To solve the problem of risk identification and quantitative assessment for human-computer interaction(HCI)in complex avionics systems,an HCI safety analysis framework based on system-theoretical process analysis(STPA...To solve the problem of risk identification and quantitative assessment for human-computer interaction(HCI)in complex avionics systems,an HCI safety analysis framework based on system-theoretical process analysis(STPA)and cognitive reliability and error analysis method(CREAM)is proposed.STPACREAM can identify unsafe control actions and find the causal path during the interaction of avionics systems and pilot with the help of formal verification tools automatically.The common performance conditions(CPC)of avionics systems in the aviation environment is established and a quantitative analysis of human failure is carried out.Taking the head-up display(HUD)system interaction process as an example,a case analysis is carried out,the layered safety control structure and formal model of the HUD interaction process are established.For the interactive behavior“Pilots approaching with HUD”,four unsafe control actions and35 causal scenarios are identified and the impact of common performance conditions at different levels on the pilot decision model are analyzed.The results show that HUD's HCI level gradually improves as the scores of CPC increase,and the quality of crew member cooperation and time sufficiency of the task is the key to its HCI.Through case analysis,it is shown that STPACREAM can quantitatively assess the hazards in HCI and identify the key factors that impact safety.展开更多
The periphery of the Qinghai-Tibet Plateau is renowned for its susceptibility to landslides.However,the northwestern margin of this region,characterised by limited human activities and challenging transportation,remai...The periphery of the Qinghai-Tibet Plateau is renowned for its susceptibility to landslides.However,the northwestern margin of this region,characterised by limited human activities and challenging transportation,remains insufficiently explored concerning landslide occurrence and dispersion.With the planning and construction of the Xinjiang-Tibet Railway,a comprehensive investigation into disastrous landslides in this area is essential for effective disaster preparedness and mitigation strategies.By using the human-computer interaction interpretation approach,the authors established a landslide database encompassing 13003 landslides,collectively spanning an area of 3351.24 km^(2)(36°N-40°N,73°E-78°E).The database incorporates diverse topographical and environmental parameters,including regional elevation,slope angle,slope aspect,distance to faults,distance to roads,distance to rivers,annual precipitation,and stratum.The statistical characteristics of number and area of landslides,landslide number density(LND),and landslide area percentage(LAP)are analyzed.The authors found that a predominant concentration of landslide origins within high slope angle regions,with the highest incidence observed in intervals characterised by average slopes of 20°to 30°,maximum slope angle above 80°,along with orientations towards the north(N),northeast(NE),and southwest(SW).Additionally,elevations above 4.5 km,distance to rivers below 1 km,rainfall between 20-30 mm and 30-40 mm emerge as particularly susceptible to landslide development.The study area’s geological composition primarily comprises Mesozoic and Upper Paleozoic outcrops.Both fault and human engineering activities have different degrees of influence on landslide development.Furthermore,the significance of the landslide database,the relationship between landslide distribution and environmental factors,and the geometric and morphological characteristics of landslides are discussed.The landslide H/L ratios in the study area are mainly concentrated between 0.4 and 0.64.It means the landslides mobility in the region is relatively low,and the authors speculate that landslides in this region more possibly triggered by earthquakes or located in meizoseismal area.展开更多
Real-time train rescheduling plays a vital role in railway transportation as it is crucial for maintaining punctuality and reliability in rail operations.In this paper,we propose a rescheduling model that incorporates...Real-time train rescheduling plays a vital role in railway transportation as it is crucial for maintaining punctuality and reliability in rail operations.In this paper,we propose a rescheduling model that incorporates constraints and objectives generated through human-computer interaction.This approach ensures that the model is aligned with practical requirements and daily operational tasks while facilitating iterative train rescheduling.The dispatcher’s empirical knowledge is integrated into the train rescheduling process using a human-computer interaction framework.We introduce six interfaces to dynamically construct constraints and objectives that capture human intentions.By summarizing rescheduling rules,we devise a rule-based conflict detection-resolution heuristic algorithm to effectively solve the formulated model.A series of numerical experiments are presented,demonstrating strong performance across the entire system.Furthermore,theflexibility of rescheduling is enhanced through secondary analysis-driven solutions derived from the outcomes of humancomputer interactions in the previous step.This proposed interaction method complements existing literature on rescheduling methods involving human-computer interactions.It serves as a tool to aid dispatchers in identifying more feasible solutions in accordance with their empirical rescheduling strategies.展开更多
Optimization design of hydraulic manifold blocks (HMB) is studied as acomplex solid spatial layout problem. Based on comprehensive research into structure features anddesign rules of HMB, an optimal mathematical model...Optimization design of hydraulic manifold blocks (HMB) is studied as acomplex solid spatial layout problem. Based on comprehensive research into structure features anddesign rules of HMB, an optimal mathematical model for this problem is presented. Usinghuman-computer cooperative genetic algorithm (GA) and its hybrid optitation strategies, integratedlayout and connection design schemes of HMB can be automatically optimized. An example is given totestify it.展开更多
