tHistone deacetylases(HDACs)are proteases that play a key role in chromosome structural modification and gene expression regulation,and the involvement of HDACs in can-cer,the nervous system,and the metabolic and immu...tHistone deacetylases(HDACs)are proteases that play a key role in chromosome structural modification and gene expression regulation,and the involvement of HDACs in can-cer,the nervous system,and the metabolic and immune system has been well reviewed.Our understanding of the function of HDACs in the vascular system has recently progressed,and a significant variety of HDAC inhibitors have been shown to be effective in the treatment of vascular diseases.However,few reviews have focused on the role of HDACs in the vascular sys-tem.In this study,the role of HDACs in the regulation of the vascular system mainly involving endothelial cells and vascular smooth muscle cells was discussed based on recent updates,and the role of HDACs in different vascular pathogenesis was summarized as well.Furthermore,the therapeutic effects and prospects of HDAC inhibitors were also addressed in this review.展开更多
Background:Vascular smooth muscle cells(VSMCs)undergo a conversion from a contractile phenotype to a proliferative synthetic phenotype,contributing to the pathogenesis of cardiovascular diseases.Semaphorin 7A(SEMA7A)i...Background:Vascular smooth muscle cells(VSMCs)undergo a conversion from a contractile phenotype to a proliferative synthetic phenotype,contributing to the pathogenesis of cardiovascular diseases.Semaphorin 7A(SEMA7A)is a glycosylphosphatidylinositol-anchored membrane protein that plays an important role in vascular homeostasis by regulating endothelial cell behaviors.However,the expression and role of SEMA7A in VSMCs remain unclear.Methods:In this study,we screened for VSMC-regulating genes in publicly available datasets and analyzed the expression of SEMA7A in human coronary artery smooth muscle cells(hCASMCs)treated with platelet-derived growth factor-BB(PDGF-BB).The effects of SEMA7A overexpression and knockdown on hCASMC proliferation and migration were examined.The signaling pathways involved in the action of SEMA7A in hCASMCs were determined.Results:Bioinformatic analysis showed that SEMA7A was significantly dysregulated in VSMCs treated with oxidized low-density lipoprotein or overexpressing progerin,a pro-atherogenic gene.The PDGF-BB stimulation led to a concentration-and time-dependent induction of SEMA7A.Depletion of SEMA7A attenuated PDGF-BB-induced hCASMC proliferation and migration.Conversely,overexpression of SEMA7A enhanced hCASMC proliferation and migration.Mechanistically,SEMA7A stimulated the activation of theβ-catenin pathway and upregulated c-Myc,CCND1,and MMP7.Knockdown ofβ-catenin impaired SEMA7A-induced hCASMC proliferation and migration.Conclusions:SEMA7A triggers phenotype switching in VSMCs through theβ-catenin signaling pathway and may serve as a potential therapeutic target for cardiovascular diseases.展开更多
Objective Vascular smooth muscle cell(VSMC)differentiation from stem cells is one source of the increasing number of VSMCs that are involved in vascular remodeling-related diseases such as hypertension,atherosclerosis...Objective Vascular smooth muscle cell(VSMC)differentiation from stem cells is one source of the increasing number of VSMCs that are involved in vascular remodeling-related diseases such as hypertension,atherosclerosis,and restenosis.MicroRNA-146a(miR-146a)has been proven to be involved in cell proliferation,migration,and tumor metabolism.However,little is known about the functional role of miR-146a in VSMC differentiation from embryonic stem cells(ESCs).This study aimed to determine the role of miR-146a in VSMC differentiation from ESCs.Methods Mouse ESCs were differentiated into VSMCs,and the cell extracts were analyzed by Western blotting and RT-qPCR.In addition,luciferase reporter assays using ESCs transfected with miR-146a/mimic and plasmids were performed.Finally,C57BL/6J female mice were injected with mimic or miR-146a-overexpressing ESCs,and immunohistochemistry,Western blotting,and RT-qPCR assays were carried out on tissue samples from these mice.Results miR-146a was significantly upregulated during VSMC differentiation,accompanied with the VSMC-specific marker genes smooth muscle-alpha-actin(SMαA),smooth muscle 22(SM22),smooth muscle myosin heavy chain(SMMHC),and h1-calponin.Furthermore,overexpression of miR-146a enhanced the differentiation process in vitro and in vivo.Concurrently,the expression of Kruppel-like factor 4(KLF4),predicted as one of the top targets of miR-146a,was sharply decreased in miR-146a-overexpressing ESCs.Importantly,inhibiting KLF4 expression enhanced the VSMC-specific gene expression induced by miR-146a overexpression in differentiating ESCs.In addition,miR-146a upregulated the mRNA expression levels and transcriptional activity of VSMC differentiation-related transcription factors,including serum response factor(SRF)and myocyte enhancer factor 2c(MEF-2c).Conclusion Our data support that miR-146a promotes ESC-VSMC differentiation through regulating KLF4 and modulating the transcription factor activity of VSMCs.展开更多
Background:Based on previous theoretical studies,JQ-1 as a common inhibitor of bromodomain and extraterminal(BET)proteins was used to treat a variety of diseases.Therefore,we aimed to explore the mechanism of action o...Background:Based on previous theoretical studies,JQ-1 as a common inhibitor of bromodomain and extraterminal(BET)proteins was used to treat a variety of diseases.Therefore,we aimed to explore the mechanism of action of JQ-1 on BET proteins based on bioinformatics and build the novel hypothesis of JQ-1 in treating atherosclerosis(AS)caused by proliferation of vascular smooth muscle cells(VSMCs).Methods:We selected the chip GSE138323 which was searched with the key words“Vascular smooth muscle cell proliferation”in Gene Expression Omnibus(GEO)database,and differential gene analysis was performed between the GRO and JQ-1 groups.Then the top twenty significantly up-regulated genes and the top twenty significantly down-regulated genes were selected for Gene Ontology(GO)and Kyoto Encyclopedia of Genes and Genomes(KEGG)enrichment analysis.Thirdly,structured the PPI network of forty differential genes,and the core genes were screened by using the MCC algorithm which in“Cytohubba”plugin in the Cytoscapev3.9.1 software.After that,single gene Gene Set Enrichment Analysis(GSEA)enrichment analysis was performed on the selected core genes in R language.Finally molecular docking validation was performed.Results:Five core genes was selected:H3C2,H3C4,H3C7,H3C10 and AREG.The GO enrichment analysis results showed that there were twenty-five entries in biological process,eight entries in cellular components(CC),and twenty-five entries in molecular function.The KEGG enrichment analysis results showed that there were seven pathways,mainly including systemic lupus erythematosus and external neutrophil trap formation.The GSEA results showed that the five genes were mainly through the regulation of cytochrome P450 metabolism,PPAR signaling pathway and other pathways.The molecular docking results showed that JQ-1 had binding activity with these five genes.Conclusions:JQ-1 may regulate the expression of the genes that H3C2,H3C4,H3C7,H3C10 and AREG,to mainly regulate the genes in cytochrome P450 metabolism,PPAR singling pathway and other pathways,to make some influence in the proliferation of VSMCs,and improved atherosclerotic symptoms due to vascular smooth muscle proliferation,thus treating cardiovascular disease.展开更多
The homocysteine (Hcy)-induced tissue factor (TF) expression in human vascular smooth muscle cells (VSMCs) and the effect of Hcy on the activity of nuclear factor-kappaB (NF-кB) and the expression of inducibl...The homocysteine (Hcy)-induced tissue factor (TF) expression in human vascular smooth muscle cells (VSMCs) and the effect of Hcy on the activity of nuclear factor-kappaB (NF-кB) and the expression of inducible nitric oxide synthase (iNOS) were investigated. Human umbilical artery VSMCs were cultured by tissue explanting method, identified by α-actin immunohistochemistry, and incubated with different concentrations of Hcy/PTDC (NF-кB inhibitor). Semi-quantitative RT-PCR was performed to detect the expression of TF mRNA in VSMCs. Flow cytometry was used to assay the expression of TF protein on the surface of VSMCs and the expression of iNOS in VSMCs. Western blot was carried out to detect the expression of NF-кB protein in nuclei. The results showed that Hcy could induce VSMCs expressing TF mRNA significantly after the VSMCs were incubated with Hcy at concentrations of 10, 100, 500 μmol/L respectively. There was low expression level of TF protein on the surface of the resting VSMCs and Hcy could also induce VSMCs expressing TF pro- tein on the cell surface in different concentrations. Additionally, Hcy could rapidly induce the activation of NF-кB and this effect could be significantly inhibited by PDTC. Hcy alone could not induce the expression of iNOS in VSMCs. It was concluded that Hcy could significantly induce the expression of TF in VSMCs and enhance the activation of NF-ΚB, subsequently mediate TF gene expression and protein synthesis. NF-кB-mediated expression of TF in VSMCs might be the important mechanism of atherosclerosis and thrombosis induced by Hcy.展开更多
