Vertical transport I-V relations of type-I GaAs/A1As superlattices with doped wells and weak coupling between wells at 77K were investigated with quasistatic and dynamic method.Spontaneous current oscillations are als...Vertical transport I-V relations of type-I GaAs/A1As superlattices with doped wells and weak coupling between wells at 77K were investigated with quasistatic and dynamic method.Spontaneous current oscillations are also investigated.The domain formation time 70±30 ns is directly measured.By using discrete-tunneling model,the key parameters of the relation between tunneling current and the bias between adjacent wells were quantitatively determined from the experimental data.展开更多
The intrinsic features involving a circularly symmetric beam profile with low divergence, planar geometry as well as the increasingly enhanced power of vertical-cavity surface-emitting lasers (VCSELs) have made the ...The intrinsic features involving a circularly symmetric beam profile with low divergence, planar geometry as well as the increasingly enhanced power of vertical-cavity surface-emitting lasers (VCSELs) have made the VCSEL a promising pump source in direct end bonding to a solid-state laser medium to form the minimized, on-wafer integrated laser system. This scheme will generate a surface contact pump configuration and thus additional end thermal coupling to the laser medium through the joint interface of both materials, apart from pump beam heating. This paper analytically models temperature distributions in both VCSEL and the laser medium from the end thermal coupling regarding surface contact pump configuration using a top-emitting VCSEL as the pump source for the first time. The analytical solutions are derived by introducing relative temperature and mean temperature expressions. The results show that the end contact heating by the VCSEL could lead to considerable temperature variations associated with thermal phase shift and thermal lensing in the laser medium. However, if the central temperature of the interface is increased by less than 20 K, the end contact heating does not have a significant thermal influence on the laser medium. In this case, the thermal effect should be dominated by pump beam heating. This work provides useful analytical results for further analysis of hybrid thermal effects on those lasers pumped by a direct VCSEL bond.展开更多
The unsteady natural convective couple stress fluid flow over a semi-infinite vertical cylinder is analyzed for the homogeneous first-order chemical reaction effect. The couple stress fluid flow model introduces the l...The unsteady natural convective couple stress fluid flow over a semi-infinite vertical cylinder is analyzed for the homogeneous first-order chemical reaction effect. The couple stress fluid flow model introduces the length dependent effect based on the material constant and dynamic viscosity. Also, it introduces the biharmonic operator in the Navier-Stokes equations, which is absent in the case of Newtonian fluids. The solution to the time-dependent non-linear and coupled governing equations is carried out with an unconditionally stable Crank-Nicolson type of numerical schemes. Numerical results for the transient flow variables, the average wall shear stress, the Nusselt number, and the Sherwood number are shown graphically for both generative and destructive reactions. The time to reach the temporal maximum increases as the reaction constant K increases. The average values of the wall shear stress and the heat transfer rate decrease as K increases, while increase with the increase in the Sherwood number.展开更多
Since the advent of three-dimensional photonic integrated circuits,the realization of efficient and compact optical interconnection between layers has become an important development direction.A vertical interlayer co...Since the advent of three-dimensional photonic integrated circuits,the realization of efficient and compact optical interconnection between layers has become an important development direction.A vertical interlayer coupler between two silicon layers is presented in this paper.The coupling principle of the directional coupler is analyzed,and the traditional method of using a pair of vertically overlapping inverse taper structures is improved.For the coupling of two rectangular waveguide layers,a pair of nonlinear tapers with offset along the transmission direction is demonstrated.For the coupling of two ridge waveguide layers,a nonlinear taper in each layer is used to achieve high coupling efficiency.The simulation results show that the coupling efficiency of the two structures can reach more than 90%in a wavelength range from 1500 nm to 1650 nm.Moreover,the crosstalk is reduced to less than-50 d B by using multimode waveguides at intersections.The vertical interlayer coupler with a nonlinear taper is expected to realize the miniaturization and dense integration of photonic integrated chips.展开更多
An analysis is performed to study transient free convective boundary layer flow of a couple stress fluid over a vertical cylinder, in the absence of body couples. The solution of the time-dependent non-linear and coup...An analysis is performed to study transient free convective boundary layer flow of a couple stress fluid over a vertical cylinder, in the absence of body couples. The solution of the time-dependent non-linear and coupled governing equations is carried out with the aid of an unconditionally stable Crank-Nicolson type of numerical scheme. Numerical results for the steady-state velocity, temperature as well as the time histories of the skin-friction coefficient and Nus- selt number are presented graphically and discussed. It is seen that for all flow variables as the couple stress control parameter, Co, is amplified, the time required for reaching the temporal maximum increases but the steady-state decreases.展开更多
