An intelligent manufacturing system is a composite intelligent system comprising humans,cyber systems,and physical systems with the aim of achieving specific manufacturing goals at an optimized level.This kind of inte...An intelligent manufacturing system is a composite intelligent system comprising humans,cyber systems,and physical systems with the aim of achieving specific manufacturing goals at an optimized level.This kind of intelligent system is called a human-cyber-physical system(HCPS).In terms of technology,HCPSs can both reveal technological principles and form the technological architecture for intelligent manufacturing.It can be concluded that the essence of intelligent manufacturing is to design,construct,and apply HCPSs in various cases and at different levels.With advances in information technology,intelligent manufacturing has passed through the stages of digital manufacturing and digital-networked manufacturing,and is evolving toward new-generation intelligent manufacturing(NGIM).NGIM is characterized by the in-depth integration of new-generation artificial intelligence(AI)technology(i.e.,enabling technology)with advanced manufacturing technology(i.e.,root technology);it is the core driving force of the new industrial revolution.In this study,the evolutionary footprint of intelligent manufacturing is reviewed from the perspective of HCPSs,and the implications,characteristics,technical frame,and key technologies of HCPSs for NGIM are then discussed in depth.Finally,an outlook of the major challenges of HCPSs for NGIM is proposed.展开更多
Cyber-physical systems (CPS) are complex distributed heterogeneous systems which integrating cyber and physical processes by computation, communication and control. During interaction between cyber and physical worl...Cyber-physical systems (CPS) are complex distributed heterogeneous systems which integrating cyber and physical processes by computation, communication and control. During interaction between cyber and physical world, the traditional theories and applications has been difficult to satisfy real-time performance and efficient. Cyber-physical systems clearly have a role to play in developing a new theory of computer-mediated physical systems. The aim of this work is to analysis the features and relation technology of CPS that get better understanding for this new field. We summarized the research progresses from different perspectives such as modeling, classical tools and applications. Finally, the research challenges for CPS are in brief outlined.展开更多
The application of intelligence to manufacturing has emerged as a compelling topic for researchers and industries around the world.However,different terminologies,namely smart manufacturing(SM)and intelligent manufact...The application of intelligence to manufacturing has emerged as a compelling topic for researchers and industries around the world.However,different terminologies,namely smart manufacturing(SM)and intelligent manufacturing(IM),have been applied to what may be broadly characterized as a similar paradigm by some researchers and practitioners.While SM and IM are similar,they are not identical.From an evolutionary perspective,there has been little consideration on whether the definition,thought,connotation,and technical development of the concepts of SM or IM are consistent in the literature.To address this gap,the work performs a qualitative and quantitative investigation of research literature to systematically compare inherent differences of SM and IM and clarify the relationship between SM and IM.A bibliometric analysis of publication sources,annual publication numbers,keyword frequency,and top regions of research and development establishes the scope and trends of the currently presented research.Critical topics discussed include origin,definitions,evolutionary path,and key technologies of SM and IM.The implementation architecture,standards,and national focus are also discussed.In this work,a basis to understand SM and IM is provided,which is increasingly important because the trend to merge both terminologies rises in Industry 4.0 as intelligence is being rapidly applied to modern manufacturing and human–cyber–physical systems.展开更多
文摘An intelligent manufacturing system is a composite intelligent system comprising humans,cyber systems,and physical systems with the aim of achieving specific manufacturing goals at an optimized level.This kind of intelligent system is called a human-cyber-physical system(HCPS).In terms of technology,HCPSs can both reveal technological principles and form the technological architecture for intelligent manufacturing.It can be concluded that the essence of intelligent manufacturing is to design,construct,and apply HCPSs in various cases and at different levels.With advances in information technology,intelligent manufacturing has passed through the stages of digital manufacturing and digital-networked manufacturing,and is evolving toward new-generation intelligent manufacturing(NGIM).NGIM is characterized by the in-depth integration of new-generation artificial intelligence(AI)technology(i.e.,enabling technology)with advanced manufacturing technology(i.e.,root technology);it is the core driving force of the new industrial revolution.In this study,the evolutionary footprint of intelligent manufacturing is reviewed from the perspective of HCPSs,and the implications,characteristics,technical frame,and key technologies of HCPSs for NGIM are then discussed in depth.Finally,an outlook of the major challenges of HCPSs for NGIM is proposed.
文摘Cyber-physical systems (CPS) are complex distributed heterogeneous systems which integrating cyber and physical processes by computation, communication and control. During interaction between cyber and physical world, the traditional theories and applications has been difficult to satisfy real-time performance and efficient. Cyber-physical systems clearly have a role to play in developing a new theory of computer-mediated physical systems. The aim of this work is to analysis the features and relation technology of CPS that get better understanding for this new field. We summarized the research progresses from different perspectives such as modeling, classical tools and applications. Finally, the research challenges for CPS are in brief outlined.
基金supported by the International Postdoctoral Exchange Fellowship Program(20180025)National Natural Science Foundation of China(51703180)+2 种基金China Postdoctoral Science Foundation(2018M630191,2017M610634)Shaanxi Postdoctoral Science Foundation(2017BSHEDZZ73)Fundamental Research Funds for the Central Universities(xpt012020006,xjj2017024).
文摘The application of intelligence to manufacturing has emerged as a compelling topic for researchers and industries around the world.However,different terminologies,namely smart manufacturing(SM)and intelligent manufacturing(IM),have been applied to what may be broadly characterized as a similar paradigm by some researchers and practitioners.While SM and IM are similar,they are not identical.From an evolutionary perspective,there has been little consideration on whether the definition,thought,connotation,and technical development of the concepts of SM or IM are consistent in the literature.To address this gap,the work performs a qualitative and quantitative investigation of research literature to systematically compare inherent differences of SM and IM and clarify the relationship between SM and IM.A bibliometric analysis of publication sources,annual publication numbers,keyword frequency,and top regions of research and development establishes the scope and trends of the currently presented research.Critical topics discussed include origin,definitions,evolutionary path,and key technologies of SM and IM.The implementation architecture,standards,and national focus are also discussed.In this work,a basis to understand SM and IM is provided,which is increasingly important because the trend to merge both terminologies rises in Industry 4.0 as intelligence is being rapidly applied to modern manufacturing and human–cyber–physical systems.