BACKGROUND The development of fully functional small diameter vascular grafts requires both a properly defined vessel conduit and tissue-specific cellular populations.Mesenchymal stromal cells(MSCs) derived from the W...BACKGROUND The development of fully functional small diameter vascular grafts requires both a properly defined vessel conduit and tissue-specific cellular populations.Mesenchymal stromal cells(MSCs) derived from the Wharton's Jelly(WJ) tissue can be used as a source for obtaining vascular smooth muscle cells(VSMCs),while the human umbilical arteries(h UAs) can serve as a scaffold for blood vessel engineering.AIM To develop VSMCs from WJ-MSCs utilizing umbilical cord blood platelet lysate.METHODS WJ-MSCs were isolated and expanded until passage(P) 4. WJ-MSCs were properly defined according to the criteria of the International Society for Cell and Gene Therapy. Then, these cells were differentiated into VSMCs with the use of platelet lysate from umbilical cord blood in combination with ascorbic acid,followed by evaluation at the gene and protein levels. Specifically, gene expression profile analysis of VSMCs for ACTA2, MYH11, TGLN, MYOCD, SOX9,NANOG homeobox, OCT4 and GAPDH, was performed. In addition,immunofluorescence against ACTA2 and MYH11 in combination with DAPI staining was also performed in VSMCs. HUAs were decellularized and served as scaffolds for possible repopulation by VSMCs. Histological and biochemical analyses were performed in repopulated h UAs.RESULTS WJ-MSCs exhibited fibroblastic morphology, successfully differentiating into"osteocytes", "adipocytes" and "chondrocytes", and were characterized by positive expression(> 90%) of CD90, CD73 and CD105. In addition, WJ-MSCs were successfully differentiated into VSMCs with the proposed differentiation protocol. VSMCs successfully expressed ACTA2, MYH11, MYOCD, TGLN and SOX9. Immunofluorescence results indicated the expression of ACTA2 and MYH11 in VSMCs. In order to determine the functionality of VSMCs, h UAs were isolated and decellularized. Based on histological analysis, decellularized h UAs were free of any cellular or nuclear materials, while their extracellular matrix retained intact. Then, repopulation of decellularized h UAs with VSMCs was performed for 3 wk. Decellularized h UAs were repopulated efficiently by the VSMCs. Biochemical analysis revealed the increase of total hydroyproline and s GAG contents in repopulated h UAs with VSMCs. Specifically, total hydroxyproline and s GAG content after the 1 st, 2 nd and 3 rd wk was 71 ± 10, 74 ± 9 and 86 ± 8 μg hydroxyproline/mg of dry tissue weight and 2 ± 1, 3 ± 1 and 3 ± 1μg s GAG/mg of dry tissue weight, respectively. Statistically significant differences were observed between all study groups(P<0.05).CONCLUSION VSMCs were successfully obtained from WJ-MSCs with the proposed differentiation protocol. Furthermore, h UAs were efficiently repopulated by VSMCs. Differentiated VSMCs from WJ-MSCs could provide an alternative source of cells for vascular tissue engineering.展开更多
The eukaryotic expression of human arresten gene and its effect on the proliferation of in vitro cultured vascular smooth cells (VSMCs) in vitro were investigated. COS-7 cells were transfected with recombinant eukar...The eukaryotic expression of human arresten gene and its effect on the proliferation of in vitro cultured vascular smooth cells (VSMCs) in vitro were investigated. COS-7 cells were transfected with recombinant eukaryotic expression plasmid pSecTag2-AT or control plasmid pSecTag2 mediated by liposome. Forty-eight h after transfection, reverse transcription-polymerase chain reaction (RT-PCR) was used to detect the expression of arresten mRNA in the cells, while Western blot assay was applied to detect the expression of arresten protein in concentrated supernatant. Primary VSMCs from thoracic aorta of male Sprague-Dawley rats were cultured using the tissue explant method, and identified by immunohistochemical staining with a smooth muscle-specific anti-α- actin monoclonal antibody before serial subcuhivation. VSMCs were then co-cultured with the concentrated supernatant and their proliferation was detected using Cell Counting Kit-8 (CCK-8) in vitro. The results showed that RT-PCR revealed that the genome of arresten-transfected cells contained a 449 bp specific fragment of arresten gene, suggesting the successful transfection. Success- ful protein expression in supernatants was confirmed by Western blot. CCK-8 assay showed that the proliferation of VSMCs were inhibited significantly by arresten protein as compared with control cells (F=40. 154, P〈0.01). It was concluded that arresten protein expressed in eukaryotic cells can inhibit proliferation of VSMCs effectively in vitro, which would provide possibility to the animal experiments.展开更多
Objectives The cellular repressor of E1A-activated genes (CREG), a novel gene, was recently found to play a role in inhibiting cell growth and promoting cell differentiation. The purpose of this study was to obtain an...Objectives The cellular repressor of E1A-activated genes (CREG), a novel gene, was recently found to play a role in inhibiting cell growth and promoting cell differentiation. The purpose of this study was to obtain antibody against CREG protein and to study the expression of CREG protein in human internal thoracic artery cells (HITASY) which express different patterns of differentiation markers after serum withdrawal. Methods The open reading frame of CREG gene sequence was amplified by PCR and cloned into the pGEX-4T-1 vector. Glutathione-S-transferase (GST)-CREG fusion protein was expressed in E. Coli BL21 and purified from inclusion bodies by Sephacryl S-200 chromatography. Rabbits were immunized with the purified GST-CREG protein. Western blot examined with immunohistochemistry staining and the protein expression level was analyzed by Western blot in HITASY cells after serum removal. Results It was confirmed by using endonuclease digesting and DNA sequencing that the PCR product of CREG was correctly inserted into the vector. The GST-CREG protein was purified with gel filtration chromatography. Polyclonal antibody against GST-CREG was obtained from rabbits. CREG protein immunohistochemistry staining displayed a perinuclear distribution in the cytoplasm of HITASY cells. Results from Western blot suggested that comparing with the untreated cells upregulation of CREG polyclonal antibody against CREG was comfirmed. Using this antibody, the changes of CREG protein expression was observed in the process of phenotypic modulation of HITASY cells. These results provide basic understanding on the relationship of CREG gene with the cell phenotypic conversion.展开更多
Objective:ATP-binding cassette transporters(ABC) A1 and G1 play an important role in mediating cholesterol efflux and preventing macrophage foam cell formation. In this study, we examined the regulation of ABC tran...Objective:ATP-binding cassette transporters(ABC) A1 and G1 play an important role in mediating cholesterol efflux and preventing macrophage foam cell formation. In this study, we examined the regulation of ABC transporters by high glucose in human vascular smooth muscle cells(VSMCs), the other precursor of foam cells. Methods:Incubation of human VSMCs with D-glucose(5 to 30 mM) for 1 to 7 days in the presence or absence of antioxidant and nuclear factor(NF)- κ B inhibitors, the expressions of ABCA1 and ABCG1 were analyzed by real time PCR and Western blotting. Results:High glucose decreased ABCG1 mRNA and protein expression in cultured VSMCs, whereas the expression of ABCA1 was not significantly decreased. Down-regulation of ABCG1 mRNA expression by high glucose was abolished by antioxidant N-acetyl-L-cysteine(NAC) and NF- κ B inhibitors, BAY 11-7085 and tosyl-phenylalanine chloromethyl-ketone(TPCK). Conclusion:High glucose suppresses the expression of ABCG1 in VSMCs, which is the possible mechanism of VSMC derived foam cell transformation.展开更多
Blood vessels constitute a closed pipe system distributed throughout the body,transporting blood from the heart to other organs and delivering metabolic waste products back to the lungs and kidneys.Changes in blood ve...Blood vessels constitute a closed pipe system distributed throughout the body,transporting blood from the heart to other organs and delivering metabolic waste products back to the lungs and kidneys.Changes in blood vessels are related to many disorders like stroke,myocardial infarction,aneurysm,and diabetes,which are important causes of death worldwide.Translational research for new appro-aches to disease modeling and effective treatment is needed due to the huge socio-economic burden on healthcare systems.Although mice or rats have been widely used,applying data from animal studies to human-specific vascular physiology and pathology is difficult.The rise of induced pluripotent stem cells(iPSCs)provides a reliable in vitro resource for disease modeling,regenerative medicine,and drug discovery because they carry all human genetic information and have the ability to directionally differentiate into any type of human cells.This review summarizes the latest progress from the establishment of iPSCs,the strategies for differentiating iPSCs into vascular cells,and the in vivo trans-plantation of these vascular derivatives.It also introduces the application of these technologies in disease modeling,drug screening,and regenerative medicine.Additionally,the application of high-tech tools,such as omics analysis and high-throughput sequencing,in this field is reviewed.展开更多
