With the popularization of the Intemet, permeation of sensor networks, emergence of big data, increase in size of the information community, and interlinking and fusion of data and information throughout human society...With the popularization of the Intemet, permeation of sensor networks, emergence of big data, increase in size of the information community, and interlinking and fusion of data and information throughout human society, physical space, and cyberspace, the information environment related to the current development of artificial intelligence (AI) has profoundly changed. AI faces important adjustments, and scientific foundations are confronted with new breakthroughs, as AI enters a new stage: AI 2.0. This paper briefly reviews the 60-year developmental history of AI, analyzes the external environment promoting the formation of AI 2.0 along with changes in goals, and describes both the beginning of the technology and the core idea behind AI 2.0 development. Furthermore, based on combined social demands and the information environment that exists in relation to Chinese development, suggestions on the develoDment of Al 2.0 are given.展开更多
With integration of large-scale renewable energy,new controllable devices,and required reinforcement of power grids,modern power systems have typical characteristics such as uncertainty,vulnerability and openness,whic...With integration of large-scale renewable energy,new controllable devices,and required reinforcement of power grids,modern power systems have typical characteristics such as uncertainty,vulnerability and openness,which makes operation and control of power grids face severe security challenges.Application of artificial intelligence(AI)technologies represented by machine learning in power grid regulation is limited by reliability,interpretability and generalization ability of complex modeling.Mode of hybrid-augmented intelligence(HAI)based on human-machine collaboration(HMC)is a pivotal direction for future development of AI technology in this field.Based on characteristics of applications in power grid regulation,this paper discusses system architecture and key technologies of human-machine hybrid-augmented intelligence(HHI)system for large-scale power grid dispatching and control(PGDC).First,theory and application scenarios of HHI are introduced and analyzed;then physical and functional architectures of HHI system and human-machine collaborative regulation process are proposed.Key technologies are discussed to achieve a thorough integration of human/machine intelligence.Finally,state-of-theart and future development of HHI in power grid regulation are summarized,aiming to efficiently improve the intelligent level of power grid regulation in a human-machine interactive and collaborative way.展开更多
In this article I will address the issue of the meaning of Embodied Artificial Intelligence(EAI)as it is configured today.My starting point is the refined interactive perspective on the semantics of EAI,as was recentl...In this article I will address the issue of the meaning of Embodied Artificial Intelligence(EAI)as it is configured today.My starting point is the refined interactive perspective on the semantics of EAI,as was recently suggested by Froese and colleagues.This perspective rests on the assumption that the concept of human bodily subjectivity must be extended to include meaning-making processes,which are enabled by advanced AI systems that may be incorporated in the human biological body.After having clarified the technical background,I will introduce the genetic component of the phenomenological method as a suitable tool to face the aforementioned issue.Towards this end,I will place the genetic method in the context of the so-called New Human-Machine Interaction(New HMI).I will further outline a genetic phenomenology of visual embodiment,suggesting a futuristic application based on the thesis of the“technological supplementation of phenomenological methodology”through the synthetic method.The case at stake is that of patients with a severe clinical picture characterised by the loss of corneal function,who in the near future could be treated with synthetic corneal prosthetic implants produced by a 3D bio-printing process by using an advanced EAI technique.I will conclude this article with a brief review of the main problems that still remain open.展开更多
Intelligent vehicle(Ⅳ)technology has developed rapidly in recent years.However,achieving fully unmanned driving still presents numerous challenges,which means that human drivers will continue to play a vital role in ...Intelligent vehicle(Ⅳ)technology has developed rapidly in recent years.However,achieving fully unmanned driving still presents numerous challenges,which means that human drivers will continue to play a vital role in vehicle operation for the foreseeable future.Human-machine shared driving,involving cooperation between a human driver and an automated driving system(AVS),has been widely regarded as a necessary stage for the development of IVs.Focusing onⅣdriving safety,this study proposed a human-machine shared lateral control strategy(HSLCS)based on the reliability of driver risk perception.The HSLCS starts by identifying the effective areas of driver risk perception based on eye movements.It establishes an anisotropic driving risk field,which serves as the foundation for the AVS to assess risk levels.Building upon the cumulative and diminishing effects of risk perception,the proposed approach leverages the driver's risk perception effective area and converts the risk field into a representation aligned with the driver's perspective.Subsequently,it quantifies the reliability of the driver's risk perception by using area-matching rules.Finally,based on the driver’s risk perception reliability and dif-ferences in lateral driving operation between the human driver and the AVS,the dynamic distribution of driving authority is achieved through a fuzzy rule-based system,and the human-machine shared lateral control is completed by using model predictive control.The HSLCS was tested across various scenarios on a driver-in-the-loop test platform.The results show that the HSLCS can realize the synergy and complementarity of human and machine intelligence,effectively ensuring the safety ofⅣoperation.展开更多
