Natural hazards are often studied in isolation.However,there is a great need to examine hazards holistically to better manage the complex of threats found in any region.Many regions of the world have complex hazard la...Natural hazards are often studied in isolation.However,there is a great need to examine hazards holistically to better manage the complex of threats found in any region.Many regions of the world have complex hazard landscapes wherein risk from individual and/or multiple extreme events is omnipresent.Extensive parts of Iran experience a complex array of natural hazards-floods,earthquakes,landslides,forest fires,subsidence,and drought.The effectiveness of risk mitigation is in part a function of whether the complex of hazards can be collectively considered,visualized,and evaluated.This study develops and tests individual and collective multihazard risk maps for floods,landslides,and forest fires to visualize the spatial distribution of risk in Fars Province,southern Iran.To do this,two well-known machine-learning algorithms-SVM and MARS-are used to predict the distribution of these events.Past floods,landslides,and forest fires were surveyed and mapped.The locations of occurrence of these events(individually and collectively) were randomly separated into training(70%) and testing(30%) data sets.The conditioning factors(for floods,landslides,and forest fires) employed to model the risk distributions are aspect,elevation,drainage density,distance from faults,geology,LULC,profile curvature,annual mean rainfall,plan curvature,distance from man-made residential structures,distance from nearest river,distance from nearest road,slope gradient,soil types,mean annual temperature,and TWI.The outputs of the two models were assessed using receiver-operating-characteristic(ROC) curves,true-skill statistics(TSS),and the correlation and deviance values from each models for each hazard.The areas-under-the-curves(AUC) for the MARS model prediction were 76.0%,91.2%,and 90.1% for floods,landslides,and forest fires,respectively.Similarly,the AUCs for the SVM model were 75.5%,89.0%,and 91.5%.The TSS reveals that the MARS model was better able to predict landslide risk,but was less able to predict flood-risk patterns and forest-fire risk.Finally,the combination of flood,forest fire,and landslide risk maps yielded a multi-hazard susceptibility map for the province.The better predictive model indicated that 52.3% of the province was at-risk for at least one of these hazards.This multi-hazard map may yield valuable insight for land-use planning,sustainable development of infrastructure,and also integrated watershed management in Fars Province.展开更多
In this paper, a compressive sensing (CS) and chaotic map-based joint image encryption and watermarking algorithm is proposed. The transform domain coefficients of the original image are scrambled by Arnold map firs...In this paper, a compressive sensing (CS) and chaotic map-based joint image encryption and watermarking algorithm is proposed. The transform domain coefficients of the original image are scrambled by Arnold map firstly. Then the watermark is adhered to the scrambled data. By compressive sensing, a set of watermarked measurements is obtained as the watermarked cipher image. In this algorithm, watermark embedding and data compression can be performed without knowing the original image; similarly, watermark extraction will not interfere with decryption. Due to the characteristics of CS, this algorithm features compressible cipher image size, flexible watermark capacity, and lossless watermark extraction from the compressed cipher image as well as robustness against packet loss. Simulation results and analyses show that the algorithm achieves good performance in the sense of security, watermark capacity, extraction accuracy, reconstruction, robustness, etc.展开更多
Most of multimedia schemes employ variable-length codes (VLCs) like Huffman code as core components in obtaining high compression rates. However VLC methods are very sensitive to channel noise. The goal of this pape...Most of multimedia schemes employ variable-length codes (VLCs) like Huffman code as core components in obtaining high compression rates. However VLC methods are very sensitive to channel noise. The goal of this paper is to salvage as many data from the damaged packets as possible for higher audiovisual quality. This paper proposes an integrated joint source-channel decoder (I-JSCD) at a symbol-level using three-dimensional (3-D) trellis representation for first-order Markov sources encoded with VLC source code and convolutional channel code. This method combines source code and channel code state-spaces and bit-lengths to construct a two-dimensional (2-D) state-space, and then develops a 3-D trellis and a maximum a-posterior (MAP) algorithm to estimate the source sequence symbol by symbol. Experiment results demonstrate that our method results in significant improvement in decoding performance, it can salvage at least half of (50%) data in any channel error rate, and can provide additional error resilience to VLC stream like image, audio, video stream over high error rate links.展开更多
文摘背景:腰椎小关节炎是引起下腰痛的一个主要原因,目前主要依靠MRI进行初步定性诊断,但仍有一定漏诊、误诊的概率发生,因此MR T2^(*)mapping成像技术有望成为定量检查腰椎小关节炎软骨损伤的重要检测手段。目的:探讨MR T2^(*)mapping成像技术在定量分析腰椎小关节炎软骨损伤退变中的应用价值。方法:收集南京医科大学第四附属医院2020年4月至2022年3月门诊或住院合并下腰痛共110例患者,设为病例组;同时招募无症状志愿者80例,设为对照组。对所有纳入对象L1-S1的小关节行3.0 T MR扫描,获取T2^(*)mapping横断位图像和T2WI图像,分别对所有小关节软骨进行Weishaupt分级及T2^(*)值测量,收集数据并行统计学分析。不同小关节Weishaupt分级之间小关节软骨T2^(*)值比较采用单因素方差分析。结果与结论:①经统计分析发现,病例组腰椎小关节软骨T2^(*)值(17.6±1.5)ms明显较对照组(21.4±1.3)ms降低,差异有显著性意义(P<0.05);②在病例组中,随着腰椎小关节Weishaupt分级增加,小关节软骨T2^(*)值也呈逐渐下降趋势,且这种差异有显著性意义(P<0.05);③提示T2^(*)mapping能够较好地显示腰椎小关节软骨损伤的早期病理变化,腰椎小关节软骨的T2^(*)值能够定量评估腰椎小关节的软骨损伤程度;T2^(*)mapping成像技术能为影像学诊断腰椎小关节炎软骨早期损伤提供很好的理论依据,具有重要的临床应用价值。
基金The study was supported by College of Agriculture,Shiraz University(Grant No.96GRD1M271143).
