期刊文献+
共找到1,217篇文章
< 1 2 61 >
每页显示 20 50 100
Joint Task Allocation and Resource Optimization for Blockchain Enabled Collaborative Edge Computing
1
作者 Xu Wenjing Wang Wei +2 位作者 Li Zuguang Wu Qihui Wang Xianbin 《China Communications》 SCIE CSCD 2024年第4期218-229,共12页
Collaborative edge computing is a promising direction to handle the computation intensive tasks in B5G wireless networks.However,edge computing servers(ECSs)from different operators may not trust each other,and thus t... Collaborative edge computing is a promising direction to handle the computation intensive tasks in B5G wireless networks.However,edge computing servers(ECSs)from different operators may not trust each other,and thus the incentives for collaboration cannot be guaranteed.In this paper,we propose a consortium blockchain enabled collaborative edge computing framework,where users can offload computing tasks to ECSs from different operators.To minimize the total delay of users,we formulate a joint task offloading and resource optimization problem,under the constraint of the computing capability of each ECS.We apply the Tammer decomposition method and heuristic optimization algorithms to obtain the optimal solution.Finally,we propose a reputation based node selection approach to facilitate the consensus process,and also consider a completion time based primary node selection to avoid monopolization of certain edge node and enhance the security of the blockchain.Simulation results validate the effectiveness of the proposed algorithm,and the total delay can be reduced by up to 40%compared with the non-cooperative case. 展开更多
关键词 blockchain collaborative edge computing resource optimization task allocation
下载PDF
Mobile Crowdsourcing Task Allocation Based on Dynamic Self-Attention GANs
2
作者 Kai Wei Song Yu Qingxian Pan 《Computers, Materials & Continua》 SCIE EI 2024年第4期607-622,共16页
Crowdsourcing technology is widely recognized for its effectiveness in task scheduling and resource allocation.While traditional methods for task allocation can help reduce costs and improve efficiency,they may encoun... Crowdsourcing technology is widely recognized for its effectiveness in task scheduling and resource allocation.While traditional methods for task allocation can help reduce costs and improve efficiency,they may encounter challenges when dealing with abnormal data flow nodes,leading to decreased allocation accuracy and efficiency.To address these issues,this study proposes a novel two-part invalid detection task allocation framework.In the first step,an anomaly detection model is developed using a dynamic self-attentive GAN to identify anomalous data.Compared to the baseline method,the model achieves an approximately 4%increase in the F1 value on the public dataset.In the second step of the framework,task allocation modeling is performed using a twopart graph matching method.This phase introduces a P-queue KM algorithm that implements a more efficient optimization strategy.The allocation efficiency is improved by approximately 23.83%compared to the baseline method.Empirical results confirm the effectiveness of the proposed framework in detecting abnormal data nodes,enhancing allocation precision,and achieving efficient allocation. 展开更多
关键词 Mobile crowdsourcing task allocation anomaly detection GAN attention mechanisms
下载PDF
Heterogeneous Task Allocation Model and Algorithm for Intelligent Connected Vehicles
3
作者 Neng Wan Guangping Zeng Xianwei Zhou 《Computers, Materials & Continua》 SCIE EI 2024年第9期4281-4302,共22页
With the development of vehicles towards intelligence and connectivity,vehicular data is diversifying and growing dramatically.A task allocation model and algorithm for heterogeneous Intelligent Connected Vehicle(ICV)... With the development of vehicles towards intelligence and connectivity,vehicular data is diversifying and growing dramatically.A task allocation model and algorithm for heterogeneous Intelligent Connected Vehicle(ICV)applications are proposed for the dispersed computing network composed of heterogeneous task vehicles and Network Computing Points(NCPs).Considering the amount of task data and the idle resources of NCPs,a computing resource scheduling model for NCPs is established.Taking the heterogeneous task execution delay threshold as a constraint,the optimization problem is described as the problem of maximizing the utilization of computing resources by NCPs.The proposed problem is proven to be NP-hard by using the method of reduction to a 0-1 knapsack problem.A many-to-many matching algorithm based on resource preferences is proposed.The algorithm first establishes the mutual preference lists based on the adaptability of the task requirements and the resources provided by NCPs.This enables the filtering out of un-schedulable NCPs in the initial stage of matching,reducing the solution space dimension.To solve the matching problem between ICVs and NCPs,a new manyto-many matching algorithm is proposed to obtain a unique and stable optimal matching result.The simulation results demonstrate that the proposed scheme can improve the resource utilization of NCPs by an average of 9.6%compared to the reference scheme,and the total performance can be improved by up to 15.9%. 展开更多
