresses growth of human HCC in tumor-bearing nude mice. The mechanism may be related to down-regulation of survivin, VEGF and c-myc and up-regulation of p53 and caspase3 expression. Accordingly, the STAT3 gene may act as an important and effective target in gene therapy of HCC.展开更多
Pancreatic ductal adenocarcinoma(PDAC) remains a deadly disease with no efficacious treatment options. PDAC incidence is projected to increase, which may be caused at least partially by the obesity epidemic. Significa...Pancreatic ductal adenocarcinoma(PDAC) remains a deadly disease with no efficacious treatment options. PDAC incidence is projected to increase, which may be caused at least partially by the obesity epidemic. Significantly enhanced efforts to prevent or intercept this cancer are clearly warranted. Oncogenic KRAS mutations are recognized initiating events in PDAC development, however, they are not entirely sufficient for the development of fully invasive PDAC.Additional genetic alterations and/or environmental, nutritional, and metabolic signals, as present in obesity, type-2 diabetes mellitus, and inflammation, are required for full PDAC formation. We hypothesize that oncogenic KRAS increases the intensity and duration of the growth-promoting signaling network.Recent exciting studies from different laboratories indicate that the activity of the transcriptional co-activators Yes-associated protein(YAP) and WW-domaincontaining transcriptional co-activator with PDZ-binding motif(TAZ) play a critical role in the promotion and maintenance of PDAC operating as key downstream target of KRAS signaling. While initially thought to be primarily an effector of the tumor-suppressive Hippo pathway, more recent studies revealed that YAP/TAZ subcellular localization and co-transcriptional activity is regulated by multiple upstream signals. Overall, YAP has emerged as a central node of transcriptional convergence in growth-promoting signaling in PDAC cells. Indeed, YAP expression is an independent unfavorable prognostic marker for overall survival of PDAC. In what follows, we will review studies implicating YAP/TAZ in pancreatic cancer development and consider different approaches to target these transcriptional regulators.展开更多
The peaT1 gene fragment was amplified from pGEM-6p-l-peaT1 by PCR, and recovered target gene was cloned into pLexA vector. After digestion and sequencing, the bait vector pLexA-peaT1 was transformed into yeast strain ...The peaT1 gene fragment was amplified from pGEM-6p-l-peaT1 by PCR, and recovered target gene was cloned into pLexA vector. After digestion and sequencing, the bait vector pLexA-peaT1 was transformed into yeast strain EGY48 [p8op-lacZ] by PEG/LiAC, and the transcriptional activity of bait vector was detected. The results showed that recombinant bait plasmid pLexA-PEMG1 was constructed, for the two bands of recombinant bait plasmid in agarose gel eleetrophoresis were expected after digesting by restriction endonuclease EcoR I and Xho I. Therefore, the recombinant bait plasmid could be used in yeast two-hybrid system to screen a cDNA library.展开更多
The analysis of hydrochemical characteristics and influencing factors of surface river on plateau is helpful to study water hydrological cycle and environmental evolution,which can scientifically guide rational develo...The analysis of hydrochemical characteristics and influencing factors of surface river on plateau is helpful to study water hydrological cycle and environmental evolution,which can scientifically guide rational development and utilization of water resources and planning of ecological environment protection.With the expansion and diversification of human activities,the quality of surface rivers will be more directly affected.Therefore,it is of great significance to pay attention to the hydrochemical characteristics of plateau surface rivers and the influence of human activities on their circulation and evolution.In this study,surface water in the Duoqu basin of Jinsha River located in Hengduan mountain region of Eastern Tibet was selected as the representative case.Twenty-three groups of surface water samples were collected to analyze the hydrochemical characteristics and ion sources based on correlation analysis,piper trigram,gibbs model,hydrogen and oxygen isotopic techniques.The results suggest the following:(1)The pH showed slight alkalinity with the value ranged from 7.25 to 8.62.Ca^(2+),Mg^(2+)and HCO_(3)^(–)were the main cations and anions.HCO_(3)^(-)Ca and HCO_(3)^(-)Ca·Mg were the primary hydrochemical types for the surface water of Duoqu River.The correlation analysis showed that TDS had the most significant correlation with Ca^(2+),Mg^(2+)and HCO_(3)^(–).Analysis on hydrogen and oxygen isotopes indicated that the surface rivers were mainly recharged by atmospheric precipitation and glacial melt water in this study area.(2)The surface water had a certain reverse cation alternating adsorption,and surface water ions were mainly derived from rock weathering,mainly controlled by weathering and dissolution of carbonates,and secondly by silicates and sodium rocks.(3)The influence of human activities was weak,while the development of cinnabar minerals had a certain impact on the hydrochemistry characteristics,which was the main factor for causing the increase of SO_(4)^(2–).The densely populated county towns and temples with frequent incense burning activities may cause some anomalies of surface water quality.At present,the Duoqu River watershed had gone through a certain influence of mineral exploitation,so the hydrological cycle and river eco-environment at watershed scale will still bound to be change.The results could provide basic support for better understanding water balance evolution as well as the ecological protection of Duoqu River watershed.展开更多
Artificial intelligence(AI)technology has become integral in the realm of medicine and healthcare,particularly in human activity recognition(HAR)applications such as fitness and rehabilitation tracking.This study intr...Artificial intelligence(AI)technology has become integral in the realm of medicine and healthcare,particularly in human activity recognition(HAR)applications such as fitness and rehabilitation tracking.This study introduces a robust coupling analysis framework that integrates four AI-enabled models,combining both machine learning(ML)and deep learning(DL)approaches to evaluate their effectiveness in HAR.The analytical dataset comprises 561 features sourced from the UCI-HAR database,forming the foundation for training the models.Additionally,the MHEALTH database is employed to replicate the modeling process for comparative purposes,while inclusion of the WISDM database,renowned for its challenging features,supports the framework’s resilience and adaptability.The ML-based models employ the methodologies including adaptive neuro-fuzzy inference system(ANFIS),support vector machine(SVM),and random forest(RF),for data training.In contrast,a DL-based model utilizes one-dimensional convolution neural network(1dCNN)to automate feature extraction.Furthermore,the recursive feature elimination(RFE)algorithm,which drives an ML-based estimator to eliminate low-participation features,helps identify the optimal features for enhancing model performance.The best accuracies of the ANFIS,SVM,RF,and 1dCNN models with meticulous featuring process achieve around 90%,96%,91%,and 93%,respectively.Comparative analysis using the MHEALTH dataset showcases the 1dCNN model’s remarkable perfect accuracy(100%),while the RF,SVM,and ANFIS models equipped with selected features achieve accuracies of 99.8%,99.7%,and 96.5%,respectively.Finally,when applied to the WISDM dataset,the DL-based and ML-based models attain accuracies of 91.4%and 87.3%,respectively,aligning with prior research findings.In conclusion,the proposed framework yields HAR models with commendable performance metrics,exhibiting its suitability for integration into the healthcare services system through AI-driven applications.展开更多
