This research aims to develop a wound dressing composed of collagen (Col) and hyaluronic acid (HA) containing epidermal growth factor (EGF). First important issue is to contain EGF in the wound dressing in a stable st...This research aims to develop a wound dressing composed of collagen (Col) and hyaluronic acid (HA) containing epidermal growth factor (EGF). First important issue is to contain EGF in the wound dressing in a stable state. The sheet-shaped sponge was manufactured by freeze-vacuum drying an aqueous solution of Col. Both sides of sponge were treated with ultraviolet (UV) irradiation to introduce intermolecular cross links between collagen molecules. This sponge was named Sponge-Col. Another sheet-shaped sponge was manufactured by freeze-vacuum drying an aqueous solution of HA containing EGF. This sponge was named Sponge-HA/EGF. The wound dressing was manufactured by laminating Sponge-Col on the top, Sponge-HA/EGF in the middle, and Sponge-Col on the bottom to create a sandwich structure. This method can prevent the reducing of EGF activity due to UV irradiation for intermolecular cross-linking. Second important issue is to enable gradual release of EGF from the wound dressing. The elution behavior of this wound dressing was investigated by measuring the weight change after immersion in water for a predetermined time. This wound dressing showed initially fast elution and subsequent very slow elution properties. The upper layer and lower layer Sponge-Col enabled gradual release of the middle layer Sponge-HA/EGF. This result suggests that EGF contained in the wound dressing is gradually released together with HA from the wound dressing. Third important issue is to provide moist wound-healing environment. The upper layer and lower layer Sponge-Col can provide the wound dressing with high water absorption and long-term water retention properties.展开更多
Recombinant E. coli BL 21 was cultivated in high cell density to produce human-like collagen. The effects of the feeding of nitrogen source, controlled by an auto on/off-feeding mode with two different cycles of 0.5mi...Recombinant E. coli BL 21 was cultivated in high cell density to produce human-like collagen. The effects of the feeding of nitrogen source, controlled by an auto on/off-feeding mode with two different cycles of 0.5min and 4min intervals, oxygen-enrichment methods and inducement strength on the cell yield and human-like collagen production were investigated. The studies showed that nitrogen source feeding in fast cycle could result in higher human-like collagen production than that in slow cycle; and the feedback regulation of glucose, increase of the pressure of fermentation bioreactor, and supply of oxygen-enriched air could all increase cell yield and human-like collagen production. The effects of inducement strength on protein expression were found important. When OD600 reached 90-100, the cultivation temperature was increased to 42℃ to begin induction for 2-3 h, and then shifted to 39℃ for 5-6h induction, the cell density and human-like collagen production could reach 96g·L-1 [DCW (dry cell mass)] and 19.8% (g·g-1 DCW) respectively.展开更多
In order to improve the production of human-like collagen III(HLC III)by fed-batch culture of recombinant Escherichia coli BL21,the Plackett-Burman and Box-Behnken design were applied to optimize the fermentation proc...In order to improve the production of human-like collagen III(HLC III)by fed-batch culture of recombinant Escherichia coli BL21,the Plackett-Burman and Box-Behnken design were applied to optimize the fermentation process parameters.Three variables(induction time,inoculum age and pH),which have significant effects on HLC III production,were selected from eight variables by Plackett-Burman design.With the regression coefficient analysis in the Box-Behnken design,a relationship between HLC III production and three significant factors was obtained,and the optimum levels of the three variables were as follows:induction time 3.2h,inoculum age 12.6 h and pH 6.7.The 3D response surface plots and 2D contour plots created by the Box-Behnken design showed that the interaction between induction time and pH and that between innoculum age and pH were significant.An average 9.68 g·L1HLC III production was attained in the validation experiment under optimized condition,which was 80%higher than the yield of 5.36 g·L1before optimization.展开更多
Recombinant Escherichia coli BL21 is used to produce human-like collagen. The key constituents of media are optimized using response surface methodology (RSM). Before thermal induction, the highest biomass production ...Recombinant Escherichia coli BL21 is used to produce human-like collagen. The key constituents of media are optimized using response surface methodology (RSM). Before thermal induction, the highest biomass production and the lowest production of some hazardous by-products, especially acetic acid, were obtained in the media containing 0.085 mol·L-1 glucose and 0.019 mol·L-1 nitrogen (carbon-nitrogen ratio, 4.47:1). After thermal induction, when the concentrations of glucose and nitrogen in the media were 0.065 mol·L-1 and 0.017 mol·L-1 , respectively (carbon-nitrogen ratio, 3.82:1), the productivity of human-like collagen per cell was the highest while that of acetic acid was the lowest. The extended analysis showed that the production of lactic acid and propionic acid increased while that of some intermediate acids of the tricarboxylic acid cycle decreased if the dose of glucose increased.展开更多