关键词 task allocation intelligent connected vehicles dispersed computing matching algorithm
下载PDF
MADDPG-D2: An Intelligent Dynamic Task Allocation Algorithm Based on Multi-Agent Architecture Driven by Prior Knowledge
4
作者 Tengda Li Gang Wang Qiang Fu 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第9期2559-2586,共28页
Aiming at the problems of low solution accuracy and high decision pressure when facing large-scale dynamic task allocation(DTA)and high-dimensional decision space with single agent,this paper combines the deep reinfor... Aiming at the problems of low solution accuracy and high decision pressure when facing large-scale dynamic task allocation(DTA)and high-dimensional decision space with single agent,this paper combines the deep reinforce-ment learning(DRL)theory and an improved Multi-Agent Deep Deterministic Policy Gradient(MADDPG-D2)algorithm with a dual experience replay pool and a dual noise based on multi-agent architecture is proposed to improve the efficiency of DTA.The algorithm is based on the traditional Multi-Agent Deep Deterministic Policy Gradient(MADDPG)algorithm,and considers the introduction of a double noise mechanism to increase the action exploration space in the early stage of the algorithm,and the introduction of a double experience pool to improve the data utilization rate;at the same time,in order to accelerate the training speed and efficiency of the agents,and to solve the cold-start problem of the training,the a priori knowledge technology is applied to the training of the algorithm.Finally,the MADDPG-D2 algorithm is compared and analyzed based on the digital battlefield of ground and air confrontation.The experimental results show that the agents trained by the MADDPG-D2 algorithm have higher win rates and average rewards,can utilize the resources more reasonably,and better solve the problem of the traditional single agent algorithms facing the difficulty of solving the problem in the high-dimensional decision space.The MADDPG-D2 algorithm based on multi-agent architecture proposed in this paper has certain superiority and rationality in DTA. 展开更多
关键词 Deep reinforcement learning dynamic task allocation intelligent decision-making multi-agent system MADDPG-D2 algorithm
下载PDF
A Systematic Literature Review on Task Allocation and Performance Management Techniques in Cloud Data Center
5
作者 Nidhika Chauhan Navneet Kaur +5 位作者 Kamaljit Singh Saini Sahil Verma Abdulatif Alabdulatif Ruba Abu Khurma Maribel Garcia-Arenas Pedro A.Castillo 《Computer Systems Science & Engineering》 2024年第3期571-608,共38页
As cloud computing usage grows,cloud data centers play an increasingly important role.To maximize resource utilization,ensure service quality,and enhance system performance,it is crucial to allocate tasks and manage p... As cloud computing usage grows,cloud data centers play an increasingly important role.To maximize resource utilization,ensure service quality,and enhance system performance,it is crucial to allocate tasks and manage performance effectively.The purpose of this study is to provide an extensive analysis of task allocation and performance management techniques employed in cloud data centers.The aim is to systematically categorize and organize previous research by identifying the cloud computing methodologies,categories,and gaps.A literature review was conducted,which included the analysis of 463 task allocations and 480 performance management papers.The review revealed three task allocation research topics and seven performance management methods.Task allocation research areas are resource allocation,load-Balancing,and scheduling.Performance management includes monitoring and control,power and energy management,resource utilization optimization,quality of service management,fault management,virtual machine management,and network management.The study proposes new techniques to enhance cloud computing work allocation and performance management.Short-comings in each approach can guide future research.The research’s findings on cloud data center task allocation and performance management can assist academics,practitioners,and cloud service providers in optimizing their systems for dependability,cost-effectiveness,and scalability.Innovative methodologies can steer future research to fill gaps in the literature. 展开更多
关键词 Cloud computing data centre task allocation performance management resource utilization
下载PDF
Multi-Agent Deep Deterministic Policy Gradien-Based Task Offloading Resource Allocation Joint Offloading
6
作者 Xuan Zhang Xiaohui Hu 《Journal of Computer and Communications》 2024年第6期152-168,共17页