Signal transducer and activator of transcription 3(STAT3), a member of the STAT family, is a key regulator of many physiological and pathological processes. Significant progress has been made in understanding the tran...Signal transducer and activator of transcription 3(STAT3), a member of the STAT family, is a key regulator of many physiological and pathological processes. Significant progress has been made in understanding the transcriptional control, posttranslational modification, cellular localization and functional regulation of STAT3. STAT3 can translocate into the nucleus and bind to specific promoter sequences, thereby exerting transcriptional regulation. Recent studies have shown that STAT3 can also translocate into mitochondria, participating in aerobic respiration and apoptosis. In addition, STAT3 plays an important role in inflammation and tumorigenesis by regulating cell proliferation, differentiation and metabolism. Conditional knockout mouse models make it possible to study the physiological function of STAT3 in specific tissues and organs. This review summarizes the latest advances in the understanding of the expression, regulation and function of STAT3 in physiological and tumorigenic processes.展开更多
Due to long-term human activity interference,the Hainan Tropical Rainforest National Park(HTRNP)of China has experienced ecological problems such as habitat fragmentation and biodiversity loss,and with the expanding s...Due to long-term human activity interference,the Hainan Tropical Rainforest National Park(HTRNP)of China has experienced ecological problems such as habitat fragmentation and biodiversity loss,and with the expanding scope and intensity of human activity impact,the regional ecological security is facing serious challenges.A scientific assessment of the interrelationship between human activity intensity and habitat quality in the HTRNP is a prerequisite for achieving effective management of ecological disturbances caused by human activities and can also provide scientific strategies for the sustainable development of the region.Based on the land use change data in 2000,2010,and 2020,the spatial and temporal variations and the relationship between habitat quality(HQ)and human activity intensity(HAI)in the HTRNP were explored using the integrated valuation of ecosystem services and trade-offs(InVEST)model.System dynamics and land use simulation models were also combined to conduct multi-scenario simulations of their relationships.The results showed that during 2000–2020,the habitat quality of the HTRNP improved,the intensity of human activities decreased each year,and there was a negative correlation between the two.Second,the system dynamic model could be well coupled with the land use simulation model by combining socio-economic and natural factors.The simulation scenarios of the coupling model showed that the harmonious development(HD)scenario is effective in curbing the increasing trend of human activity intensity and decreasing trend of habitat quality,with a weaker trade-off between the two compared with the baseline development(BD)and investment priority oriented(IPO)scenarios.To maintain the authenticity and integrity of the HTRNP,effective measures such as ecological corridor construction,ecological restoration,and the implementation of ecological compensation policies need to be strengthened.展开更多
BACKGROUND Study shows that signal transducer and activator of transcription 3(STAT3) can increase the Warburg effect by stimulating hexokinase 2 in breast cancer and upregulate lactate dehydrogenase A and pyruvate de...BACKGROUND Study shows that signal transducer and activator of transcription 3(STAT3) can increase the Warburg effect by stimulating hexokinase 2 in breast cancer and upregulate lactate dehydrogenase A and pyruvate dehydrogenase kinase 1 in myeloma. STAT3 and pyruvate kinase M2(PKM2) can also be activated and enhance the Warburg effect in hepatocellular carcinoma. Precancerous lesions are critical to human and rodent hepatocarcinogenesis. However, the underlying molecular mechanism for the development of liver precancerous lesions remains unknown. We hypothesized that STAT3 promotes the Warburg effect possibly by upregulating p-PKM2 in liver precancerous lesions in rats.AIM To investigate the mechanism of the Warburg effect in liver precancerous lesions in rats.METHODS A model of liver precancerous lesions was established by a modified Solt-Farber method. The liver pathological changes were observed by HE staining and immunohistochemistry. The transformation of WB-F344 cells induced with Nmethyl-N'-nitro-N-nitrosoguanidine and hydrogen peroxide was evaluated by the soft agar assay and aneuploidy. The levels of glucose and lactate in the tissue and culture medium were detected with a spectrophotometer. The protein levels of glutathione S-transferase-π, proliferating cell nuclear antigen(PCNA), STAT3,and PKM2 were examined by Western blot and immunofluorescence.RESULTS We found that the Warburg effect was increased in liver precancerous lesions in rats. PKM2 and p-STAT3 were upregulated in activated oval cells in liverprecancerous lesions in rats. The Warburg effect, p-PKM2, and p-STAT3 expression were also increased in transformed WB-F344 cells. STAT3 activation promoted the clonal formation rate, aneuploidy, alpha-fetoprotein expression,PCNA expression, G1/S phase transition, the Warburg effect, PKM2 phosphorylation, and nuclear translocation in transformed WB-F344 cells.Moreover, the Warburg effect was inhibited by stattic, a specific inhibitor of STAT3, and further reduced in transformed WB-F344 cells after the intervention for PKM2.CONCLUSION The Warburg effect is initiated in liver precancerous lesions in rats. STAT3 activation promotes the Warburg effect by enhancing the phosphorylation of PKM2 in transformed WB-F344 cells.展开更多
One possible mechanism suggested for somaclonal variation is the activation of transposable elements. The activation of retrotransposons by stresses and external changes is commonly observed in plants. In previous stu...One possible mechanism suggested for somaclonal variation is the activation of transposable elements. The activation of retrotransposons by stresses and external changes is commonly observed in plants. In previous study, we isolated the reverse transcriptase (RT) gene sequences of Ty 1-copia retrotransposons from tissue culture strawberry (Fragaria x ananassa) plant, but not the transcriptionally active sequence. For further understanding the relationship between retrotransposon and somaclonal varation, in this study, we isolated the transcriptionally active RT gene sequences from strawberry plants subjected to different abiotic stresses. These retrotransposons were activated by spraying strawberry leaves with 2 mmol L^-1 salicylic acid (SA), 50 mmol L^-1 methyl jasmonate (MeJA), 50 mmol L^-1 abscisic acid (ABA), 50 mmol L^-1 2,4- dichlorophenoxyacetic acid (2,4-D) or by inducing callus growth in 2 types of MS media: first medium supplemented with 0.5 mg L^-1 6-benzylaminopurine (6-BA), 0.5 mg L^-1 gibberellic acid (GA3), 1.0 mg L^-1 thidiazuron (TDZ), and 0.1 mg L^-1 2,4-D, and the second medium supplemented with 0.5 mg L^-1 6-BA, 0.5 mg L^-1 GA3, 2.0 mg L^-1 TDZ, and 0.02 mg L^-1 indole butyric acid (1BA). Analysis of gene sequences of 17 RTs revealed that none of them contained stop codons and/or indels disrupting the reading frame. These different stress-origin transcriptionally active RTs were remarkably similar to each other- FATEXP2-8 and FATEYS9-7 showed 100% sequence identity. Analysis of pylogenetic of these transcriptionally active RTs and the RT sequences from genome showed that there were close phylogenetic relationships of most of the transcriptionally active RTs. The results of this study have contributed to the background information necessary for future studies for evaluating the relationship between retrotransposons and somaclonal variation.展开更多
