期刊文献+
共找到53,941篇文章
< 1 2 250 >
每页显示 20 50 100
Efficient Electromagnetic Wave Absorption and Thermal Infrared Stealth in PVTMS@MWCNT Nano‑Aerogel via Abundant Nano‑Sized Cavities and Attenuation Interfaces 被引量:1
1
作者 Haoyu Ma Maryam Fashandi +5 位作者 Zeineb Ben Rejeb Xin Ming Yingjun Liu Pengjian Gong Guangxian Li Chul B.Park 《Nano-Micro Letters》 SCIE EI CAS CSCD 2024年第1期370-383,共14页
Pre-polymerized vinyl trimethoxy silane(PVTMS)@MWCNT nano-aerogel system was constructed via radical polymerization,sol-gel transition and supercritical CO_(2)drying.The fabricated organic-inorganic hybrid PVTMS@MWCNT... Pre-polymerized vinyl trimethoxy silane(PVTMS)@MWCNT nano-aerogel system was constructed via radical polymerization,sol-gel transition and supercritical CO_(2)drying.The fabricated organic-inorganic hybrid PVTMS@MWCNT aerogel structure shows nano-pore size(30-40 nm),high specific surface area(559 m^(2)g^(−1)),high void fraction(91.7%)and enhanced mechanical property:(1)the nano-pore size is beneficial for efficiently blocking thermal conduction and thermal convection via Knudsen effect(beneficial for infrared(IR)stealth);(2)the heterogeneous interface was beneficial for IR reflection(beneficial for IR stealth)and MWCNT polarization loss(beneficial for electromagnetic wave(EMW)attenuation);(3)the high void fraction was beneficial for enhancing thermal insulation(beneficial for IR stealth)and EMW impedance match(beneficial for EMW attenuation).Guided by the above theoretical design strategy,PVTMS@MWCNT nano-aerogel shows superior EMW absorption property(cover all Ku-band)and thermal IR stealth property(ΔT reached 60.7℃).Followed by a facial combination of the above nano-aerogel with graphene film of high electrical conductivity,an extremely high electromagnetic interference shielding material(66.5 dB,2.06 mm thickness)with superior absorption performance of an average absorption-to-reflection(A/R)coefficient ratio of 25.4 and a low reflection bandwidth of 4.1 GHz(A/R ratio more than 10)was experimentally obtained in this work. 展开更多
关键词 Nano-pore size Heterogeneous interface Electromagnetic wave absorption Thermal infrared stealth Nano-aerogel
下载PDF
Digital Twin Technology of Human-Machine Integration in Cross-Belt Sorting System
2
作者 Yanbo Qu Ning Zhao Haojue Zhang 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2024年第2期195-212,共18页
The Chinese express delivery industry processes nearly 110 billion items in 2022,averaging an annual growth rate of 200%.Among the various types of sorting systems used for handling express items,cross-belt sorting sy... The Chinese express delivery industry processes nearly 110 billion items in 2022,averaging an annual growth rate of 200%.Among the various types of sorting systems used for handling express items,cross-belt sorting systems stand out as the most crucial.However,despite their high degree of automation,the workload for operators has intensified owing to the surging volume of express items.In the era of Industry 5.0,it is imperative to adopt new technologies that not only enhance worker welfare but also improve the efficiency of cross-belt systems.Striking a balance between efficiency in handling express items and operator well-being is challenging.Digital twin technology offers a promising solution in this respect.A realization method of a human-machine integrated digital twin is proposed in this study,enabling the interaction of biological human bodies,virtual human bodies,virtual equipment,and logistics equipment in a closed loop,thus setting an operating framework.Key technologies in the proposed framework include a collection of heterogeneous data from multiple sources,construction of the relationship between operator fatigue and operation efficiency based on physiological measurements,virtual model construction,and an online optimization module based on real-time simulation.The feasibility of the proposed method was verified in an express distribution center. 展开更多
关键词 Industry 5.0 Cross-belt sorting system human-machine integrated Digital twin Online optimization
下载PDF
Recent Advances in Nanoengineering of Electrode-Electrolyte Interfaces to Realize High-Performance Li-Ion Batteries
3
作者 Na-Yeong Kim Ilgyu Kim +5 位作者 Behnoosh Bornamehr Volker Presser Hiroyuki Ueda Ho-Jin Lee Jun Young Cheong Ji-Won Jung 《Energy & Environmental Materials》 SCIE EI CAS CSCD 2024年第3期1-13,共13页