With the advancement of technology and the continuous innovation of applications, low-latency applications such as drones, online games and virtual reality are gradually becoming popular demands in modern society. How... With the advancement of technology and the continuous innovation of applications, low-latency applications such as drones, online games and virtual reality are gradually becoming popular demands in modern society. However, these applications pose a great challenge to the traditional centralized mobile cloud computing paradigm, and it is obvious that the traditional cloud computing model is already struggling to meet such demands. To address the shortcomings of cloud computing, mobile edge computing has emerged. Mobile edge computing provides users with computing and storage resources by offloading computing tasks to servers at the edge of the network. However, most existing work only considers single-objective performance optimization in terms of latency or energy consumption, but not balanced optimization in terms of latency and energy consumption. To reduce task latency and device energy consumption, the problem of joint optimization of computation offloading and resource allocation in multi-cell, multi-user, multi-server MEC environments is investigated. In this paper, a dynamic computation offloading algorithm based on Multi-Agent Deep Deterministic Policy Gradient (MADDPG) is proposed to obtain the optimal policy. The experimental results show that the algorithm proposed in this paper reduces the delay by 5 ms compared to PPO, 1.5 ms compared to DDPG and 10.7 ms compared to DQN, and reduces the energy consumption by 300 compared to PPO, 760 compared to DDPG and 380 compared to DQN. This fully proves that the algorithm proposed in this paper has excellent performance. 展开更多
关键词 Edge Computing task Offloading Deep Reinforcement Learning Resource allocation MADDPG
下载PDF
TASK ALLOCATION BASED ON PHEROMONE 被引量:1
7
作者 王雷 唐敦兵 凌雪 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI 2012年第4期331-337,共7页
A pheromone-based coordination approach and a prototype implementation for task allocation are pro- posed, for dealing with the static task allocation. The approach uses an indirect coordination mechanism, called pher... A pheromone-based coordination approach and a prototype implementation for task allocation are pro- posed, for dealing with the static task allocation. The approach uses an indirect coordination mechanism, called pheromone, which comes from the collective behavior of ant colonies for food foraging. Therefore it can automat- ically find efficient manufacturing cells for processing tasks and reduce communication overhead, which exists in the contract net protocol. Experimental results confirm that the approach has excellent stability and optimization ability for task allocation problems in a static environment. 展开更多
关键词 PHEROMONE task allocation coordination model implicit coordination
下载PDF
Gini Coefficient-based Task Allocation for Multi-robot Systems With Limited Energy Resources 被引量:8
8
作者 Danfeng Wu Guangping Zeng +2 位作者 Lingguo Meng Weijian Zhou Linmin Li 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2018年第1期155-168,共14页
Nowadays, robots generally have a variety of capabilities, which often form a coalition replacing human to work in dangerous environment, such as rescue, exploration, etc. In these operating conditions, the energy sup... Nowadays, robots generally have a variety of capabilities, which often form a coalition replacing human to work in dangerous environment, such as rescue, exploration, etc. In these operating conditions, the energy supply of robots usually cannot be guaranteed. If the energy resources of some robots are consumed too fast, the number of the future tasks of the coalition will be affected. This paper will develop a novel task allocation method based on Gini coefficient to make full use of limited energy resources of multi-robot system to maximize the number of tasks. At the same time, considering resources consumption,we incorporate the market-based allocation mechanism into our Gini coefficient-based method and propose a hybrid method,which can flexibly optimize the task completion number and the resource consumption according to the application contexts.Experiments show that the multi-robot system with limited energy resources can accomplish more tasks by the proposed Gini coefficient-based method, and the hybrid method can be dynamically adaptive to changes of the work environment and realize the dual optimization goals. 展开更多
关键词 Energy resource constraints Gini coefficient multi-robot systems task allocation
下载PDF
Resource allocation optimization of equipment development task based on MOPSO algorithm 被引量:8
9
作者 ZHANG Xilin TAN Yuejin and YANG Zhiwei 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2019年第6期1132-1143,共12页