A new type of vibration structure (i.e. supporting system, called swing frame cus- tomarily) of vertical dynamic balancing machine has been designed, which is based on an analysis for the swing frame of a traditiona...A new type of vibration structure (i.e. supporting system, called swing frame cus- tomarily) of vertical dynamic balancing machine has been designed, which is based on an analysis for the swing frame of a traditional double-plane vertical dynamic balancing machine. The static unbalance and couple unbalance can be e?ectively separated by using the new dynamic balancing machine with the new swing frame. By building the dynamics model, the advantages of the new structure are discussed in detail. The modal and harmonic response are analyzed by using the ANSYS7.0. By comparing the ?nite element modal analysis with the experimental modal analy- sis, the natural frequencies and vibration modes are found. There are many spring boards in the new swing frame. Their sti?nesses are di?erent and assorted with each other. Furthermore, there are three sensors on the measuring points. Therefore, the new dynamic balancing machine can measure static unbalance and coupling unbalance directly, and the interaction between them is faint. The result shows that the new vertical dynamic balancing machine is suitable for inertial measurement of ?ying objects, and can overcome the shortcomings of traditional double-plane vertical dynamic balancing machines, which the e?ect of plane-separation is inferior. The vertical dynamic balancing machine with the new vibration structure can ?nd wide application in the future. The modelling and analysis of the new vibration structure will provide theoretical basis and practical experience for designing new-type vertical dynamic balancing machines.展开更多
A new type of vibration structure of vertical dynamic balancing machine isdesigned, which is based on the analysis for swing frame of a traditional vertical dynamic balancingmachine. The static unbalance and couple un...A new type of vibration structure of vertical dynamic balancing machine isdesigned, which is based on the analysis for swing frame of a traditional vertical dynamic balancingmachine. The static unbalance and couple unbalance can be separated effectively by using the newmachine with the new swing frame. By building the dynamics model, the advantages of the newstructure are discussed in detail. The modal and harmonic response are analyzed by using theANSYS7.0. By comparing the finite element modal analysis with the experimental modal analysis, thenatural frequencies and vibration modes are found out. There are many spring boards in the new swingframe. Their stiffness is different and assort with each other. Furthermore, there are threesensors on the measurement points. Therefore, the new dynamic balancing machine can measure thestatic unbalance and couple unbalance directly, and the influence between them is faint. The newstructure has the function of belt-strain compensation to improve the measurement precision. Thepractical result indicates that the new vertical dynamic balancing machine is suitable for inertialmeasurement of flying objects, and can overcome the shortcomings of traditional double-planevertical dynamic balancing machines. The vertical dynamic balancing machine with the new vibrationstructure can be widely used in the future applications. The modeling and analysis of the newvibration structure provide theoretic instruction and practical experience for designing new type ofvertical dynamic balancing machines. Based on the design principles such as stiffness-matching,frequency-adjacence and strain-compensation and so on, various new type of vibration structures canbe designed.展开更多
The force-coupling method (FCM) developed by Maxey and Patel (2001) was modified and applied to trace the trajectories of spherical bubbles with solid-like and slip surfaces. Careful comparison was made to the experim...The force-coupling method (FCM) developed by Maxey and Patel (2001) was modified and applied to trace the trajectories of spherical bubbles with solid-like and slip surfaces. Careful comparison was made to the experimental results of Takemura et al. (2000, 2002a, 2002b). First, the result obtained by use of the original version of the FCM was compared to the experimental results. It was found that the original FCM was not feasible for tracing spherical bubble trajectories. Then, a correction was made to the FCM calculation of the bubble velocity by renormalization in terms of the bubble Reynolds number, which could very well trace the trajectory of the bubble with a solid-like, no-slip surface, but not that of a bubble with a slip surface. Finally, a substantial correction was made to the monopole term of the FCM, which could trace the trajectory of a bubble with a solid-like or slip surface very well even for the Reynolds number up to 20.展开更多
Based on the variational prineiple of incomplete generalized potential energy with large deflection, the vertical nonlinear vibrational differential equation of self-anchored suspension bridge is presented by taking t...Based on the variational prineiple of incomplete generalized potential energy with large deflection, the vertical nonlinear vibrational differential equation of self-anchored suspension bridge is presented by taking the effect of coupling of flexural and axial action into consideration. The linear vertical equation is obtained by omitting the nonlinear term, and the pseudo excitation method(PEM). Taking the self-anchored concrete suspension bridge over Lanqi Songhua river for an example, the expected peak responses of main beam, towers and cables are calculated. And the seismic spatial effects on vertical seismic response of self-anchored suspension bridges are discussed.展开更多