The cooperative work between human being and computer based on virtual reality (VR) is investigated to plan the disassembly sequences more efficiently. A three-layer model of human-computer cooperative virtual disasse...The cooperative work between human being and computer based on virtual reality (VR) is investigated to plan the disassembly sequences more efficiently. A three-layer model of human-computer cooperative virtual disassembly is built, and the corresponding human-computer system for stable virtual disassembly is developed. In this system, an immersive and interactive virtual disassembly environment has been created to provide planners with a more visual working scene. For cooperative disassembly, an intelligent module of stability analysis of disassembly operations is embedded into the human-computer system to assist planners to implement disassembly tasks better. The supporting matrix for stability analysis of disassembly operations is defined and the method of stability analysis is detailed. Based on the approach, the stability of any disassembly operation can be analyzed to instruct the manual virtual disassembly. At last, a disassembly case in the virtual environment is given to prove the validity of above ideas.展开更多
Human-Computer dialogue systems provide a natural language based interface between human and computers. They are widely demanded in network information services, intelligent accompanying robots, and so on. A Human-Com...Human-Computer dialogue systems provide a natural language based interface between human and computers. They are widely demanded in network information services, intelligent accompanying robots, and so on. A Human-Computer dialogue system typically consists of three parts, namely Natural Language Understanding (NLU), Dialogue Management (DM) and Natural Language Generation (NLG). Each part has several different subtasks. Each subtask has been received lots of attentions, many improvements have been achieved on each subtask, respectively. But systems built in traditional pipeline way, where different subtasks are assembled sequently, suffered from some problems such as error accu- mulation and expanding, domain transferring. Therefore, researches on jointly modeling several subtasks in one part or cross different parts have been prompted greatly in recent years, especially the rapid developments on deep neural networks based joint models. There is even a few work aiming to integrate all subtasks of a dialogue system in a single model, namely end-to-end models. This paper introduces two basic frames of current dialogue systems and gives a brief survey on recent advances on variety subtasks at first, and then focuses on joint models for multiple subtasks of dialogues. We review several different joint models including integration of several subtasks inside NLU or NLG, jointly modeling cross NLG and DM, and jointly modeling through NLU, DM and NLG. Both advantages and problems of those joint models are discussed. We consider that the joint models, or end-to-end models, will be one important trend for developing Human-Computer dialogue systems.展开更多
In this paper, a new control system based on forearm electromyogram (EMG) is proposed for computer peripheral control and artificial prosthesis control. This control system intends to realize the commands of six pre...In this paper, a new control system based on forearm electromyogram (EMG) is proposed for computer peripheral control and artificial prosthesis control. This control system intends to realize the commands of six pre-defined hand poses: up, down, left, right, yes, and no. In order to research the possibility of using a unified amplifier for both electroencephalogram (EEG) and EMG, the surface forearm EMG data is acquired by a 4-channel EEG measurement system. The Bayesian classifier is used to classify the power spectral density (PSD) of the signal. The experiment result verifies that this control system can supply a high command recognition rate (average 48%) even the EMG data is collected with an EEG system just with single electrode measurement.展开更多
Based on the traditional Human-Computer Interaction method which is mainly touch input system, the way of capturing the movement of people by using cameras is proposed. This is a convenient technique which can provide...Based on the traditional Human-Computer Interaction method which is mainly touch input system, the way of capturing the movement of people by using cameras is proposed. This is a convenient technique which can provide users more experience. In the article, a new way of detecting moving things is given on the basis of development of the image processing technique. The system architecture decides that the communication should be used between two different applications. After considered, named pipe is selected from many ways of communication to make sure that video is keeping in step with the movement from the analysis of the people moving. According to a large amount of data and principal knowledge, thinking of the need of actual project, a detailed system design and realization is finished. The system consists of three important modules: detecting of the people's movement, information transition between applications and video showing in step with people's movement. The article introduces the idea of each module and technique.展开更多
With the popularity of new intelligent mobile devices in people’s lives,the development of mobile applications has paid increasing attention to the interactive experience of users.As the content of traditional Human-...With the popularity of new intelligent mobile devices in people’s lives,the development of mobile applications has paid increasing attention to the interactive experience of users.As the content of traditional Human-Computer Interaction(HCI)course and teaching material is out of date,it cannot meet the needs of mobile application interaction design and enterprises for students.Therefore,we need a new generation HCI course based on intelligent mobile devices to study the relationship between users and systems.The HCI course not only teaches students HCI theory and model,but also needs to cultivate students’interaction-oriented design practical ability.This paper proposes a set of HCI teaching material design and teaching methods for improving HCI class quality on mobile application interaction design,so as to make students more suitable for the employment requirements of enterprises.展开更多
We are involved in an embarrassing situation that the limited capability of automated feature extraction in digital photogrammetric systems cannot satisfy the increasing needs for rapid acquisition of semantic informa...We are involved in an embarrassing situation that the limited capability of automated feature extraction in digital photogrammetric systems cannot satisfy the increasing needs for rapid acquisition of semantic information for applications. Facing this challenge, a new tactic, Human-Computer Collaborative (HCC) tactic, and a corresponding new method, Operator-Object Directed (OOD) method, are proposed for the design of a system for feature extraction from large scale aerial images. We hold that in almost all technical complex systems, full automation will be neither technically feasible nor socially acceptable. The system should be designed to optimize through the cooperative operation with two agents in the system: the hurtan and the computer.展开更多