In this paper,we aim to illustrate the concept of mutually trustworthy human-machine knowledge automation(HM-KA)as the technical mechanism of hybrid augmented intelligence(HAI)based complex system cognition,management...In this paper,we aim to illustrate the concept of mutually trustworthy human-machine knowledge automation(HM-KA)as the technical mechanism of hybrid augmented intelligence(HAI)based complex system cognition,management,and control(CMC).We describe the historical development of complex system science and analyze the limitations of human intelligence and machine intelligence.The need for using human-machine HAI in complex systems is then explained in detail.The concept of“mutually trustworthy HM-KA”mechanism is proposed to tackle the CMC challenge,and its technical procedure and pathway are demonstrated using an example of corrective control in bulk power grid dispatch.It is expected that the proposed mutually trustworthy HM-KA concept can provide a novel and canonical mechanism and benefit real-world practices of complex system CMC.展开更多
Swarm intelligence has become a hot research field of artificial intelligence.Considering the importance of swarm intelli-gence for the future development of artificial intelligence,we discuss and analyze swarm intell...Swarm intelligence has become a hot research field of artificial intelligence.Considering the importance of swarm intelli-gence for the future development of artificial intelligence,we discuss and analyze swarm intelligence from a broader and deeper perspect-ive.In a broader sense,we are talking about not only bio-inspired swarm intelligence,but also human-machine hybrid swarm intelli-gence.In a deeper sense,we discuss the research using a three-layer hierarchy:in the first layer,we divide the research of swarm intelli-gence into bio-inspired swarm intelligence and human-machine hybrid swarm intelligence;in the second layer,the bio-inspired swarm intelligence is divided into single-population swarm intelligence and multi-population swarm intelligence;and in the third layer,we re-view single-population,multi-population and human-machine hybrid models from different perspectives.Single-population swarm intel-ligence is inspired by biological intelligence.To further solve complex optimization problems,researchers have made preliminary explor-ations in multi-population swarm intelligence.However,it is difficult for bio-inspired swarm intelligence to realize dynamic cognitive in-telligent behavior that meets the needs of human cognition.Researchers have introduced human intelligence into computing systems and proposed human-machine hybrid swarm intelligence.In addition to single-population swarm intelligence,we thoroughly review multi-population and human-machine hybrid swarm intelligence in this paper.We also discuss the applications of swarm intelligence in optimization,big data analysis,unmanned systems and other fields.Finally,we discuss future research directions and key issues to be studied in swarm intelligence.展开更多
Intrinsic motivation helps autonomous exploring agents traverse a larger portion of their environments.However,simulations of different learning environments in previous research show that after millions of timesteps ...Intrinsic motivation helps autonomous exploring agents traverse a larger portion of their environments.However,simulations of different learning environments in previous research show that after millions of timesteps of successful training,an intrinsically motivated agent may learn to act in ways unintended by the designer.This potential for unintended actions of autonomous exploring agents poses threats to the environment and humans if operated in the real world.We investigated this topic by using Unity’s MachineLearningAgent Toolkit(ML-Agents)implementation of the Proximal Policy Optimization(PPO)algorithm with the Intrinsic Curiosity Module(ICM)to train autonomous exploring agents in three learning environments.We demonstrate that ICM,although designed to assist agent navigation in environments with sparse reward generation,increasing gradually as a tool for purposely training misbehaving agent in significantly less than 1 million timesteps.We present the following achievements:1)experiments designed to cause agents to act undesirably,2)a metric for gauging how well an agent achieves its goal without collisions,and 3)validation of PPO best practices.Then,we used optimized methods to improve the agent’s performance and reduce collisions within the same environments.These achievements help further our understanding of the significance of monitoring training statistics during reinforcement learning for determining how humans can intervene to improve agent safety and performance.展开更多
文摘With the popularization of the Intemet, permeation of sensor networks, emergence of big data, increase in size of the information community, and interlinking and fusion of data and information throughout human society, physical space, and cyberspace, the information environment related to the current development of artificial intelligence (AI) has profoundly changed. AI faces important adjustments, and scientific foundations are confronted with new breakthroughs, as AI enters a new stage: AI 2.0. This paper briefly reviews the 60-year developmental history of AI, analyzes the external environment promoting the formation of AI 2.0 along with changes in goals, and describes both the beginning of the technology and the core idea behind AI 2.0 development. Furthermore, based on combined social demands and the information environment that exists in relation to Chinese development, suggestions on the develoDment of Al 2.0 are given.