Aim This study was to evaluate the effect of arsenic trioxide (As2O3) on the transgenic TNF-α promoter activity in cultured vascular smooth muscle cells (VSMCs) and THP-1 monocytes. Methods Human TNF-α promoter ...Aim This study was to evaluate the effect of arsenic trioxide (As2O3) on the transgenic TNF-α promoter activity in cultured vascular smooth muscle cells (VSMCs) and THP-1 monocytes. Methods Human TNF-α promoter was constructed by reporter gene system and was transiently transfected into VSMCs and THP-1 in vitro. The promoter activity was tested by luciferase activity with or without LPS and Ang Ⅱ stimulation, before and after different dosage of As2O3 treatment. Results 1. TNF-α promoter effectively expressed in VSMCs and THP-1 compared with CMV promoter (58.3% and 80.9%, respectively). Both LPS and Ang Ⅱ significantly up-regulated TNF-α promoter activity (P〈0.05). 2. As2O3 significantly inhibited, both intact and LPS/Ang Ⅱ stimulated promoter activity, in a dose dependent manner (P〈0.05), and in both cell type. Conclusion These results manifested that, the inhibition effect of As2O3 on the activity of human TNF-α promoter indicated its potential inhibition on pro-inflammatory cytokine genes expression at transcriptional level and its potential anti-inflammatory property in the cardiovascular system.展开更多
Objective: This study aims to investigate the effects of urocortin (Ucn) on the viability of endothelial cells (ECV304) and rat vascular muscle cells (VSMC). Methods: Rat aortic VSMC were isolated from the rats' t...Objective: This study aims to investigate the effects of urocortin (Ucn) on the viability of endothelial cells (ECV304) and rat vascular muscle cells (VSMC). Methods: Rat aortic VSMC were isolated from the rats' thoracic aorta. We studied the effect of Ucn on the viability of ECV304 cells and VSMC by using a tetrazolium (MTT) assay.Results: Ucn (10 -7 mol/L) inhibited the viability of ECV304 cells and VSMC. Inhibition rates are 13% and 15%, respectively(P<0.05, compared with Control). This inhibition was not dependent on the affecting time and was not affected by the addition of ATP-sensitive potassium channel (KATP channel) blocker, glybenclamide (Gly, 10 mol/L). Conclusion: Ucn inhibits the viability of ECV304 and VSMC. Our results suggest that Ucn may be a new vasoactive agent and may have a beneficial effect in the process of vascular remodeling (VR).展开更多
The increased proliferation and migration of vascular smooth muscle cells (VSMCs) are key events in the development of atherosclerotic lesions. Baicalin, an herb-derived flavonoid compound, has been previously shown...The increased proliferation and migration of vascular smooth muscle cells (VSMCs) are key events in the development of atherosclerotic lesions. Baicalin, an herb-derived flavonoid compound, has been previously shown to induce apoptosis and growth inhibition in cancer cells through multiple pathways. However, the potential role of baicalin in regulation of VSMC proliferation and prevention of cardiovascular diseases remains unexplored. In this study, we show that pretreatment with baicalin has a dose-dependent inhibitory effect on PDGF-BB-stimulated VSMC pro- liferation, accompanied with the reduction of proliferating cell nuclear antigen (PCNA) expression. We also show that baicalin-induced growth inhibition is associated with a decrease in cyclin E-CDK2 activation and increase in p27 level in PDGF-stimulated VSMCs, which appears to be at least partly mediated by blockade of PDGF recep- tor [~ (PDGFR~)-extracellular signal-regulated kinase 1/2 (ERK1/2) signaling. In addition, baicalin was also found to inhibit adhesion molecule expression and cell migration induced by PDGF-BB in VSMCs. Furthermore, using an animal carotid arterial balloon-injury model, we found that baicalin significantly inhibited neointimal hyperplasia. Taken together, our results reveal a novel function of baicalin in inducing growth arrest of PDGF-stimulated VSMCs and suppressing neointimal hyperplasia after balloon injury, and suggest that the underlying mechanism involves the inhibition of cyclin E-CDK2 activation and the increase in p27 accumulation via blockade of the PDGFR^-ERK1/2 signaling cascade.展开更多
To investigate the influence of osteopontin (OPN) short hairpin RNA (shRNA) on the proliferation and activity of rat vascular smooth muscle cells (VSMCs), the expressing vector of shRNA targeting OPN was constru...To investigate the influence of osteopontin (OPN) short hairpin RNA (shRNA) on the proliferation and activity of rat vascular smooth muscle cells (VSMCs), the expressing vector of shRNA targeting OPN was constructed and transferred into the rat VSMCs. After amplification and purification, pGenesil-1/OPNshRNA1 (PG1), pGenesil-1/OPNshRNA2 (PG2) and pGenesil-1/OPNshRNAHK (PGH) were transfected into the cultured rat VSMC by LipofectamineTM 2000. Transfected cells were visualized by using an inverted fluorescent microscope. VSMCs transfected by optimal recombined plasmid was selected by culturing in G418 48 h later. Nude cells and cells transfected by PGH were used as control. The expression levels of OPN mRNA and protein were assayed by RT-PCR and Western blotting. The OPN of VSMCs was suppressed by transfection of optimal recombined plasmid, and the changes in cell proliferation, adhesion and motility were evaluated by MTT, adhesion test and transwell chamber test. Levels of type I and Ⅲ collagen were measured with ELISA kit. Our results showed that VSMCs stably transfected by OPN shRNA accounted for over 50% of total cells. OPN mRNA and protein were reduced by 81% and 67% (P〈0.01) by PG1, 73% and 52% (P〈0.01) by PG2, respectively while no change was found in PGH and non-treated VSMCs. PG1 significantly suppressed the proliferation, adhesion, mobility of VSMCs and reduced the amount of type Ⅰ and Ⅲ collagen. It is concluded that recombinant plasmid can be success-fully transfected into VSMCs by LipofectamineTM 2000 and inhibit the expression of OPN. The proliferation, adhesion and mobility of VSMCs can be inhibited by knocking down OPN expression. Moreover, the transferring capability of cells is attenuated, and the secretion of type Ⅰ and Ⅲ collagen is inhibited aftter knocking-down of OPN expression. The study provides experimental evidence for clinical prevention of restenosis after percutaneous coronary intervention (PCI) by RNA interference (RNAi) technology.展开更多
Objective To investigate the effects of saponins from Anemarrhena asphodeloides Bunge (SAaB) (Botanical Name: Anemarrhena Asphodeloidis Rhizoma) on the growth of vascular smooth muscle cells (VSMCs). Methods Ce...Objective To investigate the effects of saponins from Anemarrhena asphodeloides Bunge (SAaB) (Botanical Name: Anemarrhena Asphodeloidis Rhizoma) on the growth of vascular smooth muscle cells (VSMCs). Methods Cell proliferation was measured by a newly developed cell proliferation reagent, WST-1. Cell apoptosis was assayed by flow cytometry through detecting annexin V. Nitric oxide production was evaluated using confocal laser scanning microscopy with diaminofluorescein diacetate (DAF-2, DA). Cell aldose reductase (AR) activity, as well as the effect of Epalrestat and interleukin-1β were also explored. Results WST assay showed that cell proliferation induced by serum was significantly inhibited by SAaB (P〈0.01). Flow cytometry analysis revealed that SAaB could enhance apoptotic rate of VSMCs (P〈0.01). Nitric oxide production was significantly enhanced after administration of SAaB and interleukin-Iβ Moreover, AR activity of VSMCs was also remarkably inhibited by both SAaB and Epalrestat (P〈 0.01). Conclusion SAaB can inhibit proliferation and enhance apoptosis of VSMCs. It may protect vascular cells by inhibiting VSMC proliferation and augmenting apoptotic rate of VSMCs via NO-dependent pathway.展开更多