Background: Wounded personnel who work at sea often encounter a plethora of difficulties. The most important of these difficulties is seawater immersion. Common medical dressings have little effect when the affected a...Background: Wounded personnel who work at sea often encounter a plethora of difficulties. The most important of these difficulties is seawater immersion. Common medical dressings have little effect when the affected area is immersed in seawater, and only rarely dressings have been reported for the treatment of seawater-immersed wounds. The objective of this study is to develop a new dressing which should be suitable to prevent the wound from seawater immersion and to promote the wound healing.Methods: Shark skin collagen(SSC) was purified via ethanol de-sugaring and de-pigmentation and adjusted for p H. A shark skin collagen sponge(SSCS) was prepared by freeze-drying. SSCS was attached to an anti-seawater immersion polyurethane(PU) film(SSCS+PU) to compose a new dressing. The biochemical properties of SSC and physicochemical properties of SSCS were assessed by standard methods. The effects of SSCS and SSCS+PU on the healing of seawaterimmersed wounds were studied using a seawater immersion rat model. For the detection of SSCS effects on seawaterimmersed wounds, 12 SD rats, with four wounds created in each rat, were divided into four groups: the 3 rd day group, 5 th day group, 7 th day group and 12 th day group. In each group, six wounds were treated with SSCS, three wounds treated with chitosan served as the positive control, and three wounds treated with gauze served as the negative control. For the detection of the SSCS+PU effects on seawater-immersed wounds, 36 SD rats were divided into three groups: the gauze(GZ)+PU group, chitosan(CS)+PU group and SSCS+PU group, with 12 rats in each group, and two wounds in each rat. The wound sizes were measured to calculate the healing rate, and histomorphology and the immunohistochemistry of the CD31 and TGF-β expression levels in the wounded tissues were measured by standard methods.Results: The results of Ultraviolet-visible(UV-vis) spectrum, Fourier-transform infrared(FTIR) spectrum, circular dichroism(CD) spectra, sodium dodecyl sulfate polyacrylamide gel electrophoresis(SDS-PAGE), and amino acid composition analyses of SSC demonstrated that SSC is type I collagen. SSCS had a homogeneous porous structure of approximately 200μm, porosity rate of 83.57%±2.64%, water vapor transmission ratio(WVTR) of 4500 g/m2, tensile strength of 1.79±0.41 N/mm, and elongation at break of 4.52%±0.01%. SSCS had significant beneficial effects on seawater-immersed wound healing. On the 3 rd day, the healing rates in the GZ negative control, CS positive control and SSCS rats were 13.94%±5.50%, 29.40%±1.10% and 47.24%±8.40%, respectively. SSCS also enhanced TGF-in the initial stage of the healing period. The SSCS+PU dressing effectively protected woundsβ and CD31 expression from seawater immersion for at least 4 h, and accelerated re-epithelialization, vascularization and granulation formation of seawater-immersed wounds in the earlier stages of wound healing, and as well as significantly promoted wound healing. The SSCS+PU dressing also enhanced expression of TGF-n and gauze dressings.β and CD31. The effects of SSCS and SSCS+PU were superior to those of both the chitosaConclusion: SSCS has significant positive effects on the promotion of seawater-immersed wound healing, and a SSCS+PU dressing effectively prevents seawater immersion, and significantly promotes seawater-immersed wound healing.展开更多
The kinetics of batch and fed-batch cultures of recombinant Escherichia coli producing human-like collagen was investigated. In the batch culture, a kinetic model of a simple growth-association system was concluded wi...The kinetics of batch and fed-batch cultures of recombinant Escherichia coli producing human-like collagen was investigated. In the batch culture, a kinetic model of a simple growth-association system was concluded without consideration of cell endogeneous metabolism. The cell lag time, the maximum specific growth rate and Yx/s were determined as 1.75h, 0.65h^-1 and 0.51g·g^-1, respectively. In the fed-batch culture, different specific growth rates were set at (0.15, 0.2, 0.25h^-1) by the method of pseudo-exponential feeding, and the expressions for the specific rate of substrate consumption, the growth kinetics and the product formation kinetics of each phase were obtained. The result shows that the concentrations of cell and product can reach 77.5g·L^-1 and 10.2g·L^-1 respectively. The modal predictions are in good agreement with the experimental data.展开更多
Collagen(Col)/chitosan(CS)nanofibrous membrane has great potential to be used as wound dressing.However,current Col/CS nanofibrous membrane produced from electrospinning can not offer sufficient mechanical strength fo...Collagen(Col)/chitosan(CS)nanofibrous membrane has great potential to be used as wound dressing.However,current Col/CS nanofibrous membrane produced from electrospinning can not offer sufficient mechanical strength for practical applications.Herein,a novel mixed solvent was used to prepare next-generation high-strength Col/CS nanofibrous membrane.Meanwhile,the optimal Col to CS weight ratio was investigated as well.The asproduced membrane was examined by scanning electron microscopy(SEM),attenuated total reflectance Fourier transform infrared spectroscopy(ATR-FTIR),differential scanning calorimetry(DSC),and XF-1A tester to study its morphological,chemical,thermal and mechanical properties.The preliminary results demonstrated that the mechanical properties of Col/CS nanofibrous membranes were enhanced substantially with the increase of CS weight ratios from 0 to 90%and the optimal Col to CS weight ratio was determined to be 1∶1.A promising way was presented to fabricate Col/CS electrospun nanofibrous membrane with sufficient mechanical strength for practical wound dressing applications.展开更多