基金supported by the National Key R&D Program of China(2018AAA0101500).
文摘With integration of large-scale renewable energy,new controllable devices,and required reinforcement of power grids,modern power systems have typical characteristics such as uncertainty,vulnerability and openness,which makes operation and control of power grids face severe security challenges.Application of artificial intelligence(AI)technologies represented by machine learning in power grid regulation is limited by reliability,interpretability and generalization ability of complex modeling.Mode of hybrid-augmented intelligence(HAI)based on human-machine collaboration(HMC)is a pivotal direction for future development of AI technology in this field.Based on characteristics of applications in power grid regulation,this paper discusses system architecture and key technologies of human-machine hybrid-augmented intelligence(HHI)system for large-scale power grid dispatching and control(PGDC).First,theory and application scenarios of HHI are introduced and analyzed;then physical and functional architectures of HHI system and human-machine collaborative regulation process are proposed.Key technologies are discussed to achieve a thorough integration of human/machine intelligence.Finally,state-of-theart and future development of HHI in power grid regulation are summarized,aiming to efficiently improve the intelligent level of power grid regulation in a human-machine interactive and collaborative way.
文摘In this article I will address the issue of the meaning of Embodied Artificial Intelligence(EAI)as it is configured today.My starting point is the refined interactive perspective on the semantics of EAI,as was recently suggested by Froese and colleagues.This perspective rests on the assumption that the concept of human bodily subjectivity must be extended to include meaning-making processes,which are enabled by advanced AI systems that may be incorporated in the human biological body.After having clarified the technical background,I will introduce the genetic component of the phenomenological method as a suitable tool to face the aforementioned issue.Towards this end,I will place the genetic method in the context of the so-called New Human-Machine Interaction(New HMI).I will further outline a genetic phenomenology of visual embodiment,suggesting a futuristic application based on the thesis of the“technological supplementation of phenomenological methodology”through the synthetic method.The case at stake is that of patients with a severe clinical picture characterised by the loss of corneal function,who in the near future could be treated with synthetic corneal prosthetic implants produced by a 3D bio-printing process by using an advanced EAI technique.I will conclude this article with a brief review of the main problems that still remain open.
基金supported by the National Natural Science Foundation of China under Grant 52172386the National Natural Science Foundation of China under Grant U22A20247+1 种基金the Jilin Province Science and Technology Development Plan Projects under Grant 20210101057JCthe Jilin Provincial Department of Science and Technology under Grant 20220301009GX.
文摘Intelligent vehicle(Ⅳ)technology has developed rapidly in recent years.However,achieving fully unmanned driving still presents numerous challenges,which means that human drivers will continue to play a vital role in vehicle operation for the foreseeable future.Human-machine shared driving,involving cooperation between a human driver and an automated driving system(AVS),has been widely regarded as a necessary stage for the development of IVs.Focusing onⅣdriving safety,this study proposed a human-machine shared lateral control strategy(HSLCS)based on the reliability of driver risk perception.The HSLCS starts by identifying the effective areas of driver risk perception based on eye movements.It establishes an anisotropic driving risk field,which serves as the foundation for the AVS to assess risk levels.Building upon the cumulative and diminishing effects of risk perception,the proposed approach leverages the driver's risk perception effective area and converts the risk field into a representation aligned with the driver's perspective.Subsequently,it quantifies the reliability of the driver's risk perception by using area-matching rules.Finally,based on the driver’s risk perception reliability and dif-ferences in lateral driving operation between the human driver and the AVS,the dynamic distribution of driving authority is achieved through a fuzzy rule-based system,and the human-machine shared lateral control is completed by using model predictive control.The HSLCS was tested across various scenarios on a driver-in-the-loop test platform.The results show that the HSLCS can realize the synergy and complementarity of human and machine intelligence,effectively ensuring the safety ofⅣoperation.