Resource allocation for an equipment development task is a complex process owing to the inherent characteristics,such as large amounts of input resources,numerous sub-tasks,complex network structures,and high degrees ... Resource allocation for an equipment development task is a complex process owing to the inherent characteristics,such as large amounts of input resources,numerous sub-tasks,complex network structures,and high degrees of uncertainty.This paper presents an investigation into the influence of resource allocation on the duration and cost of sub-tasks.Mathematical models are constructed for the relationships of the resource allocation quantity with the duration and cost of the sub-tasks.By considering the uncertainties,such as fluctuations in the sub-task duration and cost,rework iterations,and random overlaps,the tasks are simulated for various resource allocation schemes.The shortest duration and the minimum cost of the development task are first formulated as the objective function.Based on a multi-objective particle swarm optimization(MOPSO)algorithm,a multi-objective evolutionary algorithm is constructed to optimize the resource allocation scheme for the development task.Finally,an uninhabited aerial vehicle(UAV)is considered as an example of a development task to test the algorithm,and the optimization results of this method are compared with those based on non-dominated sorting genetic algorithm-II(NSGA-II),non-dominated sorting differential evolution(NSDE)and strength pareto evolutionary algorithm-II(SPEA-II).The proposed method is verified for its scientific approach and effectiveness.The case study shows that the optimization of the resource allocation can greatly aid in shortening the duration of the development task and reducing its cost effectively. 展开更多
关键词 resource allocation equipment development task multi-objective particle swarm optimization(MOPSO) develop ment task simulation.
下载PDF
Cooperative task allocation for heterogeneous multi-UAV using multi-objective optimization algorithm 被引量:27
10
作者 WANG Jian-feng JIA Gao-wei +1 位作者 LIN Jun-can HOU Zhong-xi 《Journal of Central South University》 SCIE EI CAS CSCD 2020年第2期432-448,共17页
The application of multiple UAVs in complicated tasks has been widely explored in recent years.Due to the advantages of flexibility,cheapness and consistence,the performance of heterogeneous multi-UAVs with proper coo... The application of multiple UAVs in complicated tasks has been widely explored in recent years.Due to the advantages of flexibility,cheapness and consistence,the performance of heterogeneous multi-UAVs with proper cooperative task allocation is superior to over the single UAV.Accordingly,several constraints should be satisfied to realize the efficient cooperation,such as special time-window,variant equipment,specified execution sequence.Hence,a proper task allocation in UAVs is the crucial point for the final success.The task allocation problem of the heterogeneous UAVs can be formulated as a multi-objective optimization problem coupled with the UAV dynamics.To this end,a multi-layer encoding strategy and a constraint scheduling method are designed to handle the critical logical and physical constraints.In addition,four optimization objectives:completion time,target reward,UAV damage,and total range,are introduced to evaluate various allocation plans.Subsequently,to efficiently solve the multi-objective optimization problem,an improved multi-objective quantum-behaved particle swarm optimization(IMOQPSO)algorithm is proposed.During this algorithm,a modified solution evaluation method is designed to guide algorithmic evolution;both the convergence and distribution of particles are considered comprehensively;and boundary solutions which may produce some special allocation plans are preserved.Moreover,adaptive parameter control and mixed update mechanism are also introduced in this algorithm.Finally,both the proposed model and algorithm are verified by simulation experiments. 展开更多
关键词 unmanned aerial vehicles cooperative task allocation HETEROGENEOUS CONSTRAINT multi-objective optimization solution evaluation method
下载PDF
Task scheduling and virtual machine allocation policy in cloud computing environment 被引量:3
11
作者 Xiong Fu Yeliang Cang 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2015年第4期847-856,共10页
Cloud computing represents a novel computing model in the contemporary technology world. In a cloud system, the com- puting power of virtual machines (VMs) and network status can greatly affect the completion time o... Cloud computing represents a novel computing model in the contemporary technology world. In a cloud system, the com- puting power of virtual machines (VMs) and network status can greatly affect the completion time of data intensive tasks. How- ever, most of the current resource allocation policies focus only on network conditions and physical hosts. And the computing power of VMs is largely ignored. This paper proposes a comprehensive resource allocation policy which consists of a data intensive task scheduling algorithm that takes account of computing power of VMs and a VM allocation policy that considers bandwidth between storage nodes and hosts. The VM allocation policy includes VM placement and VM migration algorithms. Related simulations show that the proposed algorithms can greatly reduce the task comple- tion time and keep good load balance of physical hosts at the same time. 展开更多
关键词 cloud computing resource allocation task scheduling virtual machine (VM) allocation.