This clinical trial aimed to evaluate the efficacy and safety of a novel wound dressing composed of hyaluronic acid (HA) and collagen (Col) containing epidermal growth factor (EGF), referred to as EGF-wound dressing. ...This clinical trial aimed to evaluate the efficacy and safety of a novel wound dressing composed of hyaluronic acid (HA) and collagen (Col) containing epidermal growth factor (EGF), referred to as EGF-wound dressing. EGF-wound dressing was prepared by freeze-drying a mixed aqueous solution of high-molecular-weight HA, low-molecular-weight HA and heat-denatured Col containing EGF. EGF-wound dressing was applied to skin defects, such as intractable skin ulcers, burn ulcers, traumatic skin defects and skin donor-site wounds. The dressing was changed twice a week for a period of 6 weeks or longer, if necessary. The primary endpoints were size of wound area, formation of granulation tissue, extent of epithelialization, infection control and macroscopic appearance. Effectiveness, safety and overall clinical evaluation were scored by plastic surgeons, as authorized by the Japanese Society of Plastic and Reconstructive Surgery. This study was registered with the University Hospital Medical Information Network (UMIN0000005264). Healthy granulation tissue and rapid epithelialization were observed for a given period after application of EGF-wound dressing onto the wounds. Most cases were assessed as having achieved good or excellent results. This clinical study demonstrated that EGF-wound dressing was beneficial in the treatment of various skin defects.展开更多
Objective: To study the effect of calcium alginate dressing on the cytokine contents, collagen synthesis - degradation balance and apoptosis gene expression in the wound after perianal abscess surgery. Methods: Patien...Objective: To study the effect of calcium alginate dressing on the cytokine contents, collagen synthesis - degradation balance and apoptosis gene expression in the wound after perianal abscess surgery. Methods: Patients with perianal abscess who received surgical resection in the Eighth Hospital of Wuhan between May 2014 and February 2017 were selected and randomly divided into the group A who received calcium alginate dressing combined with kangfuxin solution and recombinant human epidermal growth factor for dressing change and the group B who received kangfuxin solution and recombinant human epidermal growth factor for dressing change. 3 d, 6 d and 9 d after dressing change, appropriate amount of wound tissue was collected to determine the expression of cytokines, collagen metabolites and apoptosis genes. Results: 3 d, 6 d and 9 d after dressing change, TGF-β1, Smad3, EGF and bFGF protein expression as well as Col-I, Col-II, Col-III, TIMP1 and TIMP2 protein expression in wounds of both groups of patients were increasing while Fas, FasL, Bax and Caspase-3 protein expression were decreasing, and TGF-β1, Smad3, EGF and bFGF protein expression as well as Col-I, Col-II, Col-III, TIMP1 and TIMP2 protein expression in wounds of group A were significantly higher than those of group B while Fas, FasL, Bax and Caspase-3 protein expression were significantly lower than those of group B. Conclusion: Calcium alginate dressing for wound dressing after perianal abscess surgery an increase the pro-proliferation cytokine expression, adjust the collagen synthesis - degradation balance and inhibit apoptosis, and it is conducive to wound healing.展开更多
By intercepting the most effective fragment of human collagen’s gene,recombinant human-like collagen is produced by genetic engineering technology and biotechnology.The collagen has good biocompatibility and can prom...By intercepting the most effective fragment of human collagen’s gene,recombinant human-like collagen is produced by genetic engineering technology and biotechnology.The collagen has good biocompatibility and can promote cell formation.Recombinant human-like collagen has great potential application value in medical biological materials,cosmetics and foods.In recent years,many specialized enterprises which are engaged in human-like collagen raw materials production have emerged.In this paper,a brief summary of the current recombinant human-like collagen raw material’s production and its latest research and development have been made.展开更多
The skin plays a fundamental role in regulating the body's internal balance and protecting against external traumas.A broad variety of environmental risk factors frequently result in acute skin wounds,whose inappr...The skin plays a fundamental role in regulating the body's internal balance and protecting against external traumas.A broad variety of environmental risk factors frequently result in acute skin wounds,whose inappropriate treatments would lead to chronic skin wounds that are difficult to heal.Traditional dressings have been widely used to repair chronic skin wounds,however their drawbacks such as insufficient hemostatic efficacy and non-moist environment have severely limited their clinical applications.As the principal component of skin,collagen has always been a research hotspot in the field of chronic skin wounds due to its advantages of low antigenicity,high biocompatibility and superior bioactivity.Collagen-based dressings have been increasingly developed to heal the chronic wounds during the past