Hepatocellular carcinoma is one of the most common cancers worldwide,and a leading cause of cancer-related death.Owing to unsatisfactory clinical outcomes under the current standard of care,there is a need to search f...Hepatocellular carcinoma is one of the most common cancers worldwide,and a leading cause of cancer-related death.Owing to unsatisfactory clinical outcomes under the current standard of care,there is a need to search for and identify novel and potent therapeutic targets to improve patient outcomes.Sorafenib is the first and only approved targeted therapy for the treatment of hepatocellular carcinoma.Besides functioning as a multiple tyrosine kinase,sorafenib also acts via a kinase-independent mechanism to target signal transducer and activator of transcription 3(STAT3) signaling in hepatocellular carcinoma cells.STAT3 is a key regulator of inflammation,cell survival,and tumorigenesis of liver cells,and the high percentage of hepatocellular carcinoma cells with constitutively active STAT3 justifies targeting it for the development of novel therapeutics.Sorafenib inactivates STAT3 and STAT3-related signaling by inducing a conformational change in and releasing the autoinhibition of Src homology region 2 domaincontaining phosphatase-1.This phosphatase negatively regulates STAT3 activity,which leads to the subsequent apoptosis of cancer cells.The novel anti-cancer property of sorafenib will be discussed in this review,not only adding information regarding its mechanism of action but also providing an innovative approach for the development of cancer therapeutics in the future.展开更多
Signal transducer and activator of transcription(STAT)is a unique protein family that binds to DNA,coupled with tyrosine phosphorylation signaling pathways,acting as a transcriptional regulator to mediate a variety ...Signal transducer and activator of transcription(STAT)is a unique protein family that binds to DNA,coupled with tyrosine phosphorylation signaling pathways,acting as a transcriptional regulator to mediate a variety of biological effects.Cerebral ischemia and reperfusion can activate STATs signaling pathway,but no studies have confirmed whether STAT activation can be verified by diffusion-weighted magnetic resonance imaging(DWI)in rats after cerebral ischemia/reperfusion.Here,we established a rat model of focal cerebral ischemia injury using the modified Longa method.DWI revealed hyperintensity in parts of the left hemisphere before reperfusion and a low apparent diffusion coefficient.STAT3 protein expression showed no significant change after reperfusion,but phosphorylated STAT3 expression began to increase after 30 minutes of reperfusion and peaked at 24 hours.Pearson correlation analysis showed that STAT3 activation was correlated positively with the relative apparent diffusion coefficient and negatively with the DWI abnormal signal area.These results indicate that DWI is a reliable representation of the infarct area and reflects STAT phosphorylation in rat brain following focal cerebral ischemia/reperfusion.展开更多
Chondrocytes and osteoblasts differentiate from a common mesenchymal precursor, the osteochondroprogenitor(OCP), and help build the vertebrate skeleton. The signaling pathways that control lineage commitment for OCP...Chondrocytes and osteoblasts differentiate from a common mesenchymal precursor, the osteochondroprogenitor(OCP), and help build the vertebrate skeleton. The signaling pathways that control lineage commitment for OCPs are incompletely understood. We asked whether the ubiquitously expressed protein-tyrosine phosphatase SHP2(encoded by Ptpn11) affects skeletal lineage commitment by conditionally deleting Ptpn11 in mouse limb and head mesenchyme using "Cre-lox P"-mediated gene excision.SHP2-deficient mice have increased cartilage mass and deficient ossification, suggesting that SHP2-deficient OCPs become chondrocytes and not osteoblasts. Consistent with these observations, the expression of the master chondrogenic transcription factor SOX9 and its target genes Acan, Col2a1, and Col10a1 were increased in SHP2-deficient chondrocytes, as revealed by gene expression arrays, q RT-PCR, in situ hybridization, and immunostaining. Mechanistic studies demonstrate that SHP2 regulates OCP fate determination via the phosphorylation and SUMOylation of SOX9, mediated at least in part via the PKA signaling pathway. Our data indicate that SHP2 is critical for skeletal cell lineage differentiation and could thus be a pharmacologic target for bone and cartilage regeneration.展开更多
RFID-based human activity recognition(HAR)attracts attention due to its convenience,noninvasiveness,and privacy protection.Existing RFID-based HAR methods use modeling,CNN,or LSTM to extract features effectively.Still...RFID-based human activity recognition(HAR)attracts attention due to its convenience,noninvasiveness,and privacy protection.Existing RFID-based HAR methods use modeling,CNN,or LSTM to extract features effectively.Still,they have shortcomings:1)requiring complex hand-crafted data cleaning processes and 2)only addressing single-person activity recognition based on specific RF signals.To solve these problems,this paper proposes a novel device-free method based on Time-streaming Multiscale Transformer called TransTM.This model leverages the Transformer's powerful data fitting capabilities to take raw RFID RSSI data as input without pre-processing.Concretely,we propose a multiscale convolutional hybrid Transformer to capture behavioral features that recognizes singlehuman activities and human-to-human interactions.Compared with existing CNN-and LSTM-based methods,the Transformer-based method has more data fitting power,generalization,and scalability.Furthermore,using RF signals,our method achieves an excellent classification effect on human behaviorbased classification tasks.Experimental results on the actual RFID datasets show that this model achieves a high average recognition accuracy(99.1%).The dataset we collected for detecting RFID-based indoor human activities will be published.展开更多
Ozone(O_(3))pollution has a profound impact on human health,vegetation development,and the ecological environment,making it a critical focus of global academic research.In recent years,O_(3)pollution in China has been...Ozone(O_(3))pollution has a profound impact on human health,vegetation development,and the ecological environment,making it a critical focus of global academic research.In recent years,O_(3)pollution in China has been on a steady rise,with ozone emerging as the sole conventional pollutant to consistently increase in concentration without any decline.This study conducted a quantitative analysis of O_(3)concentrations across 367 Chinese cities in 2019,examining spatial autocorrelation and local clustering of O_(3)levels,and investigated the diverse relationships between human activity factors and O_(3)concentration.The seasonal fluctuation of O_(3)exhibited the“M-type”pattern,with peak concentrations in winter and the lowest levels in summer.The center of O_(3)pollution migrated southeastward,with the area of highest concentration progressively shifting south along the eastern coast.Moreover,O_(3)concentration showed a strong positive correlation with population density,road freight volume,and industrial emissions,suggesting that human activities,vehicle emissions,and industrial operations are significant contributors to O_(3)production.The results provide comprehensive information on the characteristics,causes,and occurrence mechanism of O_(3)in Chinese cities that can be utilized by global government departments to formulate strategies to prevent and control O_(3)pollution.展开更多
