With the advancement of technology and the increase in user demands, gesture recognition played a pivotal role in the field of human-computer interaction. Among various sensing devices, Time-of-Flight (ToF) sensors we...With the advancement of technology and the increase in user demands, gesture recognition played a pivotal role in the field of human-computer interaction. Among various sensing devices, Time-of-Flight (ToF) sensors were widely applied due to their low cost. This paper explored the implementation of a human hand posture recognition system using ToF sensors and residual neural networks. Firstly, this paper reviewed the typical applications of human hand recognition. Secondly, this paper designed a hand gesture recognition system using a ToF sensor VL53L5. Subsequently, data preprocessing was conducted, followed by training the constructed residual neural network. Then, the recognition results were analyzed, indicating that gesture recognition based on the residual neural network achieved an accuracy of 98.5% in a 5-class classification scenario. Finally, the paper discussed existing issues and future research directions.展开更多
Most of the intelligent surveillances in the industry only care about the safety of the workers.It is meaningful if the camera can know what,where and how the worker has performed the action in real time.In this paper...Most of the intelligent surveillances in the industry only care about the safety of the workers.It is meaningful if the camera can know what,where and how the worker has performed the action in real time.In this paper,we propose a light-weight and robust algorithm to meet these requirements.By only two hands'trajectories,our algorithm requires no Graphic Processing Unit(GPU)acceleration,which can be used in low-cost devices.In the training stage,in order to find potential topological structures of the training trajectories,spectral clustering with eigengap heuristic is applied to cluster trajectory points.A gradient descent based algorithm is proposed to find the topological structures,which reflects main representations for each cluster.In the fine-tuning stage,a topological optimization algorithm is proposed to fine-tune the parameters of topological structures in all training data.Finally,our method not only performs more robustly compared to some popular offline action detection methods,but also obtains better detection accuracy in an extended action sequence.展开更多
Human action recognition and posture prediction aim to recognize and predict respectively the action and postures of persons in videos.They are both active research topics in computer vision community,which have attra...Human action recognition and posture prediction aim to recognize and predict respectively the action and postures of persons in videos.They are both active research topics in computer vision community,which have attracted considerable attention from academia and industry.They are also the precondition for intelligent interaction and human-computer cooperation,and they help the machine perceive the external environment.In the past decade,tremendous progress has been made in the field,especially after the emergence of deep learning technologies.Hence,it is necessary to make a comprehensive review of recent developments.In this paper,firstly,we attempt to present the background,and then discuss research progresses.Secondly,we introduce datasets,various typical feature representation methods,and explore advanced human action recognition and posture prediction algorithms.Finally,facing the challenges in the field,this paper puts forward the research focus,and introduces the importance of action recognition and posture prediction by taking interactive cognition in self-driving vehicle as an example.展开更多
文摘With the advancement of technology and the increase in user demands, gesture recognition played a pivotal role in the field of human-computer interaction. Among various sensing devices, Time-of-Flight (ToF) sensors were widely applied due to their low cost. This paper explored the implementation of a human hand posture recognition system using ToF sensors and residual neural networks. Firstly, this paper reviewed the typical applications of human hand recognition. Secondly, this paper designed a hand gesture recognition system using a ToF sensor VL53L5. Subsequently, data preprocessing was conducted, followed by training the constructed residual neural network. Then, the recognition results were analyzed, indicating that gesture recognition based on the residual neural network achieved an accuracy of 98.5% in a 5-class classification scenario. Finally, the paper discussed existing issues and future research directions.
基金Our research has been supported in part by National Natural Science Foundation of China under Grants 61673261 and 61703273.We gratefully acknowledge the support from some companies.
文摘Most of the intelligent surveillances in the industry only care about the safety of the workers.It is meaningful if the camera can know what,where and how the worker has performed the action in real time.In this paper,we propose a light-weight and robust algorithm to meet these requirements.By only two hands'trajectories,our algorithm requires no Graphic Processing Unit(GPU)acceleration,which can be used in low-cost devices.In the training stage,in order to find potential topological structures of the training trajectories,spectral clustering with eigengap heuristic is applied to cluster trajectory points.A gradient descent based algorithm is proposed to find the topological structures,which reflects main representations for each cluster.In the fine-tuning stage,a topological optimization algorithm is proposed to fine-tune the parameters of topological structures in all training data.Finally,our method not only performs more robustly compared to some popular offline action detection methods,but also obtains better detection accuracy in an extended action sequence.
基金supported by the National Natural Science Foundation of China(Nos.61871038 and 61931012)the Premium Funding Project for Academic Human Resources Development of Beijing Union University(No.BPHR2020AZ02)the Generic Pre-research Program of the Equipment Development Department in Military Commission(No.41412040302).
文摘Human action recognition and posture prediction aim to recognize and predict respectively the action and postures of persons in videos.They are both active research topics in computer vision community,which have attracted considerable attention from academia and industry.They are also the precondition for intelligent interaction and human-computer cooperation,and they help the machine perceive the external environment.In the past decade,tremendous progress has been made in the field,especially after the emergence of deep learning technologies.Hence,it is necessary to make a comprehensive review of recent developments.In this paper,firstly,we attempt to present the background,and then discuss research progresses.Secondly,we introduce datasets,various typical feature representation methods,and explore advanced human action recognition and posture prediction algorithms.Finally,facing the challenges in the field,this paper puts forward the research focus,and introduces the importance of action recognition and posture prediction by taking interactive cognition in self-driving vehicle as an example.