decades,arising from their capability in decreasing protein and electrolyte losses in wound exudate,preventing bacterial contamination,permitting less painful dressing changes,and improving the healing quality.This review overviews recent progress of collagen dressings for chronic skin wound healing.Various commonly used wound dressings for wound management have been first introduced.Collagen wound dressings have been categorized as films,sponges,hydrogels,nanofibers,and powders,and their efficacy has been compared.The critical functions of collagen dressings in wound healing,such as stopping bleeding,shortening inflammation,promoting angiogenesis,and stimulating tissue regeneration have been elaborated.The clinical applications of collagen dressings to repair different types of chronic wounds have been thoroughly summarized.A comprehensive list of commercialized collagen dressings has been updated,and an outlook of collagen dressings have been finally speculated.展开更多
<span style="line-height:1.5;font-family:Verdana;">This research aims to obtain useful information for development of medical devices such as wound dressing and tissue anti-adhesive product, using a sp...<span style="line-height:1.5;font-family:Verdana;">This research aims to obtain useful information for development of medical devices such as wound dressing and tissue anti-adhesive product, using a spongy sheet composed of hyaluronic acid (HA) and collagen (Col). The spongy sheets were manufactured by freeze vacuum drying of HA and Col aqueous solution, followed by UV irradiation to introduce intermolecular crosslinks between Col molecules. These spongy sheets are referred to as Sponge-A (ratio of HA/Col = 5/1) and Sponge-B (ratio of HA/Col = 5/5). Both surfaces of Sponge-A and Sponge-B treated with UV irradiation for 15 minutes are referred to as Sponge-A-15 and Sponge-B-15, respectively. The weight change of spongy sheet was determined by immersing a peace of spongy sheet in water at 37°</span><span style="line-height:1.5;font-family:Verdana;">C</span><span style="line-height:1.5;font-family:Verdana;">. The weight of sponge-A-15 collected 1/2, 1, 3, 7 days after immersion in water was 63.5%, 62.1%, 56.6%, 54.4% of the original weight, respectively. The weight of Sponge-B-15 was 78.3%, 76.7%, 79.1%, 71.9% of the original weight, respectively. The weight change of spongy sheet was determined by immersing a peace of spongy sheet in water containing collagenase at 37°</span><span style="line-height:1.5;font-family:Verdana;">C</span><span style="line-height:1.5;font-family:Verdana;">. The weight of Sponge-A-15 collected 6, 8, 10, 12 hours after immersion in water containing collagenase (0.0005</span><span "="" style="line-height:1.5;"> </span><span style="line-height:1.5;font-family:Verdana;">w/v%) was 65.7%, 59.8%, 57.9%, 55.2% of the original weight, respectively. The weight of Sponge-B-15 was 63.5%, 52.1%, 42.0%, 43.2% of the original weight, respectively. This spongy sheet is considered to have the unique structure, where HA molecules are entrapped in an intermolecular cross-linked network structure of Col molecules. When immersed in water containing collagenase, the weight loss of spongy sheet is accelerated by easy extraction of HA molecules from the enzymatic degraded Col network structure. The performance of wound dressing and tissue anti-adhesive product is considered to depend on appropriate ratio of HA and Col, and also on appropriate rate of intermolecular crosslinks between Col molecules. These findings obtained in this study provide useful information for product development such as wound dressing and tissue anti-adhesive product.展开更多
This study aims to develop various types of collagen devices for use in oral surgery. The targets are the sheet-shaped sponges to cover mucosal defect wounds (product-1) and gingival defect wounds (product-2) and the ...This study aims to develop various types of collagen devices for use in oral surgery. The targets are the sheet-shaped sponges to cover mucosal defect wounds (product-1) and gingival defect wounds (product-2) and the cylindrical sponge to fill tooth extraction sockets (product-3). The sheet-shaped sponges were manufactured by freeze-vacuum drying the aqueous solution of collagen (Col) and heat-denatured collagen (Col’) at a composition ratio of 2/1, 1/1 or 1/2. Both surfaces of the sheet-shaped sponge were treated by ultraviolet (UV) irradiation for 5, 10 or 15 minutes to introduce intermolecular crosslinks between collagen molecules. The elution behavior of each collagen sponge was investigated by immersing the sponge in water for a predetermined time and then by measuring the weight change. The collagen sponge composed of Col and Col’ with a composition ratio of 2/1 that was treated by UV irradiation for 15 minutes showed very slow elution properties. This sheet-shaped sponge is the top candidate for product-1. The collagen sponge composed of Col and Col’ with a composition ratio of 2/1 that was treated by UV irradiation for 5 minutes showed slightly fast elution properties. This sheet-shaped sponge is the top candidate for product-2. Next, the cylindrical sponge was manufactured by freeze-vacuum drying the aqueous solution of Col and Col’ at a composition ratio of 2/1. Both sides of the cylindrical sponge were treated by UV irradiation for 15 minutes. This sponge showed initially fast elution properties and subsequent very slow elution properties. This cylindrical sponge is a good candidate for product-3. As a basic design, the sheet-shaped sponge and the cylindrical sponge should be biodegraded and absorbed by the time new tissue formation is completed.展开更多