Triboelectric nanogenerator(TENG)converts mechanical energy into valuable electrical energy,offering a solution for future energy needs.As an indispensable part of TENG,textile TENG(T-TENG)has incredible advantages in...Triboelectric nanogenerator(TENG)converts mechanical energy into valuable electrical energy,offering a solution for future energy needs.As an indispensable part of TENG,textile TENG(T-TENG)has incredible advantages in harvesting biomechanical energy and physiological signal monitoring.However,the application of T-TENG is restricted,partly because the fabric structure parameter and structure on T-TENG performance have not been fully exploited.This study comprehensively investigates the effect of weaving structure on fabric TENGs(F-TENGs)for direct-weaving yarn TENGs and post-coating fabric TENGs.For direct-weaving F-TENGs,a single-yarn TENG(Y-TENG)with a core-sheath structure is fabricated using conductive yarn as the core layer yarn and polytetrafluoroethylene(PTFE)filaments as the sheath yarn.Twelve fabrics with five different sets of parameters were designed and investigated.For post-coating F-TENGs,fabrics with weaving structures of plain,twill,satin,and reinforced twill were fabricated and coated with conductive silver paint.Overall,the twill F-TENGs have the best electrical outputs,followed by the satin F-TENGs and plain weave F-TENGs.Besides,the increase of the Y-TENG gap spacing was demonstrated to improve the electrical output performance.Moreover,T-TENGs are demonstrated for human-computer interaction and self-powered real-time monitoring.This systematic work provides guidance for the future T-TENG’s design.展开更多
Gesture recognition plays an increasingly important role as the requirements of intelligent systems for human-computer interaction methods increase.To improve the accuracy of the millimeter-wave radar gesture detectio...Gesture recognition plays an increasingly important role as the requirements of intelligent systems for human-computer interaction methods increase.To improve the accuracy of the millimeter-wave radar gesture detection algorithm with limited computational resources,this study improves the detection performance in terms of optimized features and interference filtering.The accuracy of the algorithm is improved by refining the combination of gesture features using a self-constructed dataset,and biometric filtering is introduced to reduce the interference of inanimate object motion.Finally,experiments demonstrate the effectiveness of the proposed algorithm in both mitigating interference from inanimate objects and accurately recognizing gestures.Results show a notable 93.29%average reduction in false detections achieved through the integration of biometric filtering into the algorithm’s interpretation of target movements.Additionally,the algorithm adeptly identifies the six gestures with an average accuracy of 96.84%on embedded systems.展开更多
Gestures are one of the most natural and intuitive approach for human-computer interaction.Compared with traditional camera-based or wearable sensors-based solutions,gesture recognition using the millimeter wave radar...Gestures are one of the most natural and intuitive approach for human-computer interaction.Compared with traditional camera-based or wearable sensors-based solutions,gesture recognition using the millimeter wave radar has attracted growing attention for its characteristics of contact-free,privacy-preserving and less environmentdependence.Although there have been many recent studies on hand gesture recognition,the existing hand gesture recognition methods still have recognition accuracy and generalization ability shortcomings in shortrange applications.In this paper,we present a hand gesture recognition method named multiscale feature fusion(MSFF)to accurately identify micro hand gestures.In MSFF,not only the overall action recognition of the palm but also the subtle movements of the fingers are taken into account.Specifically,we adopt hand gesture multiangle Doppler-time and gesture trajectory range-angle map multi-feature fusion to comprehensively extract hand gesture features and fuse high-level deep neural networks to make it pay more attention to subtle finger movements.We evaluate the proposed method using data collected from 10 users and our proposed solution achieves an average recognition accuracy of 99.7%.Extensive experiments on a public mmWave gesture dataset demonstrate the superior effectiveness of the proposed system.展开更多
In the digital age,non-touch communication technologies are reshaping human-device interactions and raising security concerns.A major challenge in current technology is the misinterpretation of gestures by sensors and...In the digital age,non-touch communication technologies are reshaping human-device interactions and raising security concerns.A major challenge in current technology is the misinterpretation of gestures by sensors and cameras,often caused by environmental factors.This issue has spurred the need for advanced data processing methods to achieve more accurate gesture recognition and predictions.Our study presents a novel virtual keyboard allowing character input via distinct hand gestures,focusing on two key aspects:hand gesture recognition and character input mechanisms.We developed a novel model with LSTM and fully connected layers for enhanced sequential data processing and hand gesture recognition.We also integrated CNN,max-pooling,and dropout layers for improved spatial feature extraction.This model architecture processes both temporal and spatial aspects of hand gestures,using LSTM to extract complex patterns from frame sequences for a comprehensive understanding of input data.Our unique dataset,essential for training the model,includes 1,662 landmarks from dynamic hand gestures,33 postures,and 468 face landmarks,all captured in real-time using advanced pose estimation.The model demonstrated high accuracy,achieving 98.52%in hand gesture recognition and over 97%in character input across different scenarios.Its excellent performance in real-time testing underlines its practicality and effectiveness,marking a significant advancement in enhancing human-device interactions in the digital age.展开更多