The driving effects of climate change and human activities on vegetation change have always been a focal point of research.However,the coupling mechanisms of these driving factors across different temporal and spatial...The driving effects of climate change and human activities on vegetation change have always been a focal point of research.However,the coupling mechanisms of these driving factors across different temporal and spatial scales remain controversial.The Southwestern Alpine Canyon Region of China(SACR),as an ecologically fragile area,is highly sensitive to the impacts of climate change and human activities.This study constructed a vegetation cover dataset for the SACR based on the Enhanced Vegetation Index(EVI)from 2000 to 2020.Spatial autocorrelation,Theil-Sen trend,and Mann-Kendall tests were used to analyze the spatiotemporal characteristics of vegetation cover changes.The main drivers of spatial heterogeneity in vegetation cover were identified using the optimal parameter geographic detector,and an improved residual analysis model was employed to quantify the relative contributions of climate change and human activities to interannual vegetation cover changes.The main findings are as follows:Spatially,vegetation cover exceeds 60%in most areas,especially in the southern part of the study area.However,the border area between Linzhi and Changdu exhibits lower vegetation cover.Climate factors are the primary drivers of spatial heterogeneity in vegetation cover,with temperature having the most significant influence,as indicated by its q-value,which far exceeds that of other factors.Additionally,the interaction q-value between the two factors significantly increases,showing a relationship of bivariate enhancement and nonlinear enhancement.In terms of temporal changes,vegetation cover shows an overall improving trend from 2000 to 2020,with significant increases observed in 68.93%of the study area.Among these,human activities are the main factors driving vegetation cover change,with a relative contribution rate of 41.31%,while climate change and residual factors contribute 35.66%and 23.53%,respectively.By thoroughly exploring the coupled mechanisms of vegetation change,this study provides important references for the sustainable management and conservation of the vegetation ecosystem in the SACR.展开更多
Climate change and human activities such as overgrazing and rapid development of tourism simultaneously affected the vegetation of the Zoige Plateau.However,the spatiotemporal variations of vegetation and the relative...Climate change and human activities such as overgrazing and rapid development of tourism simultaneously affected the vegetation of the Zoige Plateau.However,the spatiotemporal variations of vegetation and the relative contributions of climate change and human activities to these vegetation dynamics remain unclear.Therefore,clarifying how and why the vegetation on the Zoige Plateau changed can provide a scientific basis for the sustainable development of the region.Here,we investigate NDVI trends using the Normalized Difference Vegetation Index(NDVI)as an indicator of vegetation greenness and distinguish the relative effects of climate changes and human activities on vegetation changes by utilizing residual trend analysis and the Geodetector.We find a tendency of vegetation greening from 2001 to 2020,with significant greening accounting for 21.44%of the entire region.However,browning area expanded rapidly after 2011.Warmer temperatures are the primary driver of vegetation changes in the Zoige Plateau.Climatic variations and human activities were responsible for 65.57%and 34.43%of vegetation greening,and 39.14%and 60.86%of vegetation browning,respectively,with browning concentrated along the Yellow,Black and White Rivers.Compared to 2001-2010,the inhibitory effect of human activity and climate fluctuations on vegetation grew dramatically between 2011 and 2020.展开更多
The Hotan Prefecture of Xinjiang Uygur Autonomous Region,China belongs to arid desert climate,with significant soil salinization issues.The study selected six rivers in Hotan Prefecture(Pishan,Qaraqash,Yurungqash,Cell...The Hotan Prefecture of Xinjiang Uygur Autonomous Region,China belongs to arid desert climate,with significant soil salinization issues.The study selected six rivers in Hotan Prefecture(Pishan,Qaraqash,Yurungqash,Celle,Kriya,and Niya rivers)to explore the spatial distribution of soil salinization in this area and its underlying mechanisms.Sampling was conducted along each river's watershed,from the Gobi in the upper reaches,through the anthropogenic impact area in the middle reaches,to the desert area in the lower reaches.Soil physical-chemical indicators,including total soluble salts,pH,K+,Na+,Ca2+,Mg2+,SO42-,Cl-,CO32-,HCO3-,organic matter,available nitrogen,available phosphorus,and available potassium,were tested,along with the total dissolved solids of surface water and groundwater.The results revealed that the soil water and nutrient contents in anthropogenic impact area were higher than those in Gobi and desert areas,while the pH and total soluble salts were lower than those in Gobi and desert areas.The ions in the soil of the study area were primarily Cl-,SO42-,K+,and Na+,and the ion concentration of soil salt were positively correlated with surface water and groundwater.Overall,the study area exhibited low soil water content,low clay content,infertile soil,and high soil salinization,dominated by weak to moderate chloride-sulfate types.Compared with Gobi and desert areas,the soil in anthropogenic impact area had higher soil water content,lower pH,lower soluble salts,and higher nutrients,indicating that human farming activities help mitigate salinization.These findings have practical implications for guiding the scientific prevention and control of soil salinization in the arid areas and for promoting sustainable agricultural development.展开更多
基金supported by grants from the National Natural Science Foundation of China(31401692,31901960,32272513,32001976)the Natural Science Foundation of Fujian Province(2019J01766,2023J011418,2020J05177)+3 种基金Fujian Provincial Science and Technology Key Project(2022NZ030014)External Cooperation Program of Fujian Academy of Agricultural Sciences(DWHZ-2024-23)State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crop Opening Project(SKL2019005)Project of Fujian Provincial Department of Education(JAT190627)。
文摘Avirulence effectors(Avrs),encoded by plant pathogens,can be recognized by plants harboring the corresponding resistance proteins,thereby initiating effector-triggered immunity(ETI).In susceptible plants,however,Avrs can function as effectors,facilitating infection via effector-triggered susceptibility(ETS).Mechanisms of Avr-mediated ETS remain largely unexplored.Here we report that the Magnaporthe oryzae effector Avr-PikD enters rice cells via the canonical cytoplasmic secretion pathway and suppresses rice basal defense.Avr-PikD interacts with an LSD1-like transcriptional activator AKIP30 of rice,and AKIP30 is also a positive regulator of rice immunity,whereas Avr-PikD impedes its nuclear localization and suppresses its transcriptional activity.In summary,M.oryzae delivers Avr-PikD into rice cells to facilitate ETS by inhibiting AKIP30-mediated transcriptional regulation of immune response against M.oryzae.
文摘BACKGROUND Alveolar bone defects caused by inflammation are an urgent issue in oral implant surgery that must be solved.Regulating the various phenotypes of macrophages to enhance the inflammatory environment can significantly affect the progression of diseases and tissue engineering repair process.AIM To assess the influence of interleukin-10(IL-10)on the osteogenic differentiation of bone marrow mesenchymal stem cells(BMSCs)following their interaction with macrophages in an inflammatory environment.METHODS IL-10 modulates the differentiation of peritoneal macrophages in Wistar rats in an inflammatory environment.In this study,we investigated its impact on the proliferation,migration,and osteogenesis of BMSCs.The expression levels of signal transducer and activator of transcription 3(STAT3)and its activated form,phos-phorylated-STAT3,were examined in IL-10-stimulated macrophages.Subsequently,a specific STAT3 signaling inhibitor was used to impede STAT3 signal activation to further investigate the role of STAT3 signaling.RESULTS IL-10-stimulated macrophages underwent polarization to the M2 type through substitution,and these M2 macrophages actively facilitated the osteogenic differentiation of BMSCs.Mechanistically,STAT3 signaling plays a crucial role in the process by which IL-10 influences macrophages.Specifically,IL-10 stimulated the activation of the STAT3 signaling pathway and reduced the macrophage inflammatory response,as evidenced by its diminished impact on the osteogenic differentiation of BMSCs.CONCLUSION Stimulating macrophages with IL-10 proved effective in improving the inflammatory environment and promoting the osteogenic differentiation of BMSCs.The IL-10/STAT3 signaling pathway has emerged as a key regulator in the macrophage-mediated control of BMSCs’osteogenic differentiation.