文摘This research aims to develop a wound dressing composed of collagen (Col) and hyaluronic acid (HA) containing epidermal growth factor (EGF). First important issue is to contain EGF in the wound dressing in a stable state. The sheet-shaped sponge was manufactured by freeze-vacuum drying an aqueous solution of Col. Both sides of sponge were treated with ultraviolet (UV) irradiation to introduce intermolecular cross links between collagen molecules. This sponge was named Sponge-Col. Another sheet-shaped sponge was manufactured by freeze-vacuum drying an aqueous solution of HA containing EGF. This sponge was named Sponge-HA/EGF. The wound dressing was manufactured by laminating Sponge-Col on the top, Sponge-HA/EGF in the middle, and Sponge-Col on the bottom to create a sandwich structure. This method can prevent the reducing of EGF activity due to UV irradiation for intermolecular cross-linking. Second important issue is to enable gradual release of EGF from the wound dressing. The elution behavior of this wound dressing was investigated by measuring the weight change after immersion in water for a predetermined time. This wound dressing showed initially fast elution and subsequent very slow elution properties. The upper layer and lower layer Sponge-Col enabled gradual release of the middle layer Sponge-HA/EGF. This result suggests that EGF contained in the wound dressing is gradually released together with HA from the wound dressing. Third important issue is to provide moist wound-healing environment. The upper layer and lower layer Sponge-Col can provide the wound dressing with high water absorption and long-term water retention properties.
基金Supported by the National Science and Technology Key Funds (2003DA901A32)the National Nature Science Foundation (No. 20476085).
文摘Recombinant E. coli BL 21 was cultivated in high cell density to produce human-like collagen. The effects of the feeding of nitrogen source, controlled by an auto on/off-feeding mode with two different cycles of 0.5min and 4min intervals, oxygen-enrichment methods and inducement strength on the cell yield and human-like collagen production were investigated. The studies showed that nitrogen source feeding in fast cycle could result in higher human-like collagen production than that in slow cycle; and the feedback regulation of glucose, increase of the pressure of fermentation bioreactor, and supply of oxygen-enriched air could all increase cell yield and human-like collagen production. The effects of inducement strength on protein expression were found important. When OD600 reached 90-100, the cultivation temperature was increased to 42℃ to begin induction for 2-3 h, and then shifted to 39℃ for 5-6h induction, the cell density and human-like collagen production could reach 96g·L-1 [DCW (dry cell mass)] and 19.8% (g·g-1 DCW) respectively.
基金Supported by the National Natural Science Foundation of China(20776119) the National High Technology Research and Development Program of China(2007AA03Z456A) the Special Research Program of the Education Department of Shaanxi Province(07JK417)
文摘In order to improve the production of human-like collagen III(HLC III)by fed-batch culture of recombinant Escherichia coli BL21,the Plackett-Burman and Box-Behnken design were applied to optimize the fermentation process parameters.Three variables(induction time,inoculum age and pH),which have significant effects on HLC III production,were selected from eight variables by Plackett-Burman design.With the regression coefficient analysis in the Box-Behnken design,a relationship between HLC III production and three significant factors was obtained,and the optimum levels of the three variables were as follows:induction time 3.2h,inoculum age 12.6 h and pH 6.7.The 3D response surface plots and 2D contour plots created by the Box-Behnken design showed that the interaction between induction time and pH and that between innoculum age and pH were significant.An average 9.68 g·L1HLC III production was attained in the validation experiment under optimized condition,which was 80%higher than the yield of 5.36 g·L1before optimization.
基金Supported by the National High Technology Research and Development Program of China (2006AA02Z246 2007AA03Z456) the National Natural Science Foundation of China (20776119 21076169)+4 种基金 Xi’an Research and Development Program(CX0735) the Scientific Research Program of Shaanxi Provincial Department of Education China (07JK417 07JC16 JG08181) the Natural Science Foundation of Shaanxi Province (2010JQ2012) the Specialized Research Fund for the Doctoral Program of Higher Education of China (20096101120023 20096101110014) Shaanxi Key Subject Program China
文摘Recombinant Escherichia coli BL21 is used to produce human-like collagen. The key constituents of media are optimized using response surface methodology (RSM). Before thermal induction, the highest biomass production and the lowest production of some hazardous by-products, especially acetic acid, were obtained in the media containing 0.085 mol·L-1 glucose and 0.019 mol·L-1 nitrogen (carbon-nitrogen ratio, 4.47:1). After thermal induction, when the concentrations of glucose and nitrogen in the media were 0.065 mol·L-1 and 0.017 mol·L-1 , respectively (carbon-nitrogen ratio, 3.82:1), the productivity of human-like collagen per cell was the highest while that of acetic acid was the lowest. The extended analysis showed that the production of lactic acid and propionic acid increased while that of some intermediate acids of the tricarboxylic acid cycle decreased if the dose of glucose increased.