A suitable interface between the electrode and electrolyte is crucial in achieving highly stable electrochemical performance for Li-ion batteries,as facile ionic transport is required.Intriguing research and developme... A suitable interface between the electrode and electrolyte is crucial in achieving highly stable electrochemical performance for Li-ion batteries,as facile ionic transport is required.Intriguing research and development have recently been conducted to form a stable interface between the electrode and electrolyte.Therefore,it is essential to investigate emerging knowledge and contextualize it.The nanoengineering of the electrode-electrolyte interface has been actively researched at the electrode/electrolyte and interphase levels.This review presents and summarizes some recent advances aimed at nanoengineering approaches to build a more stable electrode-electrolyte interface and assess the impact of each approach adopted.Furthermore,future perspectives on the feasibility and practicality of each approach will also be reviewed in detail.Finally,this review aids in projecting a more sustainable research pathway for a nanoengineered interphase design between electrode and electrolyte,which is pivotal for high-performance,thermally stable Li-ion batteries. 展开更多
关键词 battery ELECTRODE ELECTROLYTE interface LITHIUM NANOENGINEERING
下载PDF
Mg/MgO interfaces as efficient hydrogen evolution cathodes causing accelerated corrosion of additive manufactured Mg alloys:A DFT analysis
4
作者 Man-Fai Ng Kai Xiang Kuah +1 位作者 Teck Leong Tan Daniel John Blackwood 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2024年第1期110-119,共10页
The corrosion rates of additive-manufactured Mg alloys are higher than their as-cast counterparts,possibly due to increased kinetics for the hydrogen evolution reaction on secondary phases,which may include oxide incl... The corrosion rates of additive-manufactured Mg alloys are higher than their as-cast counterparts,possibly due to increased kinetics for the hydrogen evolution reaction on secondary phases,which may include oxide inclusions.Scanning Kelvin Probe Force Microscopy demonstrated that MgO inclusions could act as cathodes for Mg corrosion,but their low conductivity likely precludes this.However,the density of state calculations through density functional theory using hybrid HSE06 functional revealed overlapping electronic states at the Mg/MgO interface,which facilitates electron transfers and participates in redox reactions.Subsequent determination of the hydrogen absorption energy at the Mg/MgO interface reveals it to be an excellent catalytic site,with HER being found to be a factor of 23x more efficient at the interface than on metallic Mg.The results not only support the plausibility of the Mg/MgO interface being an effective cathode to the adjacent anodic Mg matrix during corrosion but also contribute to the understanding of the enhanced cathodic activities observed during the anodic dissolution of magnesium. 展开更多
关键词 MAGNESIUM Magnesium oxide interface Hydrogen evolution DFT
下载PDF
A Review of Contact Electrification at Diversified Interfaces and Related Applications on Triboelectric Nanogenerator
5
作者 Jun Hu Mitsumasa Iwamoto Xiangyu Chen 《Nano-Micro Letters》 SCIE EI CAS CSCD 2024年第1期106-130,共25页
The triboelectric nanogenerator(TENG)can effectively collect energy based on contact electrification(CE)at diverse interfaces,including solid–solid,liquid–solid,liquid–liquid,gas–solid,and gas–liquid.This enables... The triboelectric nanogenerator(TENG)can effectively collect energy based on contact electrification(CE)at diverse interfaces,including solid–solid,liquid–solid,liquid–liquid,gas–solid,and gas–liquid.This enables energy harvesting from sources such as water,wind,and sound.In this review,we provide an overview of the coexistence of electron and ion transfer in the CE process.We elucidate the diverse dominant mechanisms observed at different interfaces and emphasize the interconnectedness and complementary nature of interface studies.The review also offers a comprehensive summary of the factors influencing charge transfer and the advancements in interfacial modification techniques.Additionally,we highlight the wide range of applications stemming from the distinctive characteristics of charge transfer at various interfaces.Finally,this review elucidates the future opportunities and challenges that interface CE may encounter.We anticipate that this review can offer valuable insights for future research on interface CE and facilitate the continued development and industrialization of TENG. 展开更多
关键词 Contact electrification interfaces Triboelectric nanogenerators Diversified applications
下载PDF
Sulfur vacancies and heterogeneous interfaces promote high performance sodium storage of bimetallic chalcogenide hollow nanospheres
6
作者 Shiyue Cao Xiaoting Xu +2 位作者 Qiming Liu Huijuan Zhu Ting Hu 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第8期596-610,I0013,共16页