基金the Program of Science and Technology, Zhenjiang City, No. SH2006019
文摘AIM:To investigate the roles and mechanism of signal transducer and activator of transcription 3 (STAT3) in invasion of human colon cancer cells by RNA interference. METHODS: Small interfering RNA (siRNA) targeting Signal transducer and activator of transcription 3 (STAT3) was transfected into HT29 colon cancer cells. STAT3 protein level and DNA-binding activity of STAT3 was evaluated by western blotting and electrophoretic mobility shift assay (EMSA), respectively. We studied the anchorage-independent growth using colony formation in soft agar, and invasion using the boyden chamber model, anoikis using DNA fragmentation assay and terminal deoxynucleotidyltransferase-mediated dUTP nick-end labeling (TUNEL), respectively. Western blot assay was used to observe the protein expression of Bcl-xL and survivin in colon cancer HT29 cells. RESULTS: RNA interference (RNAi) mediated by siRNA leads to suppression of STAT3 expression in colon cancer cell lines. Suppression of STAT3 expression by siRNA could inhibit anchorage-independent growth, and invasion ability, and induces anoikis in the colon cancer cell line HT29. It has been shown that knockdown of STAT3 expression by siRNA results in a reduction in expression of Bcl-xL and survivin in HT29 cells. CONCLUSION: These results suggest that STAT3 siRNA can inhibit the invasion ability of colon cancer cells through inducing anoikis, which antiapoptotic genes survivin and Bcl-xL contribute to regulation of anoikis.These studies indicate STAT3 siRNA could be a useful therapeutic tool for the treatment of colon cancer.
基金Supported by The Science and Technology Fund of Jilin Province,No. 200505219
文摘AIM: To explore the effect of silencing of signal transducer and activator of transcription 3 (STAT3) expression by RNA interference (RNAi) on growth of human hepatocellular carcinoma (HCC) in tumorbearing nude mice in vivo.METHODS: To construct the recombinant plasmid of pSilencer 3.0-H1-STAT3-siRNA-GFP (pSHI-siRNA- STAT3) and establish the tumor-bearing nude mouse model of the HCC cell line SMMC7721, we used intratumoral injection together with electroblotting to transfect the recombinant plasmid pSHI-siRNA- STAT3 into the transplanted tumor. The weight of the nude mice and tumor volumes were recorded. STAT3 gene transcription was detected by semi-quantitative reverse transcription polymerase chain reaction (RT- PCR). Level of protein expression and location of STAT3 were determined by Western blotting and immunohistochemical staining. STAT3-related genes such as survivin, c-myc, VEGF, p53 and caspase3 mRNA and protein expression were detected in tumor tissues at the same time. The terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling (TUNEL) assay was used to detect apoptosis of tumor cells.RESULTS: The weight of the treated nude mice increased, and the tumor volume decreased markedly compared with those of the mock-treated and negative control groups (P 〈 0.01). The results of RT-PCR and Western blotting showed that mRNA and protein levels of STAT3 declined markedly in the treated group. The change in STAT3-related gene expression in tumor tissues at the mRNA and protein level also varied, the expression of survivin, VEGF and c-myc were obviously reduced, and expression of p53 and caspase3 increased (P 〈 0.01). Most of the tumor tissue ceils in the treated group developed apoptosis that was detected by TUNEL assay.CONCLUSION: Silencing of STAT3 expression by RNAi significantly inhibits expression of STAT3 mRNA and protein, and suppresses growth of human HCC in tumor-bearing nude mice. The mechanism may be related to down-regulation of survivin, VEGF and c-myc and up-regulation of p53 and caspase3 expression. Accordingly, the STAT3 gene may act as an important and effective target in gene therapy of HCC.
文摘Pancreatic ductal adenocarcinoma(PDAC) remains a deadly disease with no efficacious treatment options. PDAC incidence is projected to increase, which may be caused at least partially by the obesity epidemic. Significantly enhanced efforts to prevent or intercept this cancer are clearly warranted. Oncogenic KRAS mutations are recognized initiating events in PDAC development, however, they are not entirely sufficient for the development of fully invasive PDAC.Additional genetic alterations and/or environmental, nutritional, and metabolic signals, as present in obesity, type-2 diabetes mellitus, and inflammation, are required for full PDAC formation. We hypothesize that oncogenic KRAS increases the intensity and duration of the growth-promoting signaling network.Recent exciting studies from different laboratories indicate that the activity of the transcriptional co-activators Yes-associated protein(YAP) and WW-domaincontaining transcriptional co-activator with PDZ-binding motif(TAZ) play a critical role in the promotion and maintenance of PDAC operating as key downstream target of KRAS signaling. While initially thought to be primarily an effector of the tumor-suppressive Hippo pathway, more recent studies revealed that YAP/TAZ subcellular localization and co-transcriptional activity is regulated by multiple upstream signals. Overall, YAP has emerged as a central node of transcriptional convergence in growth-promoting signaling in PDAC cells. Indeed, YAP expression is an independent unfavorable prognostic marker for overall survival of PDAC. In what follows, we will review studies implicating YAP/TAZ in pancreatic cancer development and consider different approaches to target these transcriptional regulators.
基金Supported by the National“863”Program(2006AA10A210)~~
文摘The peaT1 gene fragment was amplified from pGEM-6p-l-peaT1 by PCR, and recovered target gene was cloned into pLexA vector. After digestion and sequencing, the bait vector pLexA-peaT1 was transformed into yeast strain EGY48 [p8op-lacZ] by PEG/LiAC, and the transcriptional activity of bait vector was detected. The results showed that recombinant bait plasmid pLexA-PEMG1 was constructed, for the two bands of recombinant bait plasmid in agarose gel eleetrophoresis were expected after digesting by restriction endonuclease EcoR I and Xho I. Therefore, the recombinant bait plasmid could be used in yeast two-hybrid system to screen a cDNA library.