基金Project supported by the National Key R&D Program of China(No.2018AAA0101504)the Science and Technology Project of the State Grid Corporation of China:Fundamental Theory of Human in-the-Loop Hybrid-Augmented Intelligence for Power Grid Dispatch and Control。
文摘In this paper,we aim to illustrate the concept of mutually trustworthy human-machine knowledge automation(HM-KA)as the technical mechanism of hybrid augmented intelligence(HAI)based complex system cognition,management,and control(CMC).We describe the historical development of complex system science and analyze the limitations of human intelligence and machine intelligence.The need for using human-machine HAI in complex systems is then explained in detail.The concept of“mutually trustworthy HM-KA”mechanism is proposed to tackle the CMC challenge,and its technical procedure and pathway are demonstrated using an example of corrective control in bulk power grid dispatch.It is expected that the proposed mutually trustworthy HM-KA concept can provide a novel and canonical mechanism and benefit real-world practices of complex system CMC.
基金supported in part by National Natural Science Foundation of China(Nos.62221005,61936001 and 62006029)Natural Science Foundation of Chongqing,China(Nos.cstc2020jscxlyjsAX0008,cstc2019jcyjcxttX0002,cstc2021ycjh-bgzxm0013 and CSTB2022NSCQMSX0258)+1 种基金Chongqing Postdoctoral Innovative Talent Support Program,China(No.CQBX2021024)the Project of Chongqing Municipal Education Commission,China(No.HZ2021008).
文摘Swarm intelligence has become a hot research field of artificial intelligence.Considering the importance of swarm intelli-gence for the future development of artificial intelligence,we discuss and analyze swarm intelligence from a broader and deeper perspect-ive.In a broader sense,we are talking about not only bio-inspired swarm intelligence,but also human-machine hybrid swarm intelli-gence.In a deeper sense,we discuss the research using a three-layer hierarchy:in the first layer,we divide the research of swarm intelli-gence into bio-inspired swarm intelligence and human-machine hybrid swarm intelligence;in the second layer,the bio-inspired swarm intelligence is divided into single-population swarm intelligence and multi-population swarm intelligence;and in the third layer,we re-view single-population,multi-population and human-machine hybrid models from different perspectives.Single-population swarm intel-ligence is inspired by biological intelligence.To further solve complex optimization problems,researchers have made preliminary explor-ations in multi-population swarm intelligence.However,it is difficult for bio-inspired swarm intelligence to realize dynamic cognitive in-telligent behavior that meets the needs of human cognition.Researchers have introduced human intelligence into computing systems and proposed human-machine hybrid swarm intelligence.In addition to single-population swarm intelligence,we thoroughly review multi-population and human-machine hybrid swarm intelligence in this paper.We also discuss the applications of swarm intelligence in optimization,big data analysis,unmanned systems and other fields.Finally,we discuss future research directions and key issues to be studied in swarm intelligence.
基金This work was partly supported by the United States Air Force Office of Scientific Research(AFOSR)contract FA9550-22-1-0268 awarded to KHA,https://www.afrl.af.mil/AFOSR/.The contract is entitled:“Investigating Improving Safety of Autonomous Exploring Intelligent Agents with Human-in-the-Loop Reinforcement Learning,”and in part by Jackson State University。
文摘Intrinsic motivation helps autonomous exploring agents traverse a larger portion of their environments.However,simulations of different learning environments in previous research show that after millions of timesteps of successful training,an intrinsically motivated agent may learn to act in ways unintended by the designer.This potential for unintended actions of autonomous exploring agents poses threats to the environment and humans if operated in the real world.We investigated this topic by using Unity’s MachineLearningAgent Toolkit(ML-Agents)implementation of the Proximal Policy Optimization(PPO)algorithm with the Intrinsic Curiosity Module(ICM)to train autonomous exploring agents in three learning environments.We demonstrate that ICM,although designed to assist agent navigation in environments with sparse reward generation,increasing gradually as a tool for purposely training misbehaving agent in significantly less than 1 million timesteps.We present the following achievements:1)experiments designed to cause agents to act undesirably,2)a metric for gauging how well an agent achieves its goal without collisions,and 3)validation of PPO best practices.Then,we used optimized methods to improve the agent’s performance and reduce collisions within the same environments.These achievements help further our understanding of the significance of monitoring training statistics during reinforcement learning for determining how humans can intervene to improve agent safety and performance.