Summary: The main pathogenesis of saphenous vein graft neointimal hyperplasia after coronary artery bypass grafting (CABG) is inflammation-caused migration and proliferation of vascular smooth muscle cells (VSMCs...Summary: The main pathogenesis of saphenous vein graft neointimal hyperplasia after coronary artery bypass grafting (CABG) is inflammation-caused migration and proliferation of vascular smooth muscle cells (VSMCs). Janus kinase 2/signal transducer and activators of transcription 3 (JAK2/STAT3) path- way is an important signaling pathway through which VSMCs phenotype conversion occurs. Suppressor of cytokine signaling 3 (SOCS3) is the classic negative feedback inhibitor of JAK2/STAT3 pathway. Growing studies show that SOCS3 plays an important anti-inflammatory role in numerous autoimmune diseases, inflammatory diseases and inflammation-related tumors. However, the effect and mechanism of SOCS3 on vein graft disease is unclear. The purpose of this study was to investigate the effects of SOCS3 on the inflammation, migration and proliferation of VSMCs in vitro and the mechanism. The small interference RNA plasmid targeting rat SOCS3 (SiRNA-rSOCS3) and the recombinant adenovirus vector carrying rat SOCS3 gene (pYrAd-rSOCS3) were constructed, and the empty plamid (SiRNA-control) and vector (pYrAd-GFP) only carrying GFP reported gene were constructed as control. The rat VSMCs were cultured. There were two large groups of A (SOCS3 up-regulated): control group, IL-6/IFN-γ group, IL-6/IFN-γ+pYrAd-rSOCS3 group, IL-6/IFN-γ+pYrAd-GFP group; and B (SOCS3 down-regulated): control group, IL-6/IFN-γ group, IL-6/IFN-γ+SiRNA-rSOCS3 group and IL-6/IFN -T+SiRNA-control group. The pYrAd-rSOCS3 and SiRNA-rSOCS3 were transfected into VSMCs in- duced by IL-6/IFN-γ. After 24 h, real-time reverse transcription polymerase chain reaction (RT-PCR) and Western blotting were used to detect the mRNA and protein expression of SOCS3, STAT3 (only by Western blotting), P-STAT3 (only by Western blotting), IL-1β, IL-6, TNF-α, MCP-1 and ICAM-1. The MTT, Transwell assay and flow cytometry were used to examine VSMCs proliferation, migration and cell cycle progression, respectively. As compared with control group, the mRNA and protein expression of SOCS3, STAT3, P-STAT3, IL-1β, IL-6, TNF-α, MCP-1 and ICAM-1 was significantly up-regulated in VSMCs stimulated by IL-6/IFN-γ. However, in VSMCs transfected with pYrAd-rSOCS3 before stimulation with IL-6/IFN-γ, the expression of SOCS3 mRNA and protein was further up-regulated, and that of STAT3, P-STAT3, IL-1β, IL-6, TNF-α, MCP-1 and ICAM-1 was significantly down-regulated as compared with IL-6/IFN-γ group and IL-6/IFN-γ+pYrAd-GFP group. The expression of those re- lated-cytokines in IL-6/IFN-γ+SiRNA-rSOCS3 group was markedly increased as compared with IL-6/IFN-γ group and IL-6/IFN-γ+SiRNA-control group. The absorbance (A) values, the number of cells migrating to the lower chamber, and percentage of cells in the G2/M+S phase were increased in VSMCs stimulated by IL-6/IFN-γ. In VSMCs incubated with pYrAd-rSOCS3 or SiRNA-rSOCS3 be- fore IL-6/IFN-γ stimulation, the A values, the number of cells migrating to the lower chamber, and the percentage of cells in the G2/M+S phase were significantly decreased, and increased respectively. These results imply that IL-6/IFN-γ, strong inflammatory stimulators, can promote transformation of VSMCs phenotype form a quiescent contractile state to a synthetic state by activating JAK2/STAT3 pathway. Over-expresssed SOCS3 might inhibit pro-inflammatory effect, migration and growth of VSMCs by blocking STAT3 activation and phosphorylation. These data in vitro confirm that SOCS3 may play a negatively regulatory role in development and progression of vein graft failure. These conclusions can provide a novel strategy for clinical treatment of vein graft diseases and a new theoretic clue for related drug development.展开更多
BACKGROUND: The highly specific vascular endothelialgrowth factor (VEGF) induces the growth of vascular en-dothelial cell. This study was to construct the eukaryoticexpression plasmid of vascular endothelial growth fa...BACKGROUND: The highly specific vascular endothelialgrowth factor (VEGF) induces the growth of vascular en-dothelial cell. This study was to construct the eukaryoticexpression plasmid of vascular endothelial growth factorl65(VEGF165) and observe its expression in vascular smoothmuscles (VSMCs).METHODS: The primers were designed and synthesizedaccording to the gene sequences of human VEGF165. TheVEGF165 gene was obtained from umbilic artery tissue bythe method of RT-PCR, then it was cloned to eukaryoticexpression plasmid pBudCE4.1 by recombination strategy.The eukaryotic expression plasmid named pBudCE4.1/VEGF165 was identified by restriction enzyme digestion,and was sequenced. The pBudCE4.1/VEGF165 was trans-fected into VSMCs by using lipofection. The VEGF165 ex-pression of mRNA and protein was detected by RT-PCRand Western blot respectively.RESULTS: VEGF165 was shown about 576bp by RT-PCR.Sequencing revealed the amplified VEGF165 gene was iden-tical with that in the GeneBank. Restrictive enzyme (HindBam HI) digestion analysis showed that recombinantexpression plasmid pBudCE4. l/tVEGF165 had been con-structed successfully. The expression of VEGF165 at mRNAand protein levels in the transformed VSMCs had beendemonstrated by RT-PCR and Western blot.CONCLUSIONS: The recombinant eukaryotic expressionplasmid pBudCE4.1/VEGF165 has been successfully con-structed and expressed in transformed VSMCs. The presentstudy has laid a foundation for VEGF165 gene therapy ofvascular stenosis in the transplant organ.展开更多
Objective:To explore effect of high glucose on expression of osteoprotegerin(OPG) and receptor activator of NF- κB ligand(RANKL) in rat aortic vascular smooth muscle cells.Methods:SD rats were intraperitoneally injec...Objective:To explore effect of high glucose on expression of osteoprotegerin(OPG) and receptor activator of NF- κB ligand(RANKL) in rat aortic vascular smooth muscle cells.Methods:SD rats were intraperitoneally injected with streptozotocin,OPG and RANKL expression in rat thoracic aortas were detected by immunohistochemical staining.In cultured vascular smooth muscle cells(VSMCs)(A7r5),qRT-PCR and Western blot analysis were used to examine the mRNA and protein levels of OPG and RANKL.Results:Our results demonstrated that OPG expression was increased in hyperglycemic rat aortic VSMCs.while RANKL expression was decreased.Besides,in vitro experiments high glucose induced OPG expression,but depressed RANKL expression by dose- and time-dependent manner in cultured A7r5.Conclusions:Our findings suggested that high glucose could promote the expression of OPG,and inhibit the expression of RANKL in VSMCs,which may be partly be the molecular mechanism of diabetic vascular calcification.展开更多
Objective: To observe the effect of Yangxueqingnao particles on rat vascular smooth muscle cell (VSMC) prolif- eration induced by lysophosphatidic acid (LPA). Methods: The amount of 3H-TdR (3H-thymidine) admixed in cu...Objective: To observe the effect of Yangxueqingnao particles on rat vascular smooth muscle cell (VSMC) prolif- eration induced by lysophosphatidic acid (LPA). Methods: The amount of 3H-TdR (3H-thymidine) admixed in cultured rat VSMC was measured and mitogen-activated protein kinase (MAPK) activity and lipid peroxidation end product malondialdehyde (MDA) content of the VSMC were assayed. Results: 1×10?9, 1×10?8, 1×10?7 mol/L LPA in a concentration dependent manner, induced the amount of 3H-TdR admixed, MAP kinase activity, and MDA content of the cultured rat VSMC to increase. However, 5%, 10%, and 15% Yangxueqingnao serum preincubation resulted in a decrease of 23.0%, 42.0%, and 52.0% (P<0.01) respectively in the amount of 3H-TdR admixed, a decline in VSMC MAP kinase activity of 13.9% (P<0.05), 29.6% (P<0.01), and 48.9% (P<0.01) respectively, and also, a decrease in MDA content of VSMC of 19.4%, 24.7%, and 43.2% (P<0.01) respectively, in the 1×10?7 mol/L LPA-treated VSMC. Conclusions: LPA activates the proliferation and lipid peroxidation of VSMC in a concentration dependent manner. The LPA-induced VSMC proliferation is related to the activity of MAP kinases, enzymes involved in an intracellular signalling pathway. The results of the present study showed that Yangxueqingnao particles can effectively inhibit LPA-induced VSMC proliferation, MAP kinase activation, and reduce lipid peroxidative lesion.展开更多
Angiotensin Ⅱ (ANGⅡ) plays an important role in the pathogenesis of atherosclerosis by inducing proliferation of vascular smooth muscle cells (VSMCs).In our study,we observed the effects of valsartan on proliferatio...Angiotensin Ⅱ (ANGⅡ) plays an important role in the pathogenesis of atherosclerosis by inducing proliferation of vascular smooth muscle cells (VSMCs).In our study,we observed the effects of valsartan on proliferation of cultured VSMCs treated with or without ANGⅡ by cell counting and methyl thiazolyl tetrazolium (MTT) assay,and detected the expression of mitofusin 2 (Mfn2),a newly discovered cell proliferation inhibitor and a related cell proliferation signaling pathway pro-tein by Western blotting.ANGⅡ at a concentration of 10-6 mol/L significantly stimulated VSMCs proliferation,down-regulated the expression of Mfn2 and upregulated the expression of Raf and ERK1/2.Valsartan inhibited such effects of ANGⅡ at concentrations of 10-5 and 10-6 mol/L,but not at 10-7 mol/L.Valsartan had no significant effect on the proliferation of untreated VSMCs.These results suggest that valsartan inhibits ANGⅡ-induced proliferation of VSMCs in vitro via Mfn2-Ras-Raf-ERK/MAPK signaling pathway.展开更多
基金supported by the National Natural Science Foundation of China (No.82103508,82203758)Natural Science Foundation of Shaanxi Province (China) (No.SZYKJCYC-2023-028)+3 种基金the Science and Technology Development Incubation Fund of Shaanxi Provincial People's Hospital,Shaanxi,China (No.2021YJY-21)the Project of Tangdu Hospital,the Air Force Medical University,Shaanxi,China (No.XJSXYW202130,XJSXYW-2023015,2021LCYJ019)the Project of Air Foce Medical University,Shaanxi,China (No.2022LC2227)the Talent Support Program of Shaanxi Provincial People's Hospital,Shaanxi,China (No.2022JY-38).