With technology advances and human requirements increasing, human-computer interaction plays an important role in our daily lives. Among these interactions, gesture-based recognition offers a natural and intuitive use...With technology advances and human requirements increasing, human-computer interaction plays an important role in our daily lives. Among these interactions, gesture-based recognition offers a natural and intuitive user experience that does not require physical contact and is becoming increasingly prevalent across various fields. Gesture recognition systems based on Frequency Modulated Continuous Wave (FMCW) millimeter-wave radar are receiving widespread attention due to their ability to operate without wearable sensors, their robustness to environmental factors, and the excellent penetrative ability of radar signals. This paper first reviews the current main gesture recognition applications. Subsequently, we introduce the system of gesture recognition based on FMCW radar and provide a general framework for gesture recognition, including gesture data acquisition, data preprocessing, and classification methods. We then discuss typical applications of gesture recognition systems and summarize the performance of these systems in terms of experimental environment, signal acquisition, signal processing, and classification methods. Specifically, we focus our study on four typical gesture recognition systems, including air-writing recognition, gesture command recognition, sign language recognition, and text input recognition. Finally, this paper addresses the challenges and unresolved problems in FMCW radar-based gesture recognition and provides insights into potential future research directions.展开更多
With the advancement of technology and the increase in user demands, gesture recognition played a pivotal role in the field of human-computer interaction. Among various sensing devices, Time-of-Flight (ToF) sensors we...With the advancement of technology and the increase in user demands, gesture recognition played a pivotal role in the field of human-computer interaction. Among various sensing devices, Time-of-Flight (ToF) sensors were widely applied due to their low cost. This paper explored the implementation of a human hand posture recognition system using ToF sensors and residual neural networks. Firstly, this paper reviewed the typical applications of human hand recognition. Secondly, this paper designed a hand gesture recognition system using a ToF sensor VL53L5. Subsequently, data preprocessing was conducted, followed by training the constructed residual neural network. Then, the recognition results were analyzed, indicating that gesture recognition based on the residual neural network achieved an accuracy of 98.5% in a 5-class classification scenario. Finally, the paper discussed existing issues and future research directions.展开更多
Nanomaterial-based flexible sensors(NMFSs)can be tightly attached to the human skin or integrated with clothing to monitor human physiological information,provide medical data,or explore metaverse spaces.Nanomaterials...Nanomaterial-based flexible sensors(NMFSs)can be tightly attached to the human skin or integrated with clothing to monitor human physiological information,provide medical data,or explore metaverse spaces.Nanomaterials have been widely incorporated into flexible sensors due to their facile processing,material compatibility,and unique properties.This review highlights the recent advancements in NMFSs involving various nanomaterial frameworks such as nanoparticles,nanowires,and nanofilms.Different triggering interaction interfaces between NMFSs and metaverse/virtual reality(VR)applications,e.g.skin-mechanics-triggered,temperature-triggered,magnetically triggered,and neural-triggered interfaces,are discussed.In the context of interfacing physical and virtual worlds,machine learning(ML)has emerged as a promising tool for processing sensor data for controlling avatars in metaverse/VR worlds,and many ML algorithms have been proposed for virtual interaction technologies.This paper discusses the advantages,disadvantages,and prospects of NMFSs in metaverse/VR applications.展开更多
With the breakthrough of AlphaGo,human-computer gaming AI has ushered in a big explosion,attracting more and more researchers all over the world.As a recognized standard for testing artificial intelligence,various hum...With the breakthrough of AlphaGo,human-computer gaming AI has ushered in a big explosion,attracting more and more researchers all over the world.As a recognized standard for testing artificial intelligence,various human-computer gaming AI systems(AIs)have been developed,such as Libratus,OpenAI Five,and AlphaStar,which beat professional human players.The rapid development of human-computer gaming AIs indicates a big step for decision-making intelligence,and it seems that current techniques can handle very complex human-computer games.So,one natural question arises:What are the possible challenges of current techniques in human-computer gaming and what are the future trends?To answer the above question,in this paper,we survey recent successful game AIs,covering board game AIs,card game AIs,first-person shooting game AIs,and real-time strategy game AIs.Through this survey,we 1)compare the main difficulties among different kinds of games and the corresponding techniques utilized for achieving professional human-level AIs;2)summarize the mainstream frameworks and techniques that can be properly relied on for developing AIs for complex human-computer games;3)raise the challenges or drawbacks of current techniques in the successful AIs;and 4)try to point out future trends in human-computer gaming AIs.Finally,we hope that this brief review can provide an introduction for beginners and inspire insight for researchers in the field of AI in human-computer gaming.展开更多
Background Navigation assistance is essential for users when roaming virtual reality scenes;however,the traditional navigation method requires users to manually request a map for viewing,which leads to low immersion a...Background Navigation assistance is essential for users when roaming virtual reality scenes;however,the traditional navigation method requires users to manually request a map for viewing,which leads to low immersion and poor user experience.Methods To address this issue,we first collected data on who required navigation assistance in a virtual reality environment,including various eye movement features,such as gaze fixation,pupil size,and gaze angle.Subsequently,we used the boosting-based XGBoost algorithm to train a prediction model and finally used it to predict whether users require navigation assistance in a roaming task.Results After evaluating the performance of the model,the accuracy,precision,recall,and F1-score of our model reached approximately 95%.In addition,by applying the model to a virtual reality scene,an adaptive navigation assistance system based on the real-time eye movement data of the user was implemented.Conclusions Compared with traditional navigation assistance methods,our new adaptive navigation assistance method could enable the user to be more immersive and effective while roaming in a virtual reality(VR)environment.展开更多