基金supported by a Major Project of the Ministry of National Science and Technology of China(Grant No.2014ZX09J14103-09C).
文摘Background: Wounded personnel who work at sea often encounter a plethora of difficulties. The most important of these difficulties is seawater immersion. Common medical dressings have little effect when the affected area is immersed in seawater, and only rarely dressings have been reported for the treatment of seawater-immersed wounds. The objective of this study is to develop a new dressing which should be suitable to prevent the wound from seawater immersion and to promote the wound healing.Methods: Shark skin collagen(SSC) was purified via ethanol de-sugaring and de-pigmentation and adjusted for p H. A shark skin collagen sponge(SSCS) was prepared by freeze-drying. SSCS was attached to an anti-seawater immersion polyurethane(PU) film(SSCS+PU) to compose a new dressing. The biochemical properties of SSC and physicochemical properties of SSCS were assessed by standard methods. The effects of SSCS and SSCS+PU on the healing of seawaterimmersed wounds were studied using a seawater immersion rat model. For the detection of SSCS effects on seawaterimmersed wounds, 12 SD rats, with four wounds created in each rat, were divided into four groups: the 3 rd day group, 5 th day group, 7 th day group and 12 th day group. In each group, six wounds were treated with SSCS, three wounds treated with chitosan served as the positive control, and three wounds treated with gauze served as the negative control. For the detection of the SSCS+PU effects on seawater-immersed wounds, 36 SD rats were divided into three groups: the gauze(GZ)+PU group, chitosan(CS)+PU group and SSCS+PU group, with 12 rats in each group, and two wounds in each rat. The wound sizes were measured to calculate the healing rate, and histomorphology and the immunohistochemistry of the CD31 and TGF-β expression levels in the wounded tissues were measured by standard methods.Results: The results of Ultraviolet-visible(UV-vis) spectrum, Fourier-transform infrared(FTIR) spectrum, circular dichroism(CD) spectra, sodium dodecyl sulfate polyacrylamide gel electrophoresis(SDS-PAGE), and amino acid composition analyses of SSC demonstrated that SSC is type I collagen. SSCS had a homogeneous porous structure of approximately 200μm, porosity rate of 83.57%±2.64%, water vapor transmission ratio(WVTR) of 4500 g/m2, tensile strength of 1.79±0.41 N/mm, and elongation at break of 4.52%±0.01%. SSCS had significant beneficial effects on seawater-immersed wound healing. On the 3 rd day, the healing rates in the GZ negative control, CS positive control and SSCS rats were 13.94%±5.50%, 29.40%±1.10% and 47.24%±8.40%, respectively. SSCS also enhanced TGF-in the initial stage of the healing period. The SSCS+PU dressing effectively protected woundsβ and CD31 expression from seawater immersion for at least 4 h, and accelerated re-epithelialization, vascularization and granulation formation of seawater-immersed wounds in the earlier stages of wound healing, and as well as significantly promoted wound healing. The SSCS+PU dressing also enhanced expression of TGF-n and gauze dressings.β and CD31. The effects of SSCS and SSCS+PU were superior to those of both the chitosaConclusion: SSCS has significant positive effects on the promotion of seawater-immersed wound healing, and a SSCS+PU dressing effectively prevents seawater immersion, and significantly promotes seawater-immersed wound healing.
基金Supported by the National Science and Technology Key Funds (2003DA901A32) and the National Natural Science Foundationof China (No.20476085).
文摘The kinetics of batch and fed-batch cultures of recombinant Escherichia coli producing human-like collagen was investigated. In the batch culture, a kinetic model of a simple growth-association system was concluded without consideration of cell endogeneous metabolism. The cell lag time, the maximum specific growth rate and Yx/s were determined as 1.75h, 0.65h^-1 and 0.51g·g^-1, respectively. In the fed-batch culture, different specific growth rates were set at (0.15, 0.2, 0.25h^-1) by the method of pseudo-exponential feeding, and the expressions for the specific rate of substrate consumption, the growth kinetics and the product formation kinetics of each phase were obtained. The result shows that the concentrations of cell and product can reach 77.5g·L^-1 and 10.2g·L^-1 respectively. The modal predictions are in good agreement with the experimental data.