Transition metal sulfides have high theoretical capacities and are considered as potential anode materials for sodium-ion batteries.However,due to low inherent conductivity and significant volume expansion,the electro... Transition metal sulfides have high theoretical capacities and are considered as potential anode materials for sodium-ion batteries.However,due to low inherent conductivity and significant volume expansion,the electrochemical performance is greatly limited.In this study,a nickel/manganese sulfide material(Ni_(0.96)S_(x)/MnS_(y)-NC)with adjustable sulfur vacancies and heterogeneous hollow spheres was prepared using a simple method.The introduction of a concentration-adjustable sulfur vacancy enables the generation of a heterogeneous interface between bimetallic sulfide and sulfur vacancies.This interface collectively creates an internal electric field,improving the mobility of electrons and ions,increasing the number of electrochemically active sites,and further optimizing the performance of Na~+storage.The direction of electron flow is confirmed by Density functional theory(DFT)calculations.The hollow nano-spherical material provides a buffer for expansion,facilitating rapid transfer kinetics.Our innovative discovery involves the interaction between the ether-based electrolyte and copper foil,leading to the formation of Cu_9S_5,which grafts the active material and copper current collector,reinforcing mechanical supporting.This results in a new heterostructure of Cu_9S_5 with Ni_(0.96)S_(x)/MnS_(y),contributing to the stabilization of structural integrity for long-cycle performance.Therefore,Ni_(0.96)S_(x)/MnS_(y)-NC exhibits excellent electrochemical properties following our modification route.Regarding stability performance,Ni0_(.96)S_(x)/MnS_(y)-NC demonstrates an average decay rate of 0.00944%after 10,000 cycles at an extremely high current density of 10000 mA g^(-1),A full cell with a high capacity of 304.2 mA h g^(-1)was also successfully assembled by using Na_(3)V_(2)(PO_(4))_(3)/C as the cathode.This study explores a novel strategy for interface/vacancy co-modification in the fabrication of high-performance sodium-ion batteries electrode. 展开更多
关键词 Sulfur vacancies Heterogeneous interface Interactions Sodium ion batteries
下载PDF
Challenges and Suggestions of Ethical Review on Clinical Research Involving Brain-Computer Interfaces
7
作者 Xue-Qin Wang Hong-Qiang Sun +3 位作者 Jia-Yue Si Zi-Yan Lin Xiao-Mei Zhai Lin Lu 《Chinese Medical Sciences Journal》 CAS CSCD 2024年第2期131-139,共9页
Brain-computer interface(BCI)technology is rapidly advancing in medical research and application.As an emerging biomedical engineering technology,it has garnered significant attention in the clinical research of brain... Brain-computer interface(BCI)technology is rapidly advancing in medical research and application.As an emerging biomedical engineering technology,it has garnered significant attention in the clinical research of brain disease diagnosis and treatment,neurological rehabilitation,and mental health.However,BCI also raises several challenges and ethical concerns in clinical research.In this article,the authors investigate and discuss three aspects of BCI in medicine and healthcare:the state of international ethical governance,multidimensional ethical challenges pertaining to BCI in clinical research,and suggestive concerns for ethical review.Despite the great potential of frontier BCI research and development in the field of medical care,the ethical challenges induced by itself and the complexities of clinical research and brain function have put forward new special fields for ethics in BCI.To ensure"responsible innovation"in BCI research in healthcare and medicine,the creation of an ethical global governance framework and system,along with special guidelines for cutting-edge BCI research in medicine,is suggested. 展开更多
关键词 brain-computer interface clinical research BIOETHICS ethical governance ethical review
下载PDF
In-situ thermal Raman mapping and stress analysis of CNT/CF/epoxy interfaces
8
作者 HE Jing-zong CHEN Shi +2 位作者 MA Zheng-kun LU Yong-gen WU Qi-lin 《新型炭材料(中英文)》 SCIE EI CAS CSCD 北大核心 2024年第4期703-714,共12页