文摘tHistone deacetylases(HDACs)are proteases that play a key role in chromosome structural modification and gene expression regulation,and the involvement of HDACs in can-cer,the nervous system,and the metabolic and immune system has been well reviewed.Our understanding of the function of HDACs in the vascular system has recently progressed,and a significant variety of HDAC inhibitors have been shown to be effective in the treatment of vascular diseases.However,few reviews have focused on the role of HDACs in the vascular sys-tem.In this study,the role of HDACs in the regulation of the vascular system mainly involving endothelial cells and vascular smooth muscle cells was discussed based on recent updates,and the role of HDACs in different vascular pathogenesis was summarized as well.Furthermore,the therapeutic effects and prospects of HDAC inhibitors were also addressed in this review.
基金supported by the Basic Research Program of Shanxi Province(Free Exploration)of China(20210302124416)Science and Technology Grant for Selected Returned Chinese Scholars of Shanxi Province of China(20220043)Four“Batches”Innovation Project of Invigorating Medical through Science and Technology of Shanxi Province of China(2022XM08).
文摘Background:Vascular smooth muscle cells(VSMCs)undergo a conversion from a contractile phenotype to a proliferative synthetic phenotype,contributing to the pathogenesis of cardiovascular diseases.Semaphorin 7A(SEMA7A)is a glycosylphosphatidylinositol-anchored membrane protein that plays an important role in vascular homeostasis by regulating endothelial cell behaviors.However,the expression and role of SEMA7A in VSMCs remain unclear.Methods:In this study,we screened for VSMC-regulating genes in publicly available datasets and analyzed the expression of SEMA7A in human coronary artery smooth muscle cells(hCASMCs)treated with platelet-derived growth factor-BB(PDGF-BB).The effects of SEMA7A overexpression and knockdown on hCASMC proliferation and migration were examined.The signaling pathways involved in the action of SEMA7A in hCASMCs were determined.Results:Bioinformatic analysis showed that SEMA7A was significantly dysregulated in VSMCs treated with oxidized low-density lipoprotein or overexpressing progerin,a pro-atherogenic gene.The PDGF-BB stimulation led to a concentration-and time-dependent induction of SEMA7A.Depletion of SEMA7A attenuated PDGF-BB-induced hCASMC proliferation and migration.Conversely,overexpression of SEMA7A enhanced hCASMC proliferation and migration.Mechanistically,SEMA7A stimulated the activation of theβ-catenin pathway and upregulated c-Myc,CCND1,and MMP7.Knockdown ofβ-catenin impaired SEMA7A-induced hCASMC proliferation and migration.Conclusions:SEMA7A triggers phenotype switching in VSMCs through theβ-catenin signaling pathway and may serve as a potential therapeutic target for cardiovascular diseases.
基金funded by the National Natural Science Foundation of China(No.82070376 and No.81873491)the Natural Science Foundation of Zhejiang Province(No.LY21H020005)+1 种基金the Zhejiang Medical Science and Technology Project(No.2019KY376 and No.2018KY071)a Ningbo Science and Technology Project(No.202002N3173).
文摘Objective Vascular smooth muscle cell(VSMC)differentiation from stem cells is one source of the increasing number of VSMCs that are involved in vascular remodeling-related diseases such as hypertension,atherosclerosis,and restenosis.MicroRNA-146a(miR-146a)has been proven to be involved in cell proliferation,migration,and tumor metabolism.However,little is known about the functional role of miR-146a in VSMC differentiation from embryonic stem cells(ESCs).This study aimed to determine the role of miR-146a in VSMC differentiation from ESCs.Methods Mouse ESCs were differentiated into VSMCs,and the cell extracts were analyzed by Western blotting and RT-qPCR.In addition,luciferase reporter assays using ESCs transfected with miR-146a/mimic and plasmids were performed.Finally,C57BL/6J female mice were injected with mimic or miR-146a-overexpressing ESCs,and immunohistochemistry,Western blotting,and RT-qPCR assays were carried out on tissue samples from these mice.Results miR-146a was significantly upregulated during VSMC differentiation,accompanied with the VSMC-specific marker genes smooth muscle-alpha-actin(SMαA),smooth muscle 22(SM22),smooth muscle myosin heavy chain(SMMHC),and h1-calponin.Furthermore,overexpression of miR-146a enhanced the differentiation process in vitro and in vivo.Concurrently,the expression of Kruppel-like factor 4(KLF4),predicted as one of the top targets of miR-146a,was sharply decreased in miR-146a-overexpressing ESCs.Importantly,inhibiting KLF4 expression enhanced the VSMC-specific gene expression induced by miR-146a overexpression in differentiating ESCs.In addition,miR-146a upregulated the mRNA expression levels and transcriptional activity of VSMC differentiation-related transcription factors,including serum response factor(SRF)and myocyte enhancer factor 2c(MEF-2c).Conclusion Our data support that miR-146a promotes ESC-VSMC differentiation through regulating KLF4 and modulating the transcription factor activity of VSMCs.
基金supported by a grant from Key Project of Education Commission of Hubei Province(D20202802)Hubei Key Laboratory of Diabetes and Angiopathy Program(2020XZ10)of Hubei University of Science.
文摘Background:Based on previous theoretical studies,JQ-1 as a common inhibitor of bromodomain and extraterminal(BET)proteins was used to treat a variety of diseases.Therefore,we aimed to explore the mechanism of action of JQ-1 on BET proteins based on bioinformatics and build the novel hypothesis of JQ-1 in treating atherosclerosis(AS)caused by proliferation of vascular smooth muscle cells(VSMCs).Methods:We selected the chip GSE138323 which was searched with the key words“Vascular smooth muscle cell proliferation”in Gene Expression Omnibus(GEO)database,and differential gene analysis was performed between the GRO and JQ-1 groups.Then the top twenty significantly up-regulated genes and the top twenty significantly down-regulated genes were selected for Gene Ontology(GO)and Kyoto Encyclopedia of Genes and Genomes(KEGG)enrichment analysis.Thirdly,structured the PPI network of forty differential genes,and the core genes were screened by using the MCC algorithm which in“Cytohubba”plugin in the Cytoscapev3.9.1 software.After that,single gene Gene Set Enrichment Analysis(GSEA)enrichment analysis was performed on the selected core genes in R language.Finally molecular docking validation was performed.Results:Five core genes was selected:H3C2,H3C4,H3C7,H3C10 and AREG.The GO enrichment analysis results showed that there were twenty-five entries in biological process,eight entries in cellular components(CC),and twenty-five entries in molecular function.The KEGG enrichment analysis results showed that there were seven pathways,mainly including systemic lupus erythematosus and external neutrophil trap formation.The GSEA results showed that the five genes were mainly through the regulation of cytochrome P450 metabolism,PPAR signaling pathway and other pathways.The molecular docking results showed that JQ-1 had binding activity with these five genes.Conclusions:JQ-1 may regulate the expression of the genes that H3C2,H3C4,H3C7,H3C10 and AREG,to mainly regulate the genes in cytochrome P450 metabolism,PPAR singling pathway and other pathways,to make some influence in the proliferation of VSMCs,and improved atherosclerotic symptoms due to vascular smooth muscle proliferation,thus treating cardiovascular disease.