基金financially supported by the Geological Survey Project of China Geological Survey(DD20230077,DD20230456,DD20230424)。
文摘The analysis of hydrochemical characteristics and influencing factors of surface river on plateau is helpful to study water hydrological cycle and environmental evolution,which can scientifically guide rational development and utilization of water resources and planning of ecological environment protection.With the expansion and diversification of human activities,the quality of surface rivers will be more directly affected.Therefore,it is of great significance to pay attention to the hydrochemical characteristics of plateau surface rivers and the influence of human activities on their circulation and evolution.In this study,surface water in the Duoqu basin of Jinsha River located in Hengduan mountain region of Eastern Tibet was selected as the representative case.Twenty-three groups of surface water samples were collected to analyze the hydrochemical characteristics and ion sources based on correlation analysis,piper trigram,gibbs model,hydrogen and oxygen isotopic techniques.The results suggest the following:(1)The pH showed slight alkalinity with the value ranged from 7.25 to 8.62.Ca^(2+),Mg^(2+)and HCO_(3)^(–)were the main cations and anions.HCO_(3)^(-)Ca and HCO_(3)^(-)Ca·Mg were the primary hydrochemical types for the surface water of Duoqu River.The correlation analysis showed that TDS had the most significant correlation with Ca^(2+),Mg^(2+)and HCO_(3)^(–).Analysis on hydrogen and oxygen isotopes indicated that the surface rivers were mainly recharged by atmospheric precipitation and glacial melt water in this study area.(2)The surface water had a certain reverse cation alternating adsorption,and surface water ions were mainly derived from rock weathering,mainly controlled by weathering and dissolution of carbonates,and secondly by silicates and sodium rocks.(3)The influence of human activities was weak,while the development of cinnabar minerals had a certain impact on the hydrochemistry characteristics,which was the main factor for causing the increase of SO_(4)^(2–).The densely populated county towns and temples with frequent incense burning activities may cause some anomalies of surface water quality.At present,the Duoqu River watershed had gone through a certain influence of mineral exploitation,so the hydrological cycle and river eco-environment at watershed scale will still bound to be change.The results could provide basic support for better understanding water balance evolution as well as the ecological protection of Duoqu River watershed.
基金funded by the National Science and Technology Council,Taiwan(Grant No.NSTC 112-2121-M-039-001)by China Medical University(Grant No.CMU112-MF-79).
文摘Artificial intelligence(AI)technology has become integral in the realm of medicine and healthcare,particularly in human activity recognition(HAR)applications such as fitness and rehabilitation tracking.This study introduces a robust coupling analysis framework that integrates four AI-enabled models,combining both machine learning(ML)and deep learning(DL)approaches to evaluate their effectiveness in HAR.The analytical dataset comprises 561 features sourced from the UCI-HAR database,forming the foundation for training the models.Additionally,the MHEALTH database is employed to replicate the modeling process for comparative purposes,while inclusion of the WISDM database,renowned for its challenging features,supports the framework’s resilience and adaptability.The ML-based models employ the methodologies including adaptive neuro-fuzzy inference system(ANFIS),support vector machine(SVM),and random forest(RF),for data training.In contrast,a DL-based model utilizes one-dimensional convolution neural network(1dCNN)to automate feature extraction.Furthermore,the recursive feature elimination(RFE)algorithm,which drives an ML-based estimator to eliminate low-participation features,helps identify the optimal features for enhancing model performance.The best accuracies of the ANFIS,SVM,RF,and 1dCNN models with meticulous featuring process achieve around 90%,96%,91%,and 93%,respectively.Comparative analysis using the MHEALTH dataset showcases the 1dCNN model’s remarkable perfect accuracy(100%),while the RF,SVM,and ANFIS models equipped with selected features achieve accuracies of 99.8%,99.7%,and 96.5%,respectively.Finally,when applied to the WISDM dataset,the DL-based and ML-based models attain accuracies of 91.4%and 87.3%,respectively,aligning with prior research findings.In conclusion,the proposed framework yields HAR models with commendable performance metrics,exhibiting its suitability for integration into the healthcare services system through AI-driven applications.
基金Supported by National Natural Science Foundation of China,No.30930013
文摘Signal transducer and activator of transcription 3(STAT3), a member of the STAT family, is a key regulator of many physiological and pathological processes. Significant progress has been made in understanding the transcriptional control, posttranslational modification, cellular localization and functional regulation of STAT3. STAT3 can translocate into the nucleus and bind to specific promoter sequences, thereby exerting transcriptional regulation. Recent studies have shown that STAT3 can also translocate into mitochondria, participating in aerobic respiration and apoptosis. In addition, STAT3 plays an important role in inflammation and tumorigenesis by regulating cell proliferation, differentiation and metabolism. Conditional knockout mouse models make it possible to study the physiological function of STAT3 in specific tissues and organs. This review summarizes the latest advances in the understanding of the expression, regulation and function of STAT3 in physiological and tumorigenic processes.
基金Under the auspices of the National Social Science Found of China(No.21XGL019)Hainan Provincial Natural Science Foundation of China(No.421RC1034)Professor/Doctor Research Foundation of Huizhou University(No.2022JB080)。
文摘Due to long-term human activity interference,the Hainan Tropical Rainforest National Park(HTRNP)of China has experienced ecological problems such as habitat fragmentation and biodiversity loss,and with the expanding scope and intensity of human activity impact,the regional ecological security is facing serious challenges.A scientific assessment of the interrelationship between human activity intensity and habitat quality in the HTRNP is a prerequisite for achieving effective management of ecological disturbances caused by human activities and can also provide scientific strategies for the sustainable development of the region.Based on the land use change data in 2000,2010,and 2020,the spatial and temporal variations and the relationship between habitat quality(HQ)and human activity intensity(HAI)in the HTRNP were explored using the integrated valuation of ecosystem services and trade-offs(InVEST)model.System dynamics and land use simulation models were also combined to conduct multi-scenario simulations of their relationships.The results showed that during 2000–2020,the habitat quality of the HTRNP improved,the intensity of human activities decreased each year,and there was a negative correlation between the two.Second,the system dynamic model could be well coupled with the land use simulation model by combining socio-economic and natural factors.The simulation scenarios of the coupling model showed that the harmonious development(HD)scenario is effective in curbing the increasing trend of human activity intensity and decreasing trend of habitat quality,with a weaker trade-off between the two compared with the baseline development(BD)and investment priority oriented(IPO)scenarios.To maintain the authenticity and integrity of the HTRNP,effective measures such as ecological corridor construction,ecological restoration,and the implementation of ecological compensation policies need to be strengthened.
基金Supported by the National Natural Science Foundation of China,No.81070319the Beijing Natural Science Foundation of China,No.7102013the Beijing Municipal Education Commission Research Program,China,No.KM201610025004
文摘BACKGROUND Study shows that signal transducer and activator of transcription 3(STAT3) can increase the Warburg effect by stimulating hexokinase 2 in breast cancer and upregulate lactate dehydrogenase A and pyruvate dehydrogenase kinase 1 in myeloma. STAT3 and pyruvate kinase M2(PKM2) can also be activated and enhance the Warburg effect in hepatocellular carcinoma. Precancerous lesions are critical to human and rodent hepatocarcinogenesis. However, the underlying molecular mechanism for the development of liver precancerous lesions remains unknown. We hypothesized that STAT3 promotes the Warburg effect possibly by upregulating p-PKM2 in liver precancerous lesions in rats.AIM To investigate the mechanism of the Warburg effect in liver precancerous lesions in rats.METHODS A model of liver precancerous lesions was established by a modified Solt-Farber method. The liver pathological changes were observed by HE staining and immunohistochemistry. The transformation of WB-F344 cells induced with Nmethyl-N'-nitro-N-nitrosoguanidine and hydrogen peroxide was evaluated by the soft agar assay and aneuploidy. The levels of glucose and lactate in the tissue and culture medium were detected with a spectrophotometer. The protein levels of glutathione S-transferase-π, proliferating cell nuclear antigen(PCNA), STAT3,and PKM2 were examined by Western blot and immunofluorescence.RESULTS We found that the Warburg effect was increased in liver precancerous lesions in rats. PKM2 and p-STAT3 were upregulated in activated oval cells in liverprecancerous lesions in rats. The Warburg effect, p-PKM2, and p-STAT3 expression were also increased in transformed WB-F344 cells. STAT3 activation promoted the clonal formation rate, aneuploidy, alpha-fetoprotein expression,PCNA expression, G1/S phase transition, the Warburg effect, PKM2 phosphorylation, and nuclear translocation in transformed WB-F344 cells.Moreover, the Warburg effect was inhibited by stattic, a specific inhibitor of STAT3, and further reduced in transformed WB-F344 cells after the intervention for PKM2.CONCLUSION The Warburg effect is initiated in liver precancerous lesions in rats. STAT3 activation promotes the Warburg effect by enhancing the phosphorylation of PKM2 in transformed WB-F344 cells.