基金Science and Technology Committee of Shanghai Municipality,China(No.14441901600)Fundamental Research Funds for the Central Universities,China(No.16D110119)“111 Project”Biomedical Textile Materials Science and Technology,China(No.B07024)
文摘Collagen(Col)/chitosan(CS)nanofibrous membrane has great potential to be used as wound dressing.However,current Col/CS nanofibrous membrane produced from electrospinning can not offer sufficient mechanical strength for practical applications.Herein,a novel mixed solvent was used to prepare next-generation high-strength Col/CS nanofibrous membrane.Meanwhile,the optimal Col to CS weight ratio was investigated as well.The asproduced membrane was examined by scanning electron microscopy(SEM),attenuated total reflectance Fourier transform infrared spectroscopy(ATR-FTIR),differential scanning calorimetry(DSC),and XF-1A tester to study its morphological,chemical,thermal and mechanical properties.The preliminary results demonstrated that the mechanical properties of Col/CS nanofibrous membranes were enhanced substantially with the increase of CS weight ratios from 0 to 90%and the optimal Col to CS weight ratio was determined to be 1∶1.A promising way was presented to fabricate Col/CS electrospun nanofibrous membrane with sufficient mechanical strength for practical wound dressing applications.
文摘This clinical trial aimed to evaluate the efficacy and safety of a novel wound dressing composed of hyaluronic acid (HA) and collagen (Col) containing epidermal growth factor (EGF), referred to as EGF-wound dressing. EGF-wound dressing was prepared by freeze-drying a mixed aqueous solution of high-molecular-weight HA, low-molecular-weight HA and heat-denatured Col containing EGF. EGF-wound dressing was applied to skin defects, such as intractable skin ulcers, burn ulcers, traumatic skin defects and skin donor-site wounds. The dressing was changed twice a week for a period of 6 weeks or longer, if necessary. The primary endpoints were size of wound area, formation of granulation tissue, extent of epithelialization, infection control and macroscopic appearance. Effectiveness, safety and overall clinical evaluation were scored by plastic surgeons, as authorized by the Japanese Society of Plastic and Reconstructive Surgery. This study was registered with the University Hospital Medical Information Network (UMIN0000005264). Healthy granulation tissue and rapid epithelialization were observed for a given period after application of EGF-wound dressing onto the wounds. Most cases were assessed as having achieved good or excellent results. This clinical study demonstrated that EGF-wound dressing was beneficial in the treatment of various skin defects.
文摘Objective: To study the effect of calcium alginate dressing on the cytokine contents, collagen synthesis - degradation balance and apoptosis gene expression in the wound after perianal abscess surgery. Methods: Patients with perianal abscess who received surgical resection in the Eighth Hospital of Wuhan between May 2014 and February 2017 were selected and randomly divided into the group A who received calcium alginate dressing combined with kangfuxin solution and recombinant human epidermal growth factor for dressing change and the group B who received kangfuxin solution and recombinant human epidermal growth factor for dressing change. 3 d, 6 d and 9 d after dressing change, appropriate amount of wound tissue was collected to determine the expression of cytokines, collagen metabolites and apoptosis genes. Results: 3 d, 6 d and 9 d after dressing change, TGF-β1, Smad3, EGF and bFGF protein expression as well as Col-I, Col-II, Col-III, TIMP1 and TIMP2 protein expression in wounds of both groups of patients were increasing while Fas, FasL, Bax and Caspase-3 protein expression were decreasing, and TGF-β1, Smad3, EGF and bFGF protein expression as well as Col-I, Col-II, Col-III, TIMP1 and TIMP2 protein expression in wounds of group A were significantly higher than those of group B while Fas, FasL, Bax and Caspase-3 protein expression were significantly lower than those of group B. Conclusion: Calcium alginate dressing for wound dressing after perianal abscess surgery an increase the pro-proliferation cytokine expression, adjust the collagen synthesis - degradation balance and inhibit apoptosis, and it is conducive to wound healing.
文摘By intercepting the most effective fragment of human collagen’s gene,recombinant human-like collagen is produced by genetic engineering technology and biotechnology.The collagen has good biocompatibility and can promote cell formation.Recombinant human-like collagen has great potential application value in medical biological materials,cosmetics and foods.In recent years,many specialized enterprises which are engaged in human-like collagen raw materials production have emerged.In this paper,a brief summary of the current recombinant human-like collagen raw material’s production and its latest research and development have been made.
基金supported by grants from the National Natural Science Foundation of China(grant nos.22074057,21775059 and 22205089).