文摘The homocysteine (Hcy)-induced tissue factor (TF) expression in human vascular smooth muscle cells (VSMCs) and the effect of Hcy on the activity of nuclear factor-kappaB (NF-кB) and the expression of inducible nitric oxide synthase (iNOS) were investigated. Human umbilical artery VSMCs were cultured by tissue explanting method, identified by α-actin immunohistochemistry, and incubated with different concentrations of Hcy/PTDC (NF-кB inhibitor). Semi-quantitative RT-PCR was performed to detect the expression of TF mRNA in VSMCs. Flow cytometry was used to assay the expression of TF protein on the surface of VSMCs and the expression of iNOS in VSMCs. Western blot was carried out to detect the expression of NF-кB protein in nuclei. The results showed that Hcy could induce VSMCs expressing TF mRNA significantly after the VSMCs were incubated with Hcy at concentrations of 10, 100, 500 μmol/L respectively. There was low expression level of TF protein on the surface of the resting VSMCs and Hcy could also induce VSMCs expressing TF pro- tein on the cell surface in different concentrations. Additionally, Hcy could rapidly induce the activation of NF-кB and this effect could be significantly inhibited by PDTC. Hcy alone could not induce the expression of iNOS in VSMCs. It was concluded that Hcy could significantly induce the expression of TF in VSMCs and enhance the activation of NF-ΚB, subsequently mediate TF gene expression and protein synthesis. NF-кB-mediated expression of TF in VSMCs might be the important mechanism of atherosclerosis and thrombosis induced by Hcy.
文摘BACKGROUND The development of fully functional small diameter vascular grafts requires both a properly defined vessel conduit and tissue-specific cellular populations.Mesenchymal stromal cells(MSCs) derived from the Wharton's Jelly(WJ) tissue can be used as a source for obtaining vascular smooth muscle cells(VSMCs),while the human umbilical arteries(h UAs) can serve as a scaffold for blood vessel engineering.AIM To develop VSMCs from WJ-MSCs utilizing umbilical cord blood platelet lysate.METHODS WJ-MSCs were isolated and expanded until passage(P) 4. WJ-MSCs were properly defined according to the criteria of the International Society for Cell and Gene Therapy. Then, these cells were differentiated into VSMCs with the use of platelet lysate from umbilical cord blood in combination with ascorbic acid,followed by evaluation at the gene and protein levels. Specifically, gene expression profile analysis of VSMCs for ACTA2, MYH11, TGLN, MYOCD, SOX9,NANOG homeobox, OCT4 and GAPDH, was performed. In addition,immunofluorescence against ACTA2 and MYH11 in combination with DAPI staining was also performed in VSMCs. HUAs were decellularized and served as scaffolds for possible repopulation by VSMCs. Histological and biochemical analyses were performed in repopulated h UAs.RESULTS WJ-MSCs exhibited fibroblastic morphology, successfully differentiating into"osteocytes", "adipocytes" and "chondrocytes", and were characterized by positive expression(> 90%) of CD90, CD73 and CD105. In addition, WJ-MSCs were successfully differentiated into VSMCs with the proposed differentiation protocol. VSMCs successfully expressed ACTA2, MYH11, MYOCD, TGLN and SOX9. Immunofluorescence results indicated the expression of ACTA2 and MYH11 in VSMCs. In order to determine the functionality of VSMCs, h UAs were isolated and decellularized. Based on histological analysis, decellularized h UAs were free of any cellular or nuclear materials, while their extracellular matrix retained intact. Then, repopulation of decellularized h UAs with VSMCs was performed for 3 wk. Decellularized h UAs were repopulated efficiently by the VSMCs. Biochemical analysis revealed the increase of total hydroyproline and s GAG contents in repopulated h UAs with VSMCs. Specifically, total hydroxyproline and s GAG content after the 1 st, 2 nd and 3 rd wk was 71 ± 10, 74 ± 9 and 86 ± 8 μg hydroxyproline/mg of dry tissue weight and 2 ± 1, 3 ± 1 and 3 ± 1μg s GAG/mg of dry tissue weight, respectively. Statistically significant differences were observed between all study groups(P<0.05).CONCLUSION VSMCs were successfully obtained from WJ-MSCs with the proposed differentiation protocol. Furthermore, h UAs were efficiently repopulated by VSMCs. Differentiated VSMCs from WJ-MSCs could provide an alternative source of cells for vascular tissue engineering.
基金This project was supported by a grant from National Natu-ral Sciences Foundation of China ( No . 30371396 ,30271242)
文摘The eukaryotic expression of human arresten gene and its effect on the proliferation of in vitro cultured vascular smooth cells (VSMCs) in vitro were investigated. COS-7 cells were transfected with recombinant eukaryotic expression plasmid pSecTag2-AT or control plasmid pSecTag2 mediated by liposome. Forty-eight h after transfection, reverse transcription-polymerase chain reaction (RT-PCR) was used to detect the expression of arresten mRNA in the cells, while Western blot assay was applied to detect the expression of arresten protein in concentrated supernatant. Primary VSMCs from thoracic aorta of male Sprague-Dawley rats were cultured using the tissue explant method, and identified by immunohistochemical staining with a smooth muscle-specific anti-α- actin monoclonal antibody before serial subcuhivation. VSMCs were then co-cultured with the concentrated supernatant and their proliferation was detected using Cell Counting Kit-8 (CCK-8) in vitro. The results showed that RT-PCR revealed that the genome of arresten-transfected cells contained a 449 bp specific fragment of arresten gene, suggesting the successful transfection. Success- ful protein expression in supernatants was confirmed by Western blot. CCK-8 assay showed that the proliferation of VSMCs were inhibited significantly by arresten protein as compared with control cells (F=40. 154, P〈0.01). It was concluded that arresten protein expressed in eukaryotic cells can inhibit proliferation of VSMCs effectively in vitro, which would provide possibility to the animal experiments.
基金The work was supported by grant from The National Natural Sciences Foundation of China (No.30070280)
文摘Objectives The cellular repressor of E1A-activated genes (CREG), a novel gene, was recently found to play a role in inhibiting cell growth and promoting cell differentiation. The purpose of this study was to obtain antibody against CREG protein and to study the expression of CREG protein in human internal thoracic artery cells (HITASY) which express different patterns of differentiation markers after serum withdrawal. Methods The open reading frame of CREG gene sequence was amplified by PCR and cloned into the pGEX-4T-1 vector. Glutathione-S-transferase (GST)-CREG fusion protein was expressed in E. Coli BL21 and purified from inclusion bodies by Sephacryl S-200 chromatography. Rabbits were immunized with the purified GST-CREG protein. Western blot examined with immunohistochemistry staining and the protein expression level was analyzed by Western blot in HITASY cells after serum removal. Results It was confirmed by using endonuclease digesting and DNA sequencing that the PCR product of CREG was correctly inserted into the vector. The GST-CREG protein was purified with gel filtration chromatography. Polyclonal antibody against GST-CREG was obtained from rabbits. CREG protein immunohistochemistry staining displayed a perinuclear distribution in the cytoplasm of HITASY cells. Results from Western blot suggested that comparing with the untreated cells upregulation of CREG polyclonal antibody against CREG was comfirmed. Using this antibody, the changes of CREG protein expression was observed in the process of phenotypic modulation of HITASY cells. These results provide basic understanding on the relationship of CREG gene with the cell phenotypic conversion.
基金supported by the National Natural Science Foundation of China(No.30570732),NCET-04-197"985 Project"of Ministry of Education,Study on molecular mechanism of vascular-related diseases and on gene function.
文摘Objective:ATP-binding cassette transporters(ABC) A1 and G1 play an important role in mediating cholesterol efflux and preventing macrophage foam cell formation. In this study, we examined the regulation of ABC transporters by high glucose in human vascular smooth muscle cells(VSMCs), the other precursor of foam cells. Methods:Incubation of human VSMCs with D-glucose(5 to 30 mM) for 1 to 7 days in the presence or absence of antioxidant and nuclear factor(NF)- κ B inhibitors, the expressions of ABCA1 and ABCG1 were analyzed by real time PCR and Western blotting. Results:High glucose decreased ABCG1 mRNA and protein expression in cultured VSMCs, whereas the expression of ABCA1 was not significantly decreased. Down-regulation of ABCG1 mRNA expression by high glucose was abolished by antioxidant N-acetyl-L-cysteine(NAC) and NF- κ B inhibitors, BAY 11-7085 and tosyl-phenylalanine chloromethyl-ketone(TPCK). Conclusion:High glucose suppresses the expression of ABCG1 in VSMCs, which is the possible mechanism of VSMC derived foam cell transformation.
文摘Blood vessels constitute a closed pipe system distributed throughout the body,transporting blood from the heart to other organs and delivering metabolic waste products back to the lungs and kidneys.Changes in blood vessels are related to many disorders like stroke,myocardial infarction,aneurysm,and diabetes,which are important causes of death worldwide.Translational research for new appro-aches to disease modeling and effective treatment is needed due to the huge socio-economic burden on healthcare systems.Although mice or rats have been widely used,applying data from animal studies to human-specific vascular physiology and pathology is difficult.The rise of induced pluripotent stem cells(iPSCs)provides a reliable in vitro resource for disease modeling,regenerative medicine,and drug discovery because they carry all human genetic information and have the ability to directionally differentiate into any type of human cells.This review summarizes the latest progress from the establishment of iPSCs,the strategies for differentiating iPSCs into vascular cells,and the in vivo trans-plantation of these vascular derivatives.It also introduces the application of these technologies in disease modeling,drug screening,and regenerative medicine.Additionally,the application of high-tech tools,such as omics analysis and high-throughput sequencing,in this field is reviewed.