基金supported by the National Natural Sci-ence Foundation of China (30871689)the Program for New Century Excellent Talents in University, China(NCET-07-0565)Science Foundation from the Department of Education of Liaoning Province, China(20060772)
文摘One possible mechanism suggested for somaclonal variation is the activation of transposable elements. The activation of retrotransposons by stresses and external changes is commonly observed in plants. In previous study, we isolated the reverse transcriptase (RT) gene sequences of Ty 1-copia retrotransposons from tissue culture strawberry (Fragaria x ananassa) plant, but not the transcriptionally active sequence. For further understanding the relationship between retrotransposon and somaclonal varation, in this study, we isolated the transcriptionally active RT gene sequences from strawberry plants subjected to different abiotic stresses. These retrotransposons were activated by spraying strawberry leaves with 2 mmol L^-1 salicylic acid (SA), 50 mmol L^-1 methyl jasmonate (MeJA), 50 mmol L^-1 abscisic acid (ABA), 50 mmol L^-1 2,4- dichlorophenoxyacetic acid (2,4-D) or by inducing callus growth in 2 types of MS media: first medium supplemented with 0.5 mg L^-1 6-benzylaminopurine (6-BA), 0.5 mg L^-1 gibberellic acid (GA3), 1.0 mg L^-1 thidiazuron (TDZ), and 0.1 mg L^-1 2,4-D, and the second medium supplemented with 0.5 mg L^-1 6-BA, 0.5 mg L^-1 GA3, 2.0 mg L^-1 TDZ, and 0.02 mg L^-1 indole butyric acid (1BA). Analysis of gene sequences of 17 RTs revealed that none of them contained stop codons and/or indels disrupting the reading frame. These different stress-origin transcriptionally active RTs were remarkably similar to each other- FATEXP2-8 and FATEYS9-7 showed 100% sequence identity. Analysis of pylogenetic of these transcriptionally active RTs and the RT sequences from genome showed that there were close phylogenetic relationships of most of the transcriptionally active RTs. The results of this study have contributed to the background information necessary for future studies for evaluating the relationship between retrotransposons and somaclonal variation.
文摘Hepatocellular carcinoma is one of the most common cancers worldwide,and a leading cause of cancer-related death.Owing to unsatisfactory clinical outcomes under the current standard of care,there is a need to search for and identify novel and potent therapeutic targets to improve patient outcomes.Sorafenib is the first and only approved targeted therapy for the treatment of hepatocellular carcinoma.Besides functioning as a multiple tyrosine kinase,sorafenib also acts via a kinase-independent mechanism to target signal transducer and activator of transcription 3(STAT3) signaling in hepatocellular carcinoma cells.STAT3 is a key regulator of inflammation,cell survival,and tumorigenesis of liver cells,and the high percentage of hepatocellular carcinoma cells with constitutively active STAT3 justifies targeting it for the development of novel therapeutics.Sorafenib inactivates STAT3 and STAT3-related signaling by inducing a conformational change in and releasing the autoinhibition of Src homology region 2 domaincontaining phosphatase-1.This phosphatase negatively regulates STAT3 activity,which leads to the subsequent apoptosis of cancer cells.The novel anti-cancer property of sorafenib will be discussed in this review,not only adding information regarding its mechanism of action but also providing an innovative approach for the development of cancer therapeutics in the future.
文摘Signal transducer and activator of transcription(STAT)is a unique protein family that binds to DNA,coupled with tyrosine phosphorylation signaling pathways,acting as a transcriptional regulator to mediate a variety of biological effects.Cerebral ischemia and reperfusion can activate STATs signaling pathway,but no studies have confirmed whether STAT activation can be verified by diffusion-weighted magnetic resonance imaging(DWI)in rats after cerebral ischemia/reperfusion.Here,we established a rat model of focal cerebral ischemia injury using the modified Longa method.DWI revealed hyperintensity in parts of the left hemisphere before reperfusion and a low apparent diffusion coefficient.STAT3 protein expression showed no significant change after reperfusion,but phosphorylated STAT3 expression began to increase after 30 minutes of reperfusion and peaked at 24 hours.Pearson correlation analysis showed that STAT3 activation was correlated positively with the relative apparent diffusion coefficient and negatively with the DWI abnormal signal area.These results indicate that DWI is a reliable representation of the infarct area and reflects STAT phosphorylation in rat brain following focal cerebral ischemia/reperfusion.
基金supported by NIH R21AR57156NIH R37 CA49152+4 种基金the Rhode Island Hospital Orthopaedic Foundationgrant from the Pediatric Orthopaedic Society of North AmericaArthritis National Research Foundationrecipient of Ryan Fellowshippilot award recipient from NIGMS1P20 GM119943
文摘Chondrocytes and osteoblasts differentiate from a common mesenchymal precursor, the osteochondroprogenitor(OCP), and help build the vertebrate skeleton. The signaling pathways that control lineage commitment for OCPs are incompletely understood. We asked whether the ubiquitously expressed protein-tyrosine phosphatase SHP2(encoded by Ptpn11) affects skeletal lineage commitment by conditionally deleting Ptpn11 in mouse limb and head mesenchyme using "Cre-lox P"-mediated gene excision.SHP2-deficient mice have increased cartilage mass and deficient ossification, suggesting that SHP2-deficient OCPs become chondrocytes and not osteoblasts. Consistent with these observations, the expression of the master chondrogenic transcription factor SOX9 and its target genes Acan, Col2a1, and Col10a1 were increased in SHP2-deficient chondrocytes, as revealed by gene expression arrays, q RT-PCR, in situ hybridization, and immunostaining. Mechanistic studies demonstrate that SHP2 regulates OCP fate determination via the phosphorylation and SUMOylation of SOX9, mediated at least in part via the PKA signaling pathway. Our data indicate that SHP2 is critical for skeletal cell lineage differentiation and could thus be a pharmacologic target for bone and cartilage regeneration.
基金the Strategic Priority Research Program of Chinese Academy of Sciences(Grant No.XDC02040300)for this study.