A study of the interfacial behavior and internal thermal stress distribution in fiber-reinforced composites is essential to assess their performance and reliability.CNT/carbon fiber(CF)hybrid fibers were constructed u... A study of the interfacial behavior and internal thermal stress distribution in fiber-reinforced composites is essential to assess their performance and reliability.CNT/carbon fiber(CF)hybrid fibers were constructed using electrophoretic deposition.The interfacial properties of CF/epoxy and CNT/CF/epoxy composites were statistically investigated and compared using in-situ thermal Raman mapping by dispersing CNTs as a Raman sensing medium(CNT_(R))in a resin.The associated local thermal stress changes can be simulated by capturing the G'band position distribution of CNT_(R) in the epoxy at different temperatures.It was found that the G'band shifted to lower positions with increasing temperature,reaching a maximum difference of 2.43 cm^(−1) at 100℃.The interfacial bonding between CNT/CF and the matrix and the stress distribution and changes during heat treatment(20-100℃)were investig-ated in detail.This work is important for studying thermal stress in fiber-reinforced composites by in-situ thermal Raman mapping technology. 展开更多
关键词 Thermal Raman mapping Stress distribution Carbon fiber Carbon nanotube interface
下载PDF
Blade-Coated Porous 3D Carbon Composite Electrodes Coupled with Multiscale Interfaces for Highly Sensitive All-Paper Pressure Sensors
9
作者 Bowen Zheng Ruisheng Guo +4 位作者 Xiaoqiang Dou Yueqing Fu Bingjun Yang Xuqing Liu Feng Zhou 《Nano-Micro Letters》 SCIE EI CAS CSCD 2024年第12期217-232,共16页
Flexible and wearable pressure sensors hold immense promise for health monitoring,covering disease detection and postoperative rehabilitation.Developing pressure sensors with high sensitivity,wide detection range,and ... Flexible and wearable pressure sensors hold immense promise for health monitoring,covering disease detection and postoperative rehabilitation.Developing pressure sensors with high sensitivity,wide detection range,and cost-effectiveness is paramount.By leveraging paper for its sustainability,biocompatibility,and inherent porous structure,herein,a solution-processed all-paper resistive pressure sensor is designed with outstanding performance.A ternary composite paste,comprising a compressible 3D carbon skeleton,conductive polymer poly(3,4-ethylene dioxythiophene):poly(styrenesulfonate),and cohesive carbon nanotubes,is blade-coated on paper and naturally dried to form the porous composite electrode with hierachical micro-and nano-structured surface.Combined with screen-printed Cu electrodes in submillimeter finger widths on rough paper,this creates a multiscale hierarchical contact interface between electrodes,significantly enhancing sensitivity(1014 kPa-1)and expanding the detection range(up to 300 kPa)of as-resulted all-paper pressure sensor with low detection limit and power consumption.Its versatility ranges from subtle wrist pulses,robust finger taps,to large-area spatial force detection,highlighting its intricate submillimetermicrometer-nanometer hierarchical interface and nanometer porosity in the composite electrode.Ultimately,this all-paper resistive pressure sensor,with its superior sensing capabilities,large-scale fabrication potential,and cost-effectiveness,paves the way for next-generation wearable electronics,ushering in an era of advanced,sustainable technological solutions. 展开更多
关键词 Micro-and nano-structures PEDOT:PSS Flexible pressure sensors Health monitoring Multiscale interfaces
下载PDF
Construction of Dynamic Alloy Interfaces for Uniform Li Deposition in Li-Metal Batteries
10
作者 Qingwen Li Yulu Liu +7 位作者 Ziheng Zhang Jinjie Chen Zelong Yang Qibo Deng Alexander V.Mumyatov Pavel A.Troshin Guang He Ning Hu 《Energy & Environmental Materials》 SCIE EI CAS CSCD 2024年第3期64-71,共8页
It is well accepted that a lithiophilic interface can effectively regulate Li deposition behaviors,but the influence of the lithiophilic interface is gradually diminished upon continuous Li deposition that completely ... It is well accepted that a lithiophilic interface can effectively regulate Li deposition behaviors,but the influence of the lithiophilic interface is gradually diminished upon continuous Li deposition that completely isolates Li from the lithiophilic metals.Herein,we perform in-depth studies on the creation of dynamic alloy interfaces upon Li deposition,arising from the exceptionally high diffusion coefficient of Hg in the amalgam solid solution.As a comparison,other metals such as Au,Ag,and Zn have typical diffusion coefficients of 10-20 orders of magnitude lower than that of Hg in the similar solid solution phases.This difference induces compact Li deposition pattern with an amalgam substrate even with a high areal capacity of 55 mAh cm^(-2).This finding provides new insight into the rational design of Li anode substrate for the stable cycling of Li metal batteries. 展开更多
关键词 diffusion coefficient dynamic alloy interfaces Li dendrites Li solid solution uniform Li deposition
下载PDF
Databases of 2D material-substrate interfaces and 2D charged building blocks
11
作者 邓俊 潘金波 杜世萱 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第2期34-38,共5页