文摘Natural hazards are often studied in isolation.However,there is a great need to examine hazards holistically to better manage the complex of threats found in any region.Many regions of the world have complex hazard landscapes wherein risk from individual and/or multiple extreme events is omnipresent.Extensive parts of Iran experience a complex array of natural hazards-floods,earthquakes,landslides,forest fires,subsidence,and drought.The effectiveness of risk mitigation is in part a function of whether the complex of hazards can be collectively considered,visualized,and evaluated.This study develops and tests individual and collective multihazard risk maps for floods,landslides,and forest fires to visualize the spatial distribution of risk in Fars Province,southern Iran.To do this,two well-known machine-learning algorithms-SVM and MARS-are used to predict the distribution of these events.Past floods,landslides,and forest fires were surveyed and mapped.The locations of occurrence of these events(individually and collectively) were randomly separated into training(70%) and testing(30%) data sets.The conditioning factors(for floods,landslides,and forest fires) employed to model the risk distributions are aspect,elevation,drainage density,distance from faults,geology,LULC,profile curvature,annual mean rainfall,plan curvature,distance from man-made residential structures,distance from nearest river,distance from nearest road,slope gradient,soil types,mean annual temperature,and TWI.The outputs of the two models were assessed using receiver-operating-characteristic(ROC) curves,true-skill statistics(TSS),and the correlation and deviance values from each models for each hazard.The areas-under-the-curves(AUC) for the MARS model prediction were 76.0%,91.2%,and 90.1% for floods,landslides,and forest fires,respectively.Similarly,the AUCs for the SVM model were 75.5%,89.0%,and 91.5%.The TSS reveals that the MARS model was better able to predict landslide risk,but was less able to predict flood-risk patterns and forest-fire risk.Finally,the combination of flood,forest fire,and landslide risk maps yielded a multi-hazard susceptibility map for the province.The better predictive model indicated that 52.3% of the province was at-risk for at least one of these hazards.This multi-hazard map may yield valuable insight for land-use planning,sustainable development of infrastructure,and also integrated watershed management in Fars Province.
基金Project supported by the Open Research Fund of Chongqing Key Laboratory of Emergency Communications,China(Grant No.CQKLEC,20140504)the National Natural Science Foundation of China(Grant Nos.61173178,61302161,and 61472464)the Fundamental Research Funds for the Central Universities,China(Grant Nos.106112013CDJZR180005 and 106112014CDJZR185501)
文摘In this paper, a compressive sensing (CS) and chaotic map-based joint image encryption and watermarking algorithm is proposed. The transform domain coefficients of the original image are scrambled by Arnold map firstly. Then the watermark is adhered to the scrambled data. By compressive sensing, a set of watermarked measurements is obtained as the watermarked cipher image. In this algorithm, watermark embedding and data compression can be performed without knowing the original image; similarly, watermark extraction will not interfere with decryption. Due to the characteristics of CS, this algorithm features compressible cipher image size, flexible watermark capacity, and lossless watermark extraction from the compressed cipher image as well as robustness against packet loss. Simulation results and analyses show that the algorithm achieves good performance in the sense of security, watermark capacity, extraction accuracy, reconstruction, robustness, etc.
基金Supported by the Foundation of Ministry of Education of China (211CERS10)
文摘Most of multimedia schemes employ variable-length codes (VLCs) like Huffman code as core components in obtaining high compression rates. However VLC methods are very sensitive to channel noise. The goal of this paper is to salvage as many data from the damaged packets as possible for higher audiovisual quality. This paper proposes an integrated joint source-channel decoder (I-JSCD) at a symbol-level using three-dimensional (3-D) trellis representation for first-order Markov sources encoded with VLC source code and convolutional channel code. This method combines source code and channel code state-spaces and bit-lengths to construct a two-dimensional (2-D) state-space, and then develops a 3-D trellis and a maximum a-posterior (MAP) algorithm to estimate the source sequence symbol by symbol. Experiment results demonstrate that our method results in significant improvement in decoding performance, it can salvage at least half of (50%) data in any channel error rate, and can provide additional error resilience to VLC stream like image, audio, video stream over high error rate links.