文摘RFID-based human activity recognition(HAR)attracts attention due to its convenience,noninvasiveness,and privacy protection.Existing RFID-based HAR methods use modeling,CNN,or LSTM to extract features effectively.Still,they have shortcomings:1)requiring complex hand-crafted data cleaning processes and 2)only addressing single-person activity recognition based on specific RF signals.To solve these problems,this paper proposes a novel device-free method based on Time-streaming Multiscale Transformer called TransTM.This model leverages the Transformer's powerful data fitting capabilities to take raw RFID RSSI data as input without pre-processing.Concretely,we propose a multiscale convolutional hybrid Transformer to capture behavioral features that recognizes singlehuman activities and human-to-human interactions.Compared with existing CNN-and LSTM-based methods,the Transformer-based method has more data fitting power,generalization,and scalability.Furthermore,using RF signals,our method achieves an excellent classification effect on human behaviorbased classification tasks.Experimental results on the actual RFID datasets show that this model achieves a high average recognition accuracy(99.1%).The dataset we collected for detecting RFID-based indoor human activities will be published.
基金supported by National Natural Science Foundation of China(grant number 42101318)the National Key R&D Program of China(grant number 2018YFD1100101)。
文摘Ozone(O_(3))pollution has a profound impact on human health,vegetation development,and the ecological environment,making it a critical focus of global academic research.In recent years,O_(3)pollution in China has been on a steady rise,with ozone emerging as the sole conventional pollutant to consistently increase in concentration without any decline.This study conducted a quantitative analysis of O_(3)concentrations across 367 Chinese cities in 2019,examining spatial autocorrelation and local clustering of O_(3)levels,and investigated the diverse relationships between human activity factors and O_(3)concentration.The seasonal fluctuation of O_(3)exhibited the“M-type”pattern,with peak concentrations in winter and the lowest levels in summer.The center of O_(3)pollution migrated southeastward,with the area of highest concentration progressively shifting south along the eastern coast.Moreover,O_(3)concentration showed a strong positive correlation with population density,road freight volume,and industrial emissions,suggesting that human activities,vehicle emissions,and industrial operations are significant contributors to O_(3)production.The results provide comprehensive information on the characteristics,causes,and occurrence mechanism of O_(3)in Chinese cities that can be utilized by global government departments to formulate strategies to prevent and control O_(3)pollution.
基金funded by the National Key Research and Development Program of China(Grant No.2022YFF1302903).
文摘The driving effects of climate change and human activities on vegetation change have always been a focal point of research.However,the coupling mechanisms of these driving factors across different temporal and spatial scales remain controversial.The Southwestern Alpine Canyon Region of China(SACR),as an ecologically fragile area,is highly sensitive to the impacts of climate change and human activities.This study constructed a vegetation cover dataset for the SACR based on the Enhanced Vegetation Index(EVI)from 2000 to 2020.Spatial autocorrelation,Theil-Sen trend,and Mann-Kendall tests were used to analyze the spatiotemporal characteristics of vegetation cover changes.The main drivers of spatial heterogeneity in vegetation cover were identified using the optimal parameter geographic detector,and an improved residual analysis model was employed to quantify the relative contributions of climate change and human activities to interannual vegetation cover changes.The main findings are as follows:Spatially,vegetation cover exceeds 60%in most areas,especially in the southern part of the study area.However,the border area between Linzhi and Changdu exhibits lower vegetation cover.Climate factors are the primary drivers of spatial heterogeneity in vegetation cover,with temperature having the most significant influence,as indicated by its q-value,which far exceeds that of other factors.Additionally,the interaction q-value between the two factors significantly increases,showing a relationship of bivariate enhancement and nonlinear enhancement.In terms of temporal changes,vegetation cover shows an overall improving trend from 2000 to 2020,with significant increases observed in 68.93%of the study area.Among these,human activities are the main factors driving vegetation cover change,with a relative contribution rate of 41.31%,while climate change and residual factors contribute 35.66%and 23.53%,respectively.By thoroughly exploring the coupled mechanisms of vegetation change,this study provides important references for the sustainable management and conservation of the vegetation ecosystem in the SACR.
基金partially financed by the National Natural Science Foundation of China(Grant No.42201439)Natural Science Foundation of Sichuan Provincial Department of Science and Technology(Grant No.2022NSFSC1082)Key Laboratory of Smart Earth(No.KF2023YB02-12).
文摘Climate change and human activities such as overgrazing and rapid development of tourism simultaneously affected the vegetation of the Zoige Plateau.However,the spatiotemporal variations of vegetation and the relative contributions of climate change and human activities to these vegetation dynamics remain unclear.Therefore,clarifying how and why the vegetation on the Zoige Plateau changed can provide a scientific basis for the sustainable development of the region.Here,we investigate NDVI trends using the Normalized Difference Vegetation Index(NDVI)as an indicator of vegetation greenness and distinguish the relative effects of climate changes and human activities on vegetation changes by utilizing residual trend analysis and the Geodetector.We find a tendency of vegetation greening from 2001 to 2020,with significant greening accounting for 21.44%of the entire region.However,browning area expanded rapidly after 2011.Warmer temperatures are the primary driver of vegetation changes in the Zoige Plateau.Climatic variations and human activities were responsible for 65.57%and 34.43%of vegetation greening,and 39.14%and 60.86%of vegetation browning,respectively,with browning concentrated along the Yellow,Black and White Rivers.Compared to 2001-2010,the inhibitory effect of human activity and climate fluctuations on vegetation grew dramatically between 2011 and 2020.
基金This research was supported by the Tianfu Yongxing Laboratory Organized Research Project Funding(2023KJGG05)the Geological Survey Project of Xinjiang Uygur Autonomous Region Geology and Mineral Exploration and Development Bureau(XGMB202356).
文摘The Hotan Prefecture of Xinjiang Uygur Autonomous Region,China belongs to arid desert climate,with significant soil salinization issues.The study selected six rivers in Hotan Prefecture(Pishan,Qaraqash,Yurungqash,Celle,Kriya,and Niya rivers)to explore the spatial distribution of soil salinization in this area and its underlying mechanisms.Sampling was conducted along each river's watershed,from the Gobi in the upper reaches,through the anthropogenic impact area in the middle reaches,to the desert area in the lower reaches.Soil physical-chemical indicators,including total soluble salts,pH,K+,Na+,Ca2+,Mg2+,SO42-,Cl-,CO32-,HCO3-,organic matter,available nitrogen,available phosphorus,and available potassium,were tested,along with the total dissolved solids of surface water and groundwater.The results revealed that the soil water and nutrient contents in anthropogenic impact area were higher than those in Gobi and desert areas,while the pH and total soluble salts were lower than those in Gobi and desert areas.The ions in the soil of the study area were primarily Cl-,SO42-,K+,and Na+,and the ion concentration of soil salt were positively correlated with surface water and groundwater.Overall,the study area exhibited low soil water content,low clay content,infertile soil,and high soil salinization,dominated by weak to moderate chloride-sulfate types.Compared with Gobi and desert areas,the soil in anthropogenic impact area had higher soil water content,lower pH,lower soluble salts,and higher nutrients,indicating that human farming activities help mitigate salinization.These findings have practical implications for guiding the scientific prevention and control of soil salinization in the arid areas and for promoting sustainable agricultural development.