A comprehensive understanding of human intelligence is still an ongoing process,i.e.,human and information security are not yet perfectly matched.By understanding cognitive processes,designers can design humanized cog...A comprehensive understanding of human intelligence is still an ongoing process,i.e.,human and information security are not yet perfectly matched.By understanding cognitive processes,designers can design humanized cognitive information systems(CIS).The need for this research is justified because today’s business decision makers are faced with questions they cannot answer in a given amount of time without the use of cognitive information systems.The researchers aim to better strengthen cognitive information systems with more pronounced cognitive thresholds by demonstrating the resilience of cognitive resonant frequencies to reveal possible responses to improve the efficiency of human-computer interaction(HCI).Apractice-oriented research approach included research analysis and a review of existing articles to pursue a comparative research model;thereafter,amodel development paradigm was used to observe and monitor the progression of CIS during HCI.The scope of our research provides a broader perspective on how different disciplines affect HCI and how human cognitive models can be enhanced to enrich complements.We have identified a significant gap in the current literature on mental processing resulting from a wide range of theory and practice.展开更多
基金supported by the National Key Research and Development Program of China(2021YFB1600601)the Joint Funds of the National Natural Science Foundation of China and the Civil Aviation Administration of China(U1933106)+2 种基金the Scientific Research Project of Tianjin Educational Committee(2019KJ134)the Natural Science Foundation of TianjinIntelligent Civil Aviation Program(21JCQNJ C00900)。
文摘To solve the problem of risk identification and quantitative assessment for human-computer interaction(HCI)in complex avionics systems,an HCI safety analysis framework based on system-theoretical process analysis(STPA)and cognitive reliability and error analysis method(CREAM)is proposed.STPACREAM can identify unsafe control actions and find the causal path during the interaction of avionics systems and pilot with the help of formal verification tools automatically.The common performance conditions(CPC)of avionics systems in the aviation environment is established and a quantitative analysis of human failure is carried out.Taking the head-up display(HUD)system interaction process as an example,a case analysis is carried out,the layered safety control structure and formal model of the HUD interaction process are established.For the interactive behavior“Pilots approaching with HUD”,four unsafe control actions and35 causal scenarios are identified and the impact of common performance conditions at different levels on the pilot decision model are analyzed.The results show that HUD's HCI level gradually improves as the scores of CPC increase,and the quality of crew member cooperation and time sufficiency of the task is the key to its HCI.Through case analysis,it is shown that STPACREAM can quantitatively assess the hazards in HCI and identify the key factors that impact safety.
基金supported by the National Key Research and Development Program of China(2021YFB3901205)National Institute of Natural Hazards,Ministry of Emergency Management of China(2023-JBKY-57)。
文摘The periphery of the Qinghai-Tibet Plateau is renowned for its susceptibility to landslides.However,the northwestern margin of this region,characterised by limited human activities and challenging transportation,remains insufficiently explored concerning landslide occurrence and dispersion.With the planning and construction of the Xinjiang-Tibet Railway,a comprehensive investigation into disastrous landslides in this area is essential for effective disaster preparedness and mitigation strategies.By using the human-computer interaction interpretation approach,the authors established a landslide database encompassing 13003 landslides,collectively spanning an area of 3351.24 km^(2)(36°N-40°N,73°E-78°E).The database incorporates diverse topographical and environmental parameters,including regional elevation,slope angle,slope aspect,distance to faults,distance to roads,distance to rivers,annual precipitation,and stratum.The statistical characteristics of number and area of landslides,landslide number density(LND),and landslide area percentage(LAP)are analyzed.The authors found that a predominant concentration of landslide origins within high slope angle regions,with the highest incidence observed in intervals characterised by average slopes of 20°to 30°,maximum slope angle above 80°,along with orientations towards the north(N),northeast(NE),and southwest(SW).Additionally,elevations above 4.5 km,distance to rivers below 1 km,rainfall between 20-30 mm and 30-40 mm emerge as particularly susceptible to landslide development.The study area’s geological composition primarily comprises Mesozoic and Upper Paleozoic outcrops.Both fault and human engineering activities have different degrees of influence on landslide development.Furthermore,the significance of the landslide database,the relationship between landslide distribution and environmental factors,and the geometric and morphological characteristics of landslides are discussed.The landslide H/L ratios in the study area are mainly concentrated between 0.4 and 0.64.It means the landslides mobility in the region is relatively low,and the authors speculate that landslides in this region more possibly triggered by earthquakes or located in meizoseismal area.
基金supported by the China Fundamental Research Funds for the Central Universities(2022JBQY006)。
文摘Real-time train rescheduling plays a vital role in railway transportation as it is crucial for maintaining punctuality and reliability in rail operations.In this paper,we propose a rescheduling model that incorporates constraints and objectives generated through human-computer interaction.This approach ensures that the model is aligned with practical requirements and daily operational tasks while facilitating iterative train rescheduling.The dispatcher’s empirical knowledge is integrated into the train rescheduling process using a human-computer interaction framework.We introduce six interfaces to dynamically construct constraints and objectives that capture human intentions.By summarizing rescheduling rules,we devise a rule-based conflict detection-resolution heuristic algorithm to effectively solve the formulated model.A series of numerical experiments are presented,demonstrating strong performance across the entire system.Furthermore,theflexibility of rescheduling is enhanced through secondary analysis-driven solutions derived from the outcomes of humancomputer interactions in the previous step.This proposed interaction method complements existing literature on rescheduling methods involving human-computer interactions.It serves as a tool to aid dispatchers in identifying more feasible solutions in accordance with their empirical rescheduling strategies.