文摘The skin plays a fundamental role in regulating the body's internal balance and protecting against external traumas.A broad variety of environmental risk factors frequently result in acute skin wounds,whose inappropriate treatments would lead to chronic skin wounds that are difficult to heal.Traditional dressings have been widely used to repair chronic skin wounds,however their drawbacks such as insufficient hemostatic efficacy and non-moist environment have severely limited their clinical applications.As the principal component of skin,collagen has always been a research hotspot in the field of chronic skin wounds due to its advantages of low antigenicity,high biocompatibility and superior bioactivity.Collagen-based dressings have been increasingly developed to heal the chronic wounds during the past decades,arising from their capability in decreasing protein and electrolyte losses in wound exudate,preventing bacterial contamination,permitting less painful dressing changes,and improving the healing quality.This review overviews recent progress of collagen dressings for chronic skin wound healing.Various commonly used wound dressings for wound management have been first introduced.Collagen wound dressings have been categorized as films,sponges,hydrogels,nanofibers,and powders,and their efficacy has been compared.The critical functions of collagen dressings in wound healing,such as stopping bleeding,shortening inflammation,promoting angiogenesis,and stimulating tissue regeneration have been elaborated.The clinical applications of collagen dressings to repair different types of chronic wounds have been thoroughly summarized.A comprehensive list of commercialized collagen dressings has been updated,and an outlook of collagen dressings have been finally speculated.
文摘<span style="line-height:1.5;font-family:Verdana;">This research aims to obtain useful information for development of medical devices such as wound dressing and tissue anti-adhesive product, using a spongy sheet composed of hyaluronic acid (HA) and collagen (Col). The spongy sheets were manufactured by freeze vacuum drying of HA and Col aqueous solution, followed by UV irradiation to introduce intermolecular crosslinks between Col molecules. These spongy sheets are referred to as Sponge-A (ratio of HA/Col = 5/1) and Sponge-B (ratio of HA/Col = 5/5). Both surfaces of Sponge-A and Sponge-B treated with UV irradiation for 15 minutes are referred to as Sponge-A-15 and Sponge-B-15, respectively. The weight change of spongy sheet was determined by immersing a peace of spongy sheet in water at 37°</span><span style="line-height:1.5;font-family:Verdana;">C</span><span style="line-height:1.5;font-family:Verdana;">. The weight of sponge-A-15 collected 1/2, 1, 3, 7 days after immersion in water was 63.5%, 62.1%, 56.6%, 54.4% of the original weight, respectively. The weight of Sponge-B-15 was 78.3%, 76.7%, 79.1%, 71.9% of the original weight, respectively. The weight change of spongy sheet was determined by immersing a peace of spongy sheet in water containing collagenase at 37°</span><span style="line-height:1.5;font-family:Verdana;">C</span><span style="line-height:1.5;font-family:Verdana;">. The weight of Sponge-A-15 collected 6, 8, 10, 12 hours after immersion in water containing collagenase (0.0005</span><span "="" style="line-height:1.5;"> </span><span style="line-height:1.5;font-family:Verdana;">w/v%) was 65.7%, 59.8%, 57.9%, 55.2% of the original weight, respectively. The weight of Sponge-B-15 was 63.5%, 52.1%, 42.0%, 43.2% of the original weight, respectively. This spongy sheet is considered to have the unique structure, where HA molecules are entrapped in an intermolecular cross-linked network structure of Col molecules. When immersed in water containing collagenase, the weight loss of spongy sheet is accelerated by easy extraction of HA molecules from the enzymatic degraded Col network structure. The performance of wound dressing and tissue anti-adhesive product is considered to depend on appropriate ratio of HA and Col, and also on appropriate rate of intermolecular crosslinks between Col molecules. These findings obtained in this study provide useful information for product development such as wound dressing and tissue anti-adhesive product.
文摘This study aims to develop various types of collagen devices for use in oral surgery. The targets are the sheet-shaped sponges to cover mucosal defect wounds (product-1) and gingival defect wounds (product-2) and the cylindrical sponge to fill tooth extraction sockets (product-3). The sheet-shaped sponges were manufactured by freeze-vacuum drying the aqueous solution of collagen (Col) and heat-denatured collagen (Col’) at a composition ratio of 2/1, 1/1 or 1/2. Both surfaces of the sheet-shaped sponge were treated by ultraviolet (UV) irradiation for 5, 10 or 15 minutes to introduce intermolecular crosslinks between collagen molecules. The elution behavior of each collagen sponge was investigated by immersing the sponge in water for a predetermined time and then by measuring the weight change. The collagen sponge composed of Col and Col’ with a composition ratio of 2/1 that was treated by UV irradiation for 15 minutes showed very slow elution properties. This sheet-shaped sponge is the top candidate for product-1. The collagen sponge composed of Col and Col’ with a composition ratio of 2/1 that was treated by UV irradiation for 5 minutes showed slightly fast elution properties. This sheet-shaped sponge is the top candidate for product-2. Next, the cylindrical sponge was manufactured by freeze-vacuum drying the aqueous solution of Col and Col’ at a composition ratio of 2/1. Both sides of the cylindrical sponge were treated by UV irradiation for 15 minutes. This sponge showed initially fast elution properties and subsequent very slow elution properties. This cylindrical sponge is a good candidate for product-3. As a basic design, the sheet-shaped sponge and the cylindrical sponge should be biodegraded and absorbed by the time new tissue formation is completed.