Discovery of materials using“bottom-up”or“top-down”approach is of great interest in materials science.Layered materials consisting of two-dimensional(2D)building blocks provide a good platform to explore new mater... Discovery of materials using“bottom-up”or“top-down”approach is of great interest in materials science.Layered materials consisting of two-dimensional(2D)building blocks provide a good platform to explore new materials in this respect.In van der Waals(vdW)layered materials,these building blocks are charge neutral and can be isolated from their bulk phase(top-down),but usually grow on substrate.In ionic layered materials,they are charged and usually cannot exist independently but can serve as motifs to construct new materials(bottom-up).In this paper,we introduce our recently constructed databases for 2D material-substrate interface(2DMSI),and 2D charged building blocks.For 2DMSI database,we systematically build a workflow to predict appropriate substrates and their geometries at substrates,and construct the 2DMSI database.For the 2D charged building block database,1208 entries from bulk material database are identified.Information of crystal structure,valence state,source,dimension and so on is provided for each entry with a json format.We also show its application in designing and searching for new functional layered materials.The 2DMSI database,building block database,and designed layered materials are available in Science Data Bank at https://doi.org/10.57760/sciencedb.j00113.00188. 展开更多
关键词 2D material-substrate interfaces charged building block database functional-oriented materials design layered materials density functional theory
下载PDF
Designing interactive glazing through an engineering psychology approach:Six augmented reality scenarios that envision future car human-machine interface
12
作者 Wei LIU Yancong ZHU +5 位作者 Ruonan HUANG Takumi OHASHI Jan AUERNHAMMER Xiaonan ZHANG Ce SHI Lu WANG 《Virtual Reality & Intelligent Hardware》 2023年第2期157-170,共14页
Background With an increasing number of vehicles becoming autonomous,intelligent,and connected,paying attention to the future usage of car human-machine interface with these vehicles should become more relevant.Severa... Background With an increasing number of vehicles becoming autonomous,intelligent,and connected,paying attention to the future usage of car human-machine interface with these vehicles should become more relevant.Several studies have addressed car HMI but were less attentive to designing and implementing interactive glazing for every day(autonomous)driving contexts.Methods Reflecting on the literature,we describe an engineering psychology practice and the design of six novel future user scenarios,which envision the application of a specific set of augmented reality(AR)support user interactions.Additionally,we conduct evaluations on specific scenarios and experiential prototypes,which reveal that these AR scenarios aid the target user groups in experiencing a new type of interaction.The overall evaluation is positive with valuable assessment results and suggestions.Conclusions This study can interest applied psychology educators who aspire to teach how AR can be operationalized in a human-centered design process to students with minimal pre-existing expertise or minimal scientific knowledge in engineering psychology. 展开更多
关键词 Augmented reality Interactive glazing Engineering psychology Car human-machine interface Human-computer interaction Human-centered design User experience Generation Z
下载PDF
A Stable FE-FD Method for Anisotropic Parabolic PDEs with Moving Interfaces
13
作者 Baiying Dong Zhilin Li Juan Ruiz-Alvarez 《Communications on Applied Mathematics and Computation》 EI 2024年第2期992-1012,共21页
In this paper,a new finite element and finite difference(FE-FD)method has been developed for anisotropic parabolic interface problems with a known moving interface using Cartesian meshes.In the spatial discretization,... In this paper,a new finite element and finite difference(FE-FD)method has been developed for anisotropic parabolic interface problems with a known moving interface using Cartesian meshes.In the spatial discretization,the standard P,FE discretization is applied so that the part of the coefficient matrix is symmetric positive definite,while near the interface,the maximum principle preserving immersed interface discretization is applied.In the time discretization,a modified Crank-Nicolson discretization is employed so that the hybrid FE-FD is stable and second order accurate.Correction terms are needed when the interface crosses grid lines.The moving interface is represented by the zero level set of a Lipschitz continuous function.Numerical experiments presented in this paper confirm second orderconvergence. 展开更多