下载PDF
A blockchain bee colony double inhibition labor division algorithm for spatio-temporal coupling task with application to UAV swarm task allocation 被引量:4
12
作者 WU Husheng LI Hao XIAO Renbin 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2021年第5期1180-1199,共20页
It is difficult for the double suppression division algorithm of bee colony to solve the spatio-temporal coupling or have higher dimensional attributes and undertake sudden tasks.Using the idea of clustering,after clu... It is difficult for the double suppression division algorithm of bee colony to solve the spatio-temporal coupling or have higher dimensional attributes and undertake sudden tasks.Using the idea of clustering,after clustering tasks according to spatio-temporal attributes,the clustered groups are linked into task sub-chains according to similarity.Then,based on the correlation between clusters,the child chains are connected to form a task chain.Therefore,the limitation is solved that the task chain in the bee colony algorithm can only be connected according to one dimension.When a sudden task occurs,a method of inserting a small number of tasks into the original task chain and a task chain reconstruction method are designed according to the relative relationship between the number of sudden tasks and the number of remaining tasks.Through the above improvements,the algorithm can be used to process tasks with spatio-temporal coupling and burst tasks.In order to reflect the efficiency and applicability of the algorithm,a task allocation model for the unmanned aerial vehicle(UAV)group is constructed,and a one-to-one correspondence between the improved bee colony double suppression division algorithm and each attribute in the UAV group is proposed.Task assignment has been constructed.The study uses the self-adjusting characteristics of the bee colony to achieve task allocation.Simulation verification and algorithm comparison show that the algorithm has stronger planning advantages and algorithm performance. 展开更多
关键词 bee colony double inhibition labor division algorithm high dimensional attribute sudden task reforming the task chain task allocation model
下载PDF
A METHOD OF TASK ALLOCATION AND AUTOMATED NEGOTIATION FOR MULTI ROBOTS 被引量:2
13
作者 Ke Wende Peng Zhiping +3 位作者 Yuan Quande Hong Bingrong Chen Ke Cai Zesu 《Journal of Electronics(China)》 2012年第6期541-549,共9页
A method of task allocation and automated negotiation for multi robots was proposed. Firstly, the principles of task allocation were described based on the real capability of robot. Secondly, the model of automated ne... A method of task allocation and automated negotiation for multi robots was proposed. Firstly, the principles of task allocation were described based on the real capability of robot. Secondly, the model of automated negotiation was constructed, in which Least-Squares Support Vector Regression (LSSVR) was improved to estimate the opponent's negotiation utility and the robust controller of output feedback was employed to optimize the utility performance indicators. Thirdly, the protocol of negotiation and reallocation was proposed to improve the real-time capability and task allocation. Finally, the validity of method was proved through experiments. 展开更多
关键词 DISTRIBUTED ROBOT task allocation NEGOTIATION COMMUNICATION
下载PDF
Online Learning-Based Offloading Decision and Resource Allocation in Mobile Edge Computing-Enabled Satellite-Terrestrial Networks
14
作者 Tong Minglei Li Song +1 位作者 Han Wanjiang Wang Xiaoxiang 《China Communications》 SCIE CSCD 2024年第3期230-246,共17页
Mobile edge computing(MEC)-enabled satellite-terrestrial networks(STNs)can provide Internet of Things(IoT)devices with global computing services.Sometimes,the network state information is uncertain or unknown.To deal ... Mobile edge computing(MEC)-enabled satellite-terrestrial networks(STNs)can provide Internet of Things(IoT)devices with global computing services.Sometimes,the network state information is uncertain or unknown.To deal with this situation,we investigate online learning-based offloading decision and resource allocation in MEC-enabled STNs in this paper.The problem of minimizing the average sum task completion delay of all IoT devices over all time periods is formulated.We decompose this optimization problem into a task offloading decision problem and a computing resource allocation problem.A joint optimization scheme of offloading decision and resource allocation is then proposed,which consists of a task offloading decision algorithm based on the devices cooperation aided upper confidence bound(UCB)algorithm and a computing resource allocation algorithm based on the Lagrange multiplier method.Simulation results validate that the proposed scheme performs better than other baseline schemes. 展开更多