基金This project is supported by Provincial ScienceTechnology Foundation of Liaoning (No. 20022132)
文摘Optimization design of hydraulic manifold blocks (HMB) is studied as acomplex solid spatial layout problem. Based on comprehensive research into structure features anddesign rules of HMB, an optimal mathematical model for this problem is presented. Usinghuman-computer cooperative genetic algorithm (GA) and its hybrid optitation strategies, integratedlayout and connection design schemes of HMB can be automatically optimized. An example is given totestify it.
基金This project is supported by National Natural Science Foundation of China (No.59990470-2).
文摘The cooperative work between human being and computer based on virtual reality (VR) is investigated to plan the disassembly sequences more efficiently. A three-layer model of human-computer cooperative virtual disassembly is built, and the corresponding human-computer system for stable virtual disassembly is developed. In this system, an immersive and interactive virtual disassembly environment has been created to provide planners with a more visual working scene. For cooperative disassembly, an intelligent module of stability analysis of disassembly operations is embedded into the human-computer system to assist planners to implement disassembly tasks better. The supporting matrix for stability analysis of disassembly operations is defined and the method of stability analysis is detailed. Based on the approach, the stability of any disassembly operation can be analyzed to instruct the manual virtual disassembly. At last, a disassembly case in the virtual environment is given to prove the validity of above ideas.
文摘Human-Computer dialogue systems provide a natural language based interface between human and computers. They are widely demanded in network information services, intelligent accompanying robots, and so on. A Human-Computer dialogue system typically consists of three parts, namely Natural Language Understanding (NLU), Dialogue Management (DM) and Natural Language Generation (NLG). Each part has several different subtasks. Each subtask has been received lots of attentions, many improvements have been achieved on each subtask, respectively. But systems built in traditional pipeline way, where different subtasks are assembled sequently, suffered from some problems such as error accu- mulation and expanding, domain transferring. Therefore, researches on jointly modeling several subtasks in one part or cross different parts have been prompted greatly in recent years, especially the rapid developments on deep neural networks based joint models. There is even a few work aiming to integrate all subtasks of a dialogue system in a single model, namely end-to-end models. This paper introduces two basic frames of current dialogue systems and gives a brief survey on recent advances on variety subtasks at first, and then focuses on joint models for multiple subtasks of dialogues. We review several different joint models including integration of several subtasks inside NLU or NLG, jointly modeling cross NLG and DM, and jointly modeling through NLU, DM and NLG. Both advantages and problems of those joint models are discussed. We consider that the joint models, or end-to-end models, will be one important trend for developing Human-Computer dialogue systems.
基金supported by the National Natural Science Foundation of China under Grant No. 60736029 and 30525030UESTC Youth Foundation under Grant No. L08010901JX0772 for support.
文摘In this paper, a new control system based on forearm electromyogram (EMG) is proposed for computer peripheral control and artificial prosthesis control. This control system intends to realize the commands of six pre-defined hand poses: up, down, left, right, yes, and no. In order to research the possibility of using a unified amplifier for both electroencephalogram (EEG) and EMG, the surface forearm EMG data is acquired by a 4-channel EEG measurement system. The Bayesian classifier is used to classify the power spectral density (PSD) of the signal. The experiment result verifies that this control system can supply a high command recognition rate (average 48%) even the EMG data is collected with an EEG system just with single electrode measurement.
文摘Based on the traditional Human-Computer Interaction method which is mainly touch input system, the way of capturing the movement of people by using cameras is proposed. This is a convenient technique which can provide users more experience. In the article, a new way of detecting moving things is given on the basis of development of the image processing technique. The system architecture decides that the communication should be used between two different applications. After considered, named pipe is selected from many ways of communication to make sure that video is keeping in step with the movement from the analysis of the people moving. According to a large amount of data and principal knowledge, thinking of the need of actual project, a detailed system design and realization is finished. The system consists of three important modules: detecting of the people's movement, information transition between applications and video showing in step with people's movement. The article introduces the idea of each module and technique.
文摘With the popularity of new intelligent mobile devices in people’s lives,the development of mobile applications has paid increasing attention to the interactive experience of users.As the content of traditional Human-Computer Interaction(HCI)course and teaching material is out of date,it cannot meet the needs of mobile application interaction design and enterprises for students.Therefore,we need a new generation HCI course based on intelligent mobile devices to study the relationship between users and systems.The HCI course not only teaches students HCI theory and model,but also needs to cultivate students’interaction-oriented design practical ability.This paper proposes a set of HCI teaching material design and teaching methods for improving HCI class quality on mobile application interaction design,so as to make students more suitable for the employment requirements of enterprises.
文摘We are involved in an embarrassing situation that the limited capability of automated feature extraction in digital photogrammetric systems cannot satisfy the increasing needs for rapid acquisition of semantic information for applications. Facing this challenge, a new tactic, Human-Computer Collaborative (HCC) tactic, and a corresponding new method, Operator-Object Directed (OOD) method, are proposed for the design of a system for feature extraction from large scale aerial images. We hold that in almost all technical complex systems, full automation will be neither technically feasible nor socially acceptable. The system should be designed to optimize through the cooperative operation with two agents in the system: the hurtan and the computer.