关键词 Anisotropic parabolic interface problem Hybrid finite element and finite difference(FE-FD)discretization Modified Crank Nicolson scheme
下载PDF
Design of Cold-Junction Compensation and Disconnection Detection Circuits of Various Thermocouples and Implementation of Multi-Channel Interfaces Using Them-A Secondary Publication
14
作者 Hyeong-Woo Cha 《Journal of Electronic Research and Application》 2024年第1期93-105,共13页
Cold-junction compensation(CJC)and disconnection detection circuit design of various thermocouples(TC)and multi-channel TC interface circuits were designed.The CJC and disconnection detection circuit consists of a CJC... Cold-junction compensation(CJC)and disconnection detection circuit design of various thermocouples(TC)and multi-channel TC interface circuits were designed.The CJC and disconnection detection circuit consists of a CJC semiconductor device,an instrumentation amplifier(IA),two resistors,and a diode for disconnection detection.Based on the basic circuit,a multi-channel interface circuit was also implemented.The CJC was implemented using compensation semiconductor and IA,and disconnection detection was detected by using two resistors and a diode so that IA input voltage became-0.42 V.As a result of the experiment using R-type TC,the error of the designed circuit was reduced from 0.14 mV to 3μV after CJC in the temperature range of 0°C to 1400°C.In addition,it was confirmed that the output voltage of IA was saturated from 88 mV to-14.2 V when TC was disconnected from normal.The output voltage of the designed circuit was 0 V to 10 V in the temperature range of 0°C to 1400°C.The results of the 4-channel interface experiment using R-type TC were almost identical to the CJC and disconnection detection results for each channel.The implemented multi-channel interface has a feature that can be applied equally to E,J,K,T,R,and S-type TCs by changing the terminals of CJC semiconductor devices and adjusting the IA gain. 展开更多
关键词 R-type thermocouple(TC) Cold-junction compensation(CJC) TC disconnection detection Multi-channel interface circuit Sensor interface
下载PDF
Engineering homotype heterojunctions in hard carbon to induce stable solid electrolyte interfaces for sodium-ion batteries 被引量:3
15
作者 Chengxin Yu Yu Li +6 位作者 Haixia Ren Ji Qian Shuo Wang Xin Feng Mingquan Liu Ying Bai Chuan Wu 《Carbon Energy》 SCIE CAS CSCD 2023年第1期181-193,共13页
Developing effective strategies to improve the initial Coulombic efficiency(ICE)and cycling stability of hard carbon(HC)anodes for sodium-ion batteries is the key to promoting the commercial application of HC.In this ... Developing effective strategies to improve the initial Coulombic efficiency(ICE)and cycling stability of hard carbon(HC)anodes for sodium-ion batteries is the key to promoting the commercial application of HC.In this paper,homotype heterojunctions are designed on HC to induce the generation of stable solid electrolyte interfaces,which can effectively increase the ICE of HC from 64.7%to 81.1%.The results show that using a simple surface engineering strategy to construct a homotypic amorphous Al_(2)O_(3) layer on the HC could shield the active sites,and further inhibit electrolyte decomposition and side effects occurrence.Particularly,due to the suppression of continuous decomposition of NaPF 6 in ester-based electrolytes,the accumulation of NaF could be reduced,leading to the formation of thinner and denser solid electrolyte interface films and a decrease in the interface resistance.The HC anode can not only improve the ICE but elevate its sodium storage performance based on this homotype heterojunction composed of HC and Al_(2)O_(3).The optimized HC anode exhibits an outstanding reversible capacity of 321.5mAhg^(−1) at 50mAg^(−1).The cycling stability is also improved effectively,and the capacity retention rate is 86.9%after 2000 cycles at 1Ag^(−1) while that of the untreated HC is only 52.6%.More importantly,the improved sodium storage behaviors are explained by electrochemical kinetic analysis. 展开更多
关键词 hard carbon anodes homotype heterojunctions sodium-ion batteries solid electrolyte interface surface engineering
下载PDF
Cu-Zn-based alloy/oxide interfaces for enhanced electroreduction of CO_(2) to C_(2+) products 被引量:5
16
作者 Zi-Yang Zhang Hao Tian +3 位作者 Lei Bian Shi-Ze Liu Yuan Liu Zhong-Li Wang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2023年第8期90-97,I0004,共9页