基金National Natural Science Foundation of China(No.30170368)
文摘Aim This study was to evaluate the effect of arsenic trioxide (As2O3) on the transgenic TNF-α promoter activity in cultured vascular smooth muscle cells (VSMCs) and THP-1 monocytes. Methods Human TNF-α promoter was constructed by reporter gene system and was transiently transfected into VSMCs and THP-1 in vitro. The promoter activity was tested by luciferase activity with or without LPS and Ang Ⅱ stimulation, before and after different dosage of As2O3 treatment. Results 1. TNF-α promoter effectively expressed in VSMCs and THP-1 compared with CMV promoter (58.3% and 80.9%, respectively). Both LPS and Ang Ⅱ significantly up-regulated TNF-α promoter activity (P〈0.05). 2. As2O3 significantly inhibited, both intact and LPS/Ang Ⅱ stimulated promoter activity, in a dose dependent manner (P〈0.05), and in both cell type. Conclusion These results manifested that, the inhibition effect of As2O3 on the activity of human TNF-α promoter indicated its potential inhibition on pro-inflammatory cytokine genes expression at transcriptional level and its potential anti-inflammatory property in the cardiovascular system.
文摘Objective: This study aims to investigate the effects of urocortin (Ucn) on the viability of endothelial cells (ECV304) and rat vascular muscle cells (VSMC). Methods: Rat aortic VSMC were isolated from the rats' thoracic aorta. We studied the effect of Ucn on the viability of ECV304 cells and VSMC by using a tetrazolium (MTT) assay.Results: Ucn (10 -7 mol/L) inhibited the viability of ECV304 cells and VSMC. Inhibition rates are 13% and 15%, respectively(P<0.05, compared with Control). This inhibition was not dependent on the affecting time and was not affected by the addition of ATP-sensitive potassium channel (KATP channel) blocker, glybenclamide (Gly, 10 mol/L). Conclusion: Ucn inhibits the viability of ECV304 and VSMC. Our results suggest that Ucn may be a new vasoactive agent and may have a beneficial effect in the process of vascular remodeling (VR).
基金We are grateful to Dr Guan KL (Moore's Cancer Center, La Jolla, CA, USA) for the gift of pCMV-MEKca. This study was supported by the National Natural Science Foundation of China (30770787 and 90919035), the National Basic Research Program of China (2005CB523301), and the International Cooperation in Science and Technology Projects (2006DFB32460) and the Hebei Province Natural Science Foundation (C2007000831).
文摘The increased proliferation and migration of vascular smooth muscle cells (VSMCs) are key events in the development of atherosclerotic lesions. Baicalin, an herb-derived flavonoid compound, has been previously shown to induce apoptosis and growth inhibition in cancer cells through multiple pathways. However, the potential role of baicalin in regulation of VSMC proliferation and prevention of cardiovascular diseases remains unexplored. In this study, we show that pretreatment with baicalin has a dose-dependent inhibitory effect on PDGF-BB-stimulated VSMC pro- liferation, accompanied with the reduction of proliferating cell nuclear antigen (PCNA) expression. We also show that baicalin-induced growth inhibition is associated with a decrease in cyclin E-CDK2 activation and increase in p27 level in PDGF-stimulated VSMCs, which appears to be at least partly mediated by blockade of PDGF recep- tor [~ (PDGFR~)-extracellular signal-regulated kinase 1/2 (ERK1/2) signaling. In addition, baicalin was also found to inhibit adhesion molecule expression and cell migration induced by PDGF-BB in VSMCs. Furthermore, using an animal carotid arterial balloon-injury model, we found that baicalin significantly inhibited neointimal hyperplasia. Taken together, our results reveal a novel function of baicalin in inducing growth arrest of PDGF-stimulated VSMCs and suppressing neointimal hyperplasia after balloon injury, and suggest that the underlying mechanism involves the inhibition of cyclin E-CDK2 activation and the increase in p27 accumulation via blockade of the PDGFR^-ERK1/2 signaling cascade.
基金supported by a grant from the Science and Technology Foundation of Hubei Province (No.2006AA-301C18)
文摘To investigate the influence of osteopontin (OPN) short hairpin RNA (shRNA) on the proliferation and activity of rat vascular smooth muscle cells (VSMCs), the expressing vector of shRNA targeting OPN was constructed and transferred into the rat VSMCs. After amplification and purification, pGenesil-1/OPNshRNA1 (PG1), pGenesil-1/OPNshRNA2 (PG2) and pGenesil-1/OPNshRNAHK (PGH) were transfected into the cultured rat VSMC by LipofectamineTM 2000. Transfected cells were visualized by using an inverted fluorescent microscope. VSMCs transfected by optimal recombined plasmid was selected by culturing in G418 48 h later. Nude cells and cells transfected by PGH were used as control. The expression levels of OPN mRNA and protein were assayed by RT-PCR and Western blotting. The OPN of VSMCs was suppressed by transfection of optimal recombined plasmid, and the changes in cell proliferation, adhesion and motility were evaluated by MTT, adhesion test and transwell chamber test. Levels of type I and Ⅲ collagen were measured with ELISA kit. Our results showed that VSMCs stably transfected by OPN shRNA accounted for over 50% of total cells. OPN mRNA and protein were reduced by 81% and 67% (P〈0.01) by PG1, 73% and 52% (P〈0.01) by PG2, respectively while no change was found in PGH and non-treated VSMCs. PG1 significantly suppressed the proliferation, adhesion, mobility of VSMCs and reduced the amount of type Ⅰ and Ⅲ collagen. It is concluded that recombinant plasmid can be success-fully transfected into VSMCs by LipofectamineTM 2000 and inhibit the expression of OPN. The proliferation, adhesion and mobility of VSMCs can be inhibited by knocking down OPN expression. Moreover, the transferring capability of cells is attenuated, and the secretion of type Ⅰ and Ⅲ collagen is inhibited aftter knocking-down of OPN expression. The study provides experimental evidence for clinical prevention of restenosis after percutaneous coronary intervention (PCI) by RNA interference (RNAi) technology.
基金This research was supported by Economic & Trade Commission of Zhejiang Province, the Key Laboratory of Chinese Medicine Screening, Exploitation & Medicinal Effectiveness Appraisal for Cardio-cerebral Vascular & Nervous System of Zhejiang Province and the Key Laboratory for Biomedical Engineering of the National Ministry of Education, China.
文摘Objective To investigate the effects of saponins from Anemarrhena asphodeloides Bunge (SAaB) (Botanical Name: Anemarrhena Asphodeloidis Rhizoma) on the growth of vascular smooth muscle cells (VSMCs). Methods Cell proliferation was measured by a newly developed cell proliferation reagent, WST-1. Cell apoptosis was assayed by flow cytometry through detecting annexin V. Nitric oxide production was evaluated using confocal laser scanning microscopy with diaminofluorescein diacetate (DAF-2, DA). Cell aldose reductase (AR) activity, as well as the effect of Epalrestat and interleukin-1β were also explored. Results WST assay showed that cell proliferation induced by serum was significantly inhibited by SAaB (P〈0.01). Flow cytometry analysis revealed that SAaB could enhance apoptotic rate of VSMCs (P〈0.01). Nitric oxide production was significantly enhanced after administration of SAaB and interleukin-Iβ Moreover, AR activity of VSMCs was also remarkably inhibited by both SAaB and Epalrestat (P〈 0.01). Conclusion SAaB can inhibit proliferation and enhance apoptosis of VSMCs. It may protect vascular cells by inhibiting VSMC proliferation and augmenting apoptotic rate of VSMCs via NO-dependent pathway.