基金the National Undergraduate Innovation Program Training Project(No.202110755022)。
文摘Triboelectric nanogenerator(TENG)converts mechanical energy into valuable electrical energy,offering a solution for future energy needs.As an indispensable part of TENG,textile TENG(T-TENG)has incredible advantages in harvesting biomechanical energy and physiological signal monitoring.However,the application of T-TENG is restricted,partly because the fabric structure parameter and structure on T-TENG performance have not been fully exploited.This study comprehensively investigates the effect of weaving structure on fabric TENGs(F-TENGs)for direct-weaving yarn TENGs and post-coating fabric TENGs.For direct-weaving F-TENGs,a single-yarn TENG(Y-TENG)with a core-sheath structure is fabricated using conductive yarn as the core layer yarn and polytetrafluoroethylene(PTFE)filaments as the sheath yarn.Twelve fabrics with five different sets of parameters were designed and investigated.For post-coating F-TENGs,fabrics with weaving structures of plain,twill,satin,and reinforced twill were fabricated and coated with conductive silver paint.Overall,the twill F-TENGs have the best electrical outputs,followed by the satin F-TENGs and plain weave F-TENGs.Besides,the increase of the Y-TENG gap spacing was demonstrated to improve the electrical output performance.Moreover,T-TENGs are demonstrated for human-computer interaction and self-powered real-time monitoring.This systematic work provides guidance for the future T-TENG’s design.
基金supported by the National Natural Science Foundation of China(No.12172076)。
文摘Gesture recognition plays an increasingly important role as the requirements of intelligent systems for human-computer interaction methods increase.To improve the accuracy of the millimeter-wave radar gesture detection algorithm with limited computational resources,this study improves the detection performance in terms of optimized features and interference filtering.The accuracy of the algorithm is improved by refining the combination of gesture features using a self-constructed dataset,and biometric filtering is introduced to reduce the interference of inanimate object motion.Finally,experiments demonstrate the effectiveness of the proposed algorithm in both mitigating interference from inanimate objects and accurately recognizing gestures.Results show a notable 93.29%average reduction in false detections achieved through the integration of biometric filtering into the algorithm’s interpretation of target movements.Additionally,the algorithm adeptly identifies the six gestures with an average accuracy of 96.84%on embedded systems.
基金supported by the National Natural Science Foundation of China under grant no.62272242.
文摘Gestures are one of the most natural and intuitive approach for human-computer interaction.Compared with traditional camera-based or wearable sensors-based solutions,gesture recognition using the millimeter wave radar has attracted growing attention for its characteristics of contact-free,privacy-preserving and less environmentdependence.Although there have been many recent studies on hand gesture recognition,the existing hand gesture recognition methods still have recognition accuracy and generalization ability shortcomings in shortrange applications.In this paper,we present a hand gesture recognition method named multiscale feature fusion(MSFF)to accurately identify micro hand gestures.In MSFF,not only the overall action recognition of the palm but also the subtle movements of the fingers are taken into account.Specifically,we adopt hand gesture multiangle Doppler-time and gesture trajectory range-angle map multi-feature fusion to comprehensively extract hand gesture features and fuse high-level deep neural networks to make it pay more attention to subtle finger movements.We evaluate the proposed method using data collected from 10 users and our proposed solution achieves an average recognition accuracy of 99.7%.Extensive experiments on a public mmWave gesture dataset demonstrate the superior effectiveness of the proposed system.
文摘In the digital age,non-touch communication technologies are reshaping human-device interactions and raising security concerns.A major challenge in current technology is the misinterpretation of gestures by sensors and cameras,often caused by environmental factors.This issue has spurred the need for advanced data processing methods to achieve more accurate gesture recognition and predictions.Our study presents a novel virtual keyboard allowing character input via distinct hand gestures,focusing on two key aspects:hand gesture recognition and character input mechanisms.We developed a novel model with LSTM and fully connected layers for enhanced sequential data processing and hand gesture recognition.We also integrated CNN,max-pooling,and dropout layers for improved spatial feature extraction.This model architecture processes both temporal and spatial aspects of hand gestures,using LSTM to extract complex patterns from frame sequences for a comprehensive understanding of input data.Our unique dataset,essential for training the model,includes 1,662 landmarks from dynamic hand gestures,33 postures,and 468 face landmarks,all captured in real-time using advanced pose estimation.The model demonstrated high accuracy,achieving 98.52%in hand gesture recognition and over 97%in character input across different scenarios.Its excellent performance in real-time testing underlines its practicality and effectiveness,marking a significant advancement in enhancing human-device interactions in the digital age.
文摘With technology advances and human requirements increasing, human-computer interaction plays an important role in our daily lives. Among these interactions, gesture-based recognition offers a natural and intuitive user experience that does not require physical contact and is becoming increasingly prevalent across various fields. Gesture recognition systems based on Frequency Modulated Continuous Wave (FMCW) millimeter-wave radar are receiving widespread attention due to their ability to operate without wearable sensors, their robustness to environmental factors, and the excellent penetrative ability of radar signals. This paper first reviews the current main gesture recognition applications. Subsequently, we introduce the system of gesture recognition based on FMCW radar and provide a general framework for gesture recognition, including gesture data acquisition, data preprocessing, and classification methods. We then discuss typical applications of gesture recognition systems and summarize the performance of these systems in terms of experimental environment, signal acquisition, signal processing, and classification methods. Specifically, we focus our study on four typical gesture recognition systems, including air-writing recognition, gesture command recognition, sign language recognition, and text input recognition. Finally, this paper addresses the challenges and unresolved problems in FMCW radar-based gesture recognition and provides insights into potential future research directions.