The electrochemical CO_(2)reduction reaction to produce multi-carbon(C_(2+)) hydrocarbons or oxygenate compounds is a promising route to obtain a renewable fuel of high energy density.However,producing C_(2+)at high c... The electrochemical CO_(2)reduction reaction to produce multi-carbon(C_(2+)) hydrocarbons or oxygenate compounds is a promising route to obtain a renewable fuel of high energy density.However,producing C_(2+)at high current densities is still a challenge.Herein,we develop a Cu-Zn alloy/Cu-Zn aluminate oxide composite electrocatalytic system for enhanced conversion of CO_(2)to C_(2+)products.The Cu-Zn-Al-Layered Double Hydroxide(LDH) is used as a precursor to decompose into uniform Cu-Zn oxide/Cu-Zn aluminate pre-catalyst.Under electrochemical reduction,Cu-Zn oxide generates Cu-Zn alloy while Cu-Zn aluminate oxide remains unchanged.The alloy and oxide are closely stacked and arranged alternately,and the aluminate oxide induces the strong electron interaction of Cu,Zn and Al,creating a large number of highly active reaction interfaces composed of 0 to+3 valence metal sites.With the help of the interface effect,the optimized Cu_(9)Zn_(1)/Cu_(0.8)Zn_(0.2)Al_(2)O_(4)catalyst achieves a Faradaic efficiency of 88.5% for C_(2+)products at a current density of 400 mA cm^(-2)at-1.15 V versus reversible hydrogen electrode.The in-situ Raman and attenuate total reflectance-infrared absorption spectroscopy(ATR-IRAS) spectra show that the aluminate oxide at the interface significantly enhances the adsorption and activation of CO_(2)and the dissociation of H2O and strengthens the adsorption of CO intermediates,and the alloy promotes the C-C coupling to produce C_(2+)products.This work provides an efficient strategy to construct highly active reaction interfaces for industrial-scale electrochemical CO_(2)RR. 展开更多
关键词 Electrochemical CO_(2)reduction reaction C_(2+)products Cu-Zn alloy Cu-Zn aluminate oxide interface
下载PDF
Unraveling structure and performance of protein a ligands at liquid–solid interfaces: A multi-techniques analysis 被引量:1
17
作者 Yi Shen Xinshuang Chu Qinghong Shi 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2023年第2期232-239,共8页
Oriented ligand immobilization is one of the most effective strategies used in the design and construction of a high-capacity protein A chromatography. In this work, cysteine was introduced as anchoring sites by subst... Oriented ligand immobilization is one of the most effective strategies used in the design and construction of a high-capacity protein A chromatography. In this work, cysteine was introduced as anchoring sites by substituting a specific residue on Helix Ⅰ, Ⅱ, and at C-terminus of antibody binding domain Z from protein A, respectively, to investigate structural evolution and binding behavior of protein A ligands at liquid-solid interfaces. Among the three affinity dextran-coated Fe_(3)O_(4) magnetic nanoparticles(Fe_(3)O_(4)@Dx MNPs), affinity MNPs with the immobilized ligand via N11C on Helix Ⅰ(Fe_(3)O_(4)@Dx-Z_(1) MNPs) had the highest helical content, and MNPs with the immobilized ligand via G29C on Helix Ⅱ(Fe_(3)O_(4)@Dx-Z_(2) MNPs) had the lowest helical content at the same pHs. It was attributed to less electrostatic attraction of ligand to negatively charged surface on Fe_(3)O_(4)@Dx-Z_(1) MNPs because of less positive charged residues on Helix Ⅰ(K6) than Helix Ⅱ(R27/K35). Among the three affinity MNPs, moreover, the highest affinity to immunoglobulin G(IgG) binding was observed on Fe_(3)O_(4)@Dx-Z_(1) MNPs in isothermal titration calorimetry measurement, further validating greater structural integrity of the ligand on Fe_(3)O_(4)@Dx-Z_(1) MNPs. Finally,the study of IgG binding on MNPs and 96-well plates showed that anchoring sites for ligand immobilization had distinct influences on IgG binding and IgG-mediated antigen binding. This work illustrated that anchoring sites of the ligands had a striking significance for the molecular structure of the ligand at liquid-solid interfaces and raised an important implication for the design and optimization of protein A chromatography and protein A-based immunoassay analysis. 展开更多
关键词 ADSORPTION interface THERMODYNAMICS Protein A ligand IMMOBILIZATION Molecular structure
下载PDF
Engineering Cu^(+)/CeZrO_(x) interfaces to promote CO_(2) hydrogenation to methanol 被引量:4
18
作者 Jingpeng Zhang Xiaohang Sun +4 位作者 Congyi Wu Wenquan Hang Xu Hu Dawei Qiao Binhang Yan 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2023年第2期45-53,I0002,共10页