关键词 computing resource allocation mobile edge computing satellite-terrestrial networks task offloading decision
下载PDF
Multi-robot task allocation for exploration 被引量:3
15
作者 高平安 蔡自兴 《Journal of Central South University of Technology》 EI 2006年第5期548-551,共4页
The problem of allocating a number of exploration tasks to a team of mobile robots in dynamic environments was studied. The team mission is to visit several distributed targets. The path cost of target is proportional... The problem of allocating a number of exploration tasks to a team of mobile robots in dynamic environments was studied. The team mission is to visit several distributed targets. The path cost of target is proportional to the distance that a robot has to move to visit the target. The team objective is to minimize the average path cost of target over all targets. Finding an optimal allocation is strongly NP-hard. The proposed algorithm can produce a near-optimal solution to it. The allocation can be cast in terms of a multi-round single-item auction by which robots bid on targets. In each auction round, one target is assigned to a robot that produces the lowest path cost of the target. The allocated targets form a forest where each tree corresponds a robot’s exploring targets set. Each robot constructs an exploring path through depth-first search in its target tree. The time complexity of the proposed algorithm is polynomial. Simulation experiments show that the allocating method is valid. 展开更多
关键词 multi-robot systems task allocation average path cost multi-round single-item auction target tree
下载PDF
Genetic Algorithm Based Combinatorial Auction Method for Multi-Robot Task Allocation 被引量:1
16
作者 龚建伟 黄宛宁 +1 位作者 熊光明 满益明 《Journal of Beijing Institute of Technology》 EI CAS 2007年第2期151-156,共6页
An improved genetic algorithm is proposed to solve the problem of bad real-time performance or inability to get a global optimal/better solution when applying single-item auction (SIA) method or combinatorial auctio... An improved genetic algorithm is proposed to solve the problem of bad real-time performance or inability to get a global optimal/better solution when applying single-item auction (SIA) method or combinatorial auction method to multi-robot task allocation. The genetic algorithm based combinatorial auction (GACA) method which combines the basic-genetic algorithm with a new concept of ringed chromosome is used to solve the winner determination problem (WDP) of combinatorial auction. The simulation experiments are conducted in OpenSim, a multi-robot simulator. The results show that GACA can get a satisfying solution in a reasonable shot time, and compared with SIA or parthenogenesis algorithm combinatorial auction (PGACA) method, it is the simplest and has higher search efficiency, also, GACA can get a global better/optimal solution and satisfy the high real-time requirement of multi-robot task allocation. 展开更多
关键词 MULTI-ROBOT task allocation combinatorial auctions genetic algorithm
下载PDF
Research on Model and Algorithm of Task Allocation and Path Planning for Multi-Robot 被引量:2
17
作者 Zhenping Li Xueting Li 《Open Journal of Applied Sciences》 2017年第10期511-519,共9页
Based on the modeling of robot working environment, the shortest distance matrix between points is solved by Floyd algorithm. With the objective of minimizing the sum of the fixed cost of robot and the cost of robot o... Based on the modeling of robot working environment, the shortest distance matrix between points is solved by Floyd algorithm. With the objective of minimizing the sum of the fixed cost of robot and the cost of robot operation, an integer programming model is established and a genetic algorithm for solving the model is designed. In order to make coordination to accomplish their respective tasks for each robot with high efficiency, this paper uses natural number encoding way. The objective function is based on penalty term constructed with the total number of collisions in the running path of robots. The fitness function is constructed by using the objective function with penalty term. Based on elitist retention strategy, a genetic algorithm with collision detection is designed. Using this algorithm for task allocation and path planning of multi-robot, it can effectively avoid or reduce the number of collisions in the process of multi-robot performing tasks. Finally, an example is used to validate the method. 展开更多