文摘With the advancement of technology and the increase in user demands, gesture recognition played a pivotal role in the field of human-computer interaction. Among various sensing devices, Time-of-Flight (ToF) sensors were widely applied due to their low cost. This paper explored the implementation of a human hand posture recognition system using ToF sensors and residual neural networks. Firstly, this paper reviewed the typical applications of human hand recognition. Secondly, this paper designed a hand gesture recognition system using a ToF sensor VL53L5. Subsequently, data preprocessing was conducted, followed by training the constructed residual neural network. Then, the recognition results were analyzed, indicating that gesture recognition based on the residual neural network achieved an accuracy of 98.5% in a 5-class classification scenario. Finally, the paper discussed existing issues and future research directions.
基金financially supported by China Scholarship Council(CSC)under the Grant CSC(No.202107585001)Jilin Provincial Science and Technology Program(Nos.20210101069JC and 20190702002GH)+2 种基金Science and Technology Program of Changchun(No.21ZGM18)‘111’Project of China(No.D17017)the Hong Kong Research Grants Council(Project Nos.11207222 and 11210819)for partially supporting this work。
文摘Nanomaterial-based flexible sensors(NMFSs)can be tightly attached to the human skin or integrated with clothing to monitor human physiological information,provide medical data,or explore metaverse spaces.Nanomaterials have been widely incorporated into flexible sensors due to their facile processing,material compatibility,and unique properties.This review highlights the recent advancements in NMFSs involving various nanomaterial frameworks such as nanoparticles,nanowires,and nanofilms.Different triggering interaction interfaces between NMFSs and metaverse/virtual reality(VR)applications,e.g.skin-mechanics-triggered,temperature-triggered,magnetically triggered,and neural-triggered interfaces,are discussed.In the context of interfacing physical and virtual worlds,machine learning(ML)has emerged as a promising tool for processing sensor data for controlling avatars in metaverse/VR worlds,and many ML algorithms have been proposed for virtual interaction technologies.This paper discusses the advantages,disadvantages,and prospects of NMFSs in metaverse/VR applications.
基金National Natural Science Foundation of China(No.61906197).
文摘With the breakthrough of AlphaGo,human-computer gaming AI has ushered in a big explosion,attracting more and more researchers all over the world.As a recognized standard for testing artificial intelligence,various human-computer gaming AI systems(AIs)have been developed,such as Libratus,OpenAI Five,and AlphaStar,which beat professional human players.The rapid development of human-computer gaming AIs indicates a big step for decision-making intelligence,and it seems that current techniques can handle very complex human-computer games.So,one natural question arises:What are the possible challenges of current techniques in human-computer gaming and what are the future trends?To answer the above question,in this paper,we survey recent successful game AIs,covering board game AIs,card game AIs,first-person shooting game AIs,and real-time strategy game AIs.Through this survey,we 1)compare the main difficulties among different kinds of games and the corresponding techniques utilized for achieving professional human-level AIs;2)summarize the mainstream frameworks and techniques that can be properly relied on for developing AIs for complex human-computer games;3)raise the challenges or drawbacks of current techniques in the successful AIs;and 4)try to point out future trends in human-computer gaming AIs.Finally,we hope that this brief review can provide an introduction for beginners and inspire insight for researchers in the field of AI in human-computer gaming.
基金Supported by the National Natural Science Foundation of China (62172368)the Natural Science Foundation of Zhejiang Province (LR22F020003)。
文摘Background Navigation assistance is essential for users when roaming virtual reality scenes;however,the traditional navigation method requires users to manually request a map for viewing,which leads to low immersion and poor user experience.Methods To address this issue,we first collected data on who required navigation assistance in a virtual reality environment,including various eye movement features,such as gaze fixation,pupil size,and gaze angle.Subsequently,we used the boosting-based XGBoost algorithm to train a prediction model and finally used it to predict whether users require navigation assistance in a roaming task.Results After evaluating the performance of the model,the accuracy,precision,recall,and F1-score of our model reached approximately 95%.In addition,by applying the model to a virtual reality scene,an adaptive navigation assistance system based on the real-time eye movement data of the user was implemented.Conclusions Compared with traditional navigation assistance methods,our new adaptive navigation assistance method could enable the user to be more immersive and effective while roaming in a virtual reality(VR)environment.
基金This work was supported by King Saud University through Researchers Supporting Project Number(RSP2022R426),King Saud University,Riyadh,Saudi Arabia.
文摘A comprehensive understanding of human intelligence is still an ongoing process,i.e.,human and information security are not yet perfectly matched.By understanding cognitive processes,designers can design humanized cognitive information systems(CIS).The need for this research is justified because today’s business decision makers are faced with questions they cannot answer in a given amount of time without the use of cognitive information systems.The researchers aim to better strengthen cognitive information systems with more pronounced cognitive thresholds by demonstrating the resilience of cognitive resonant frequencies to reveal possible responses to improve the efficiency of human-computer interaction(HCI).Apractice-oriented research approach included research analysis and a review of existing articles to pursue a comparative research model;thereafter,amodel development paradigm was used to observe and monitor the progression of CIS during HCI.The scope of our research provides a broader perspective on how different disciplines affect HCI and how human cognitive models can be enhanced to enrich complements.We have identified a significant gap in the current literature on mental processing resulting from a wide range of theory and practice.