Cu-based catalysts are widely employed for CO_(2) hydrogenation to methanol,which is expected as a promising process to achieving carbon neutrality.However,most Cu-based catalysts still suffer from low methanol yield ... Cu-based catalysts are widely employed for CO_(2) hydrogenation to methanol,which is expected as a promising process to achieving carbon neutrality.However,most Cu-based catalysts still suffer from low methanol yield with a passable CO_(2) conversion and lack insight into its reaction mechanism for guiding the design of catalysts.In this work,Cu^(+)/CeZrO_(x) interfaces are engineered by employing a series of ceria-zirconia solid solution catalysts with various Ce/Zr ratios,forming a Cu^(+)-O_(v)-Ce^(3+)structure where Cu^(+)atoms are bonded to the oxygen vacancies(O_(v))of ceria.Compared to Cu/CeO_(2) and Cu/ZrO_(2),the optimized catalyst(i.e.,Cu_(0.3)Ce_(0.3)Zr_(0.7))exhibits a much higher mass-specific methanol formation rate(192g_(MeOH)/kg_(cat)/h)at 240℃and 3 MPa.Through a series of in-situ and ex-situ characterization,it is revealed that oxygen vacancies in solid solutions can effectively assist the activation of CO_(2) and tune the electronic state of copper to promote the formation of Cu^(+)/CeZrO_(x) interfaces,which stabilizes the key*CO intermediate,inhibits its desorption and facilitates its further hydrogenation to methanol via the reverse watergas-shift(RWGS)+CO-Hydro pathway.Therefore,the concentration of*CO or the apparent Cu^(+)/(Cu^(+)+Cu^(0))ratio could be employed as a quantitative descriptor of the methanol formation rate.This work is expected to give a deep insight into the mechanism of metal/support interfaces in CO_(2) hydrogenation to methanol,offering an effective strategy to develop new catalysts with high performance. 展开更多
关键词 CO_(2)hydrogenation Methanol synthesis In-situ characterization Cu^(+)/CeZrO_(x)interfaces Oxygen vacancies
下载PDF
Vacancies and interfaces engineering of core-shell heterostuctured NiCoP/NiO as trifunctional electrocatalysts for overall water splitting and zinc-air batteries 被引量:1
19
作者 Xiaolin Hu Jichuan Fan +4 位作者 Ronghua Wang Meng Li Shikuan Sun Chaohe Xu Fusheng Pan 《Green Energy & Environment》 SCIE EI CSCD 2023年第2期601-611,共11页
The electronic structures and properties of electrocatalysts,which depend on the physicochemical structure and metallic element components,could significantly affect their electrocatalytic performance and their future... The electronic structures and properties of electrocatalysts,which depend on the physicochemical structure and metallic element components,could significantly affect their electrocatalytic performance and their future applications in Zn-air battery(ZAB)and overall water splitting(OWS).Here,by combining vacancies and heterogeneous interfacial engineering,three-dimensional(3D)core-shell NiCoP/NiO heterostructures with dominated oxygen vacancies have been controllably in-situ grown on carbon cloth for using as highly efficient electrocatalysts toward hydrogen and oxygen electrochemical reactions.Theoretical calculation and electrochemical results manifest that the hybridization of NiCoP core with NiO shell produces a strong synergistic electronic coupling effect.The oxygen vacancy can enable the emergence of new electronic states within the band gap,crossing the Fermi levels of the two spin components and optimizing the local electronic structure.Besides,the hierarchical core-shell NiCoP/NiO nanoarrays also endow the catalysts with multiple exposed active sites,faster mass transfer behavior,optimized electronic strutures and improved electrochemical performance during ZAB and OWS applications. 展开更多
关键词 DFT calculations interface catalysis HETEROSTRUCTURES Overall water splitting Zn–air batteries
下载PDF
Multi-modal human-machine interface of a telerobotic system for remote arc welding 被引量:1
20
作者 李海超 高洪明 +1 位作者 吴林 张广军 《China Welding》 EI CAS 2008年第3期72-76,共5页
In telerobotic system for remote welding, human-machine interface is one of the most important factor for enhancing capability and efficiency. This paper presents an architecture design of human-machine interface for ... In telerobotic system for remote welding, human-machine interface is one of the most important factor for enhancing capability and efficiency. This paper presents an architecture design of human-machine interface for welding telerobotic system: welding multi-modal human-machine interface. The human-machine interface integrated several control modes, which are namely shared control, teleteaching, supervisory control and local autonomous control. Space mouse, panoramic vision camera and graphics simulation system are also integrated into the human-machine interface for welding teleoperation. Finally, weld seam tracing and welding experiments of U-shape seam are performed by these control modes respectively. The results show that the system has better performance of human-machine interaction and complexity environment welding. 展开更多
关键词 multi-modal interface control mode telerobotic system remote welding
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部