关键词 Path Planning task allocation COLLISION Detection Mathematical Model GENETIC Algorithm
下载PDF
A Distributed Algorithm for Parallel Multi-task Allocation Based on Profit Sharing Learning 被引量:7
18
作者 SU Zhao-Pin JIANG Jian-Guo +1 位作者 LIANG Chang-Yong ZHANG Guo-Fu 《自动化学报》 EI CSCD 北大核心 2011年第7期865-872,共8页
经由联盟形成的任务分配是在多代理人系统(妈) 的几应用程序域的基本研究挑战,例如资源分配,灾难反应管理等等。怎么以一种分布式的方式分配许多未解决的任务到一些代理人,主要处理。在这篇论文,我们在自我组织、自我学习的代理人... 经由联盟形成的任务分配是在多代理人系统(妈) 的几应用程序域的基本研究挑战,例如资源分配,灾难反应管理等等。怎么以一种分布式的方式分配许多未解决的任务到一些代理人,主要处理。在这篇论文,我们在自我组织、自我学习的代理人之中建议一个分布式的平行多工分配算法。处理状况,我们在二维的房间地理上驱散代理人和任务,然后介绍为寻找它的任务由的一个单个代理人的分享学习的利润(PSL ) 不断自我学习。我们也在代理人之中为通讯和协商介绍策略分配真实工作量到每个 tasked 代理人。最后,评估建议算法的有效性,我们把它与 Shehory 和 Krau 被许多研究人员在最近的年里讨论的分布式的任务分配算法作比较。试验性的结果证明建议算法罐头快速为每项任务形成一个解决的联盟。而且,建议算法罐头明确地告诉我们每个 tasked 代理人的真实工作量,并且能因此为实际控制任务提供一本特定、重要的参考书。 展开更多
关键词 自动化系统 自动化技术 ICA 数据处理
下载PDF
An Optimization Scheme for Task Offloading and Resource Allocation in Vehicle Edge Networks 被引量:1
19
作者 Yuxin Xu Zilong Jin +1 位作者 Xiaorui Zhang Lejun Zhang 《Journal on Internet of Things》 2020年第4期163-173,共11页
The vehicle edge network(VEN)has become a new research hotspot in the Internet of Things(IOT).However,many new delays are generated during the vehicle offloading the task to the edge server,which will greatly reduce t... The vehicle edge network(VEN)has become a new research hotspot in the Internet of Things(IOT).However,many new delays are generated during the vehicle offloading the task to the edge server,which will greatly reduce the quality of service(QOS)provided by the vehicle edge network.To solve this problem,this paper proposes an evolutionary algorithm-based(EA)task offloading and resource allocation scheme.First,the delay of offloading task to the edge server is generally defined,then the mathematical model of problem is given.Finally,the objective function is optimized by evolutionary algorithm,and the optimal solution is obtained by iteration and averaging.To verify the performance of this method,contrast experiments are conducted.The experimental results show that our purposed method reduces delay and improves QOS,which is superior to other schemes. 展开更多
关键词 Vehicle edge network evolutionary algorithm task offloading resource allocation
下载PDF
Cooperative Search and Task Allocation Among Heterogeneous Teams of UAVs 被引量:2
20
作者 沈延航 周洲 《Defence Technology(防务技术)》 SCIE EI CAS 2008年第3期198-202,共5页
A cooperative control method of multi-class UAV(unmanned air vehicle) team is investigated.During the mission,the UAVs perform search,classification,attack and battle damage assessment(BDA) tasks at various locations,... A cooperative control method of multi-class UAV(unmanned air vehicle) team is investigated.During the mission,the UAVs perform search,classification,attack and battle damage assessment(BDA) tasks at various locations,which involves a combination of the team intelligence type of decision making combined with control,estimate and real-time trajectory optimization.The search-theoretic approach based on rate of return(ROR) maps is developed to get the cooperative search strategy.Templates are developed and views are combined to maximize the probability of correct target identification over various aspect angles.Monte Carle simulation runs for the scenario to evaluate the performance of the approach with various decision parameters,UAVs distributions and UAV team characteristics.Simulation results show that the cooperative behavior can significantly improve the operational effectiveness of UAV team,and the cooperative control allows for near optimal solution of the correlative behavior of a group of UAVs in battlefield. 展开更多
关键词 飞机构造 飞机设计 控制导航技术 无人飞行器
下载PDF
上一页 1 2 61 下一页 到第
使用帮助 返回顶部