文摘Summary: The main pathogenesis of saphenous vein graft neointimal hyperplasia after coronary artery bypass grafting (CABG) is inflammation-caused migration and proliferation of vascular smooth muscle cells (VSMCs). Janus kinase 2/signal transducer and activators of transcription 3 (JAK2/STAT3) path- way is an important signaling pathway through which VSMCs phenotype conversion occurs. Suppressor of cytokine signaling 3 (SOCS3) is the classic negative feedback inhibitor of JAK2/STAT3 pathway. Growing studies show that SOCS3 plays an important anti-inflammatory role in numerous autoimmune diseases, inflammatory diseases and inflammation-related tumors. However, the effect and mechanism of SOCS3 on vein graft disease is unclear. The purpose of this study was to investigate the effects of SOCS3 on the inflammation, migration and proliferation of VSMCs in vitro and the mechanism. The small interference RNA plasmid targeting rat SOCS3 (SiRNA-rSOCS3) and the recombinant adenovirus vector carrying rat SOCS3 gene (pYrAd-rSOCS3) were constructed, and the empty plamid (SiRNA-control) and vector (pYrAd-GFP) only carrying GFP reported gene were constructed as control. The rat VSMCs were cultured. There were two large groups of A (SOCS3 up-regulated): control group, IL-6/IFN-γ group, IL-6/IFN-γ+pYrAd-rSOCS3 group, IL-6/IFN-γ+pYrAd-GFP group; and B (SOCS3 down-regulated): control group, IL-6/IFN-γ group, IL-6/IFN-γ+SiRNA-rSOCS3 group and IL-6/IFN -T+SiRNA-control group. The pYrAd-rSOCS3 and SiRNA-rSOCS3 were transfected into VSMCs in- duced by IL-6/IFN-γ. After 24 h, real-time reverse transcription polymerase chain reaction (RT-PCR) and Western blotting were used to detect the mRNA and protein expression of SOCS3, STAT3 (only by Western blotting), P-STAT3 (only by Western blotting), IL-1β, IL-6, TNF-α, MCP-1 and ICAM-1. The MTT, Transwell assay and flow cytometry were used to examine VSMCs proliferation, migration and cell cycle progression, respectively. As compared with control group, the mRNA and protein expression of SOCS3, STAT3, P-STAT3, IL-1β, IL-6, TNF-α, MCP-1 and ICAM-1 was significantly up-regulated in VSMCs stimulated by IL-6/IFN-γ. However, in VSMCs transfected with pYrAd-rSOCS3 before stimulation with IL-6/IFN-γ, the expression of SOCS3 mRNA and protein was further up-regulated, and that of STAT3, P-STAT3, IL-1β, IL-6, TNF-α, MCP-1 and ICAM-1 was significantly down-regulated as compared with IL-6/IFN-γ group and IL-6/IFN-γ+pYrAd-GFP group. The expression of those re- lated-cytokines in IL-6/IFN-γ+SiRNA-rSOCS3 group was markedly increased as compared with IL-6/IFN-γ group and IL-6/IFN-γ+SiRNA-control group. The absorbance (A) values, the number of cells migrating to the lower chamber, and percentage of cells in the G2/M+S phase were increased in VSMCs stimulated by IL-6/IFN-γ. In VSMCs incubated with pYrAd-rSOCS3 or SiRNA-rSOCS3 be- fore IL-6/IFN-γ stimulation, the A values, the number of cells migrating to the lower chamber, and the percentage of cells in the G2/M+S phase were significantly decreased, and increased respectively. These results imply that IL-6/IFN-γ, strong inflammatory stimulators, can promote transformation of VSMCs phenotype form a quiescent contractile state to a synthetic state by activating JAK2/STAT3 pathway. Over-expresssed SOCS3 might inhibit pro-inflammatory effect, migration and growth of VSMCs by blocking STAT3 activation and phosphorylation. These data in vitro confirm that SOCS3 may play a negatively regulatory role in development and progression of vein graft failure. These conclusions can provide a novel strategy for clinical treatment of vein graft diseases and a new theoretic clue for related drug development.
基金This study was supported by grants from the 973 National Basic ResearchProgram of China ( 2003CB515501 ) and the National Natural ScienceFoundation of China (No. 30270514).
文摘BACKGROUND: The highly specific vascular endothelialgrowth factor (VEGF) induces the growth of vascular en-dothelial cell. This study was to construct the eukaryoticexpression plasmid of vascular endothelial growth factorl65(VEGF165) and observe its expression in vascular smoothmuscles (VSMCs).METHODS: The primers were designed and synthesizedaccording to the gene sequences of human VEGF165. TheVEGF165 gene was obtained from umbilic artery tissue bythe method of RT-PCR, then it was cloned to eukaryoticexpression plasmid pBudCE4.1 by recombination strategy.The eukaryotic expression plasmid named pBudCE4.1/VEGF165 was identified by restriction enzyme digestion,and was sequenced. The pBudCE4.1/VEGF165 was trans-fected into VSMCs by using lipofection. The VEGF165 ex-pression of mRNA and protein was detected by RT-PCRand Western blot respectively.RESULTS: VEGF165 was shown about 576bp by RT-PCR.Sequencing revealed the amplified VEGF165 gene was iden-tical with that in the GeneBank. Restrictive enzyme (HindBam HI) digestion analysis showed that recombinantexpression plasmid pBudCE4. l/tVEGF165 had been con-structed successfully. The expression of VEGF165 at mRNAand protein levels in the transformed VSMCs had beendemonstrated by RT-PCR and Western blot.CONCLUSIONS: The recombinant eukaryotic expressionplasmid pBudCE4.1/VEGF165 has been successfully con-structed and expressed in transformed VSMCs. The presentstudy has laid a foundation for VEGF165 gene therapy ofvascular stenosis in the transplant organ.
基金supported by the grant from National Natural Science Foundation of China(81160020,81460042,81460070)Key Project of Chinese Ministry of Education 212137+2 种基金the gtants HJHZ2013.06 and SF201417 of Hainan ProvinceKey Program of Science and Tcchnology of Hainan Province(ZDXM20100045)partly by Programs for Changjiang Scholars and Innovative Research Team in University(IRT1119)
文摘Objective:To explore effect of high glucose on expression of osteoprotegerin(OPG) and receptor activator of NF- κB ligand(RANKL) in rat aortic vascular smooth muscle cells.Methods:SD rats were intraperitoneally injected with streptozotocin,OPG and RANKL expression in rat thoracic aortas were detected by immunohistochemical staining.In cultured vascular smooth muscle cells(VSMCs)(A7r5),qRT-PCR and Western blot analysis were used to examine the mRNA and protein levels of OPG and RANKL.Results:Our results demonstrated that OPG expression was increased in hyperglycemic rat aortic VSMCs.while RANKL expression was decreased.Besides,in vitro experiments high glucose induced OPG expression,but depressed RANKL expression by dose- and time-dependent manner in cultured A7r5.Conclusions:Our findings suggested that high glucose could promote the expression of OPG,and inhibit the expression of RANKL in VSMCs,which may be partly be the molecular mechanism of diabetic vascular calcification.
基金Project (No. 491010-W50339) supported by Chinese Traditional Medicine Administration Bureau of Zhejiang Province, China
文摘Objective: To observe the effect of Yangxueqingnao particles on rat vascular smooth muscle cell (VSMC) prolif- eration induced by lysophosphatidic acid (LPA). Methods: The amount of 3H-TdR (3H-thymidine) admixed in cultured rat VSMC was measured and mitogen-activated protein kinase (MAPK) activity and lipid peroxidation end product malondialdehyde (MDA) content of the VSMC were assayed. Results: 1×10?9, 1×10?8, 1×10?7 mol/L LPA in a concentration dependent manner, induced the amount of 3H-TdR admixed, MAP kinase activity, and MDA content of the cultured rat VSMC to increase. However, 5%, 10%, and 15% Yangxueqingnao serum preincubation resulted in a decrease of 23.0%, 42.0%, and 52.0% (P<0.01) respectively in the amount of 3H-TdR admixed, a decline in VSMC MAP kinase activity of 13.9% (P<0.05), 29.6% (P<0.01), and 48.9% (P<0.01) respectively, and also, a decrease in MDA content of VSMC of 19.4%, 24.7%, and 43.2% (P<0.01) respectively, in the 1×10?7 mol/L LPA-treated VSMC. Conclusions: LPA activates the proliferation and lipid peroxidation of VSMC in a concentration dependent manner. The LPA-induced VSMC proliferation is related to the activity of MAP kinases, enzymes involved in an intracellular signalling pathway. The results of the present study showed that Yangxueqingnao particles can effectively inhibit LPA-induced VSMC proliferation, MAP kinase activation, and reduce lipid peroxidative lesion.
基金supported by grants from the National Natural Science Foundation of China (No. 30872714 and No.30971244)
文摘Angiotensin Ⅱ (ANGⅡ) plays an important role in the pathogenesis of atherosclerosis by inducing proliferation of vascular smooth muscle cells (VSMCs).In our study,we observed the effects of valsartan on proliferation of cultured VSMCs treated with or without ANGⅡ by cell counting and methyl thiazolyl tetrazolium (MTT) assay,and detected the expression of mitofusin 2 (Mfn2),a newly discovered cell proliferation inhibitor and a related cell proliferation signaling pathway pro-tein by Western blotting.ANGⅡ at a concentration of 10-6 mol/L significantly stimulated VSMCs proliferation,down-regulated the expression of Mfn2 and upregulated the expression of Raf and ERK1/2.Valsartan inhibited such effects of ANGⅡ at concentrations of 10-5 and 10-6 mol/L,but not at 10-7 mol/L.Valsartan had no significant effect on the proliferation of untreated VSMCs.These results suggest that valsartan inhibits ANGⅡ-induced proliferation of VSMCs in vitro via Mfn2-Ras-Raf-ERK/MAPK signaling pathway.