Oxide-metal based nanocomposite thin films have attracted great interests owing to their unique anisotropic structure and physical properties.A wide range of Au-based oxide-metal nanocomposites have been demonstrated,...Oxide-metal based nanocomposite thin films have attracted great interests owing to their unique anisotropic structure and physical properties.A wide range of Au-based oxide-metal nanocomposites have been demonstrated,while other metal systems are scarce due to the challenges in the initial nucleation and growth as well as possible interdiffusions of the metallic nanopillars.In this work,a unique anodic aluminum oxide(AAO)template was used to grow a thin Co seed layer and the following self-assembled metal-oxide(Co-BaTiO_(3))vertically aligned nanocomposite thin film layer.The AAO template allows the uniform growth of Co-seeds and successfully deposition of highly ordered Co pillars(with diameter<5 nm and interval between pillars<10 nm)inside the oxide matrix.Significant magnetic anisotropy and strong magneto-optical coupling properties have been observed.A thin Au-BaTiO_(3) template was also later introduced for further enhanced nucleation and ordered growth of the Co-nanopillars.Taking the advantage of such a unique nanostructure,a large out-of-plane(OP)coercive field(Hc)of~5000 Oe has been achieved,making the nanocomposite an ideal candidate for high density perpendicular magnetic tunneling junction(p-MTJ).A strong polar magneto-optical Kerr effect(MOKE)has also been observed which inspires a novel optical-based reading method of the MTJ states.展开更多
Considering the dynamic variation of roll gap and the transverse distribution of dynamic rolling force along the work roll width direction, the movement and deformation of rolls system, influenced by the coupling of v...Considering the dynamic variation of roll gap and the transverse distribution of dynamic rolling force along the work roll width direction, the movement and deformation of rolls system, influenced by the coupling of vertical chatter and transverse bending vibration, may cause instability and also bring product defect of thickness difference. Therefore, a rigid-flexible coupling vibration model of the rolls system was presented. The influence of dynamic characteristics on the rolling process stability and strip thickness distribution was investigated. Firstly, assuming the symmetry of upper and lower structures of six-high rolling mill, a transverse bending vibration model of three-beam system under simply supported boundary conditions was established, and a semi-analytical solution method was proposed to deal with this model. Then, considering both variation and change rate of the roll gap, a roll vertical chatter model with structure and process coupled was constructed, and the critical rolling speed for self-excited instability was determined by Routh stability criterion. Furthermore, a rigid-flexible coupling vibration model of the rolls system was built by connecting the vertical chatter model and transverse bending vibration model through the distribution of dynamic rolling force, and the dynamic characteristics of rolls system were analyzed. Finally, the strip exit thickness distributions under the stable and unstable rolling process were compared, and the product shape and thickness distribution characteristics were quantitatively evaluated by the crown and maximum longitudinal thickness difference.展开更多
Rail weld irregularities are one of the primary excitation sources for vehicle-track interaction dynamics in modern high-speed railways.They can cause significant wheel-rail dynamic interactions,leading to wheel-rail ...Rail weld irregularities are one of the primary excitation sources for vehicle-track interaction dynamics in modern high-speed railways.They can cause significant wheel-rail dynamic interactions,leading to wheel-rail noise,component damage,and deterioration.Few researchers have employed the vehicle-track interaction dynamic model to study the dynamic interactions between wheel and rail induced by rail weld geometry irregularities.However,the cosine wave model used to simulate rail weld irregularities mainly focuses on the maximum value and neglects the geometric shape.In this study,novel theoretical models were developed for three categories of rail weld irregularities,based on measurements of the high-speed railway from Beijing to Shanghai.The vertical dynamic forces in the time and frequency domains were compared under different running speeds.These forces generated by the rail weld irregularities that were measured and modeled,respectively,were compared to validate the accuracy of the proposed model.Finally,based on the numerical study,the impact force due to rail weld irrregularity is modeled using an Artificial Neural Network(ANN),and the optimum combination of parameters for this model is found.The results showed that the proposed model provided a more accurate wheel/rail dynamic evaluation caused by rail weld irregularities than that established in the literature.The ANN model used in this paper can effectively predict the impact force due to rail weld irrregularity while reducing the computation time.展开更多
A planar-integrated optical system(PIOS)represents powerful optical imaging and information processing techniques and is a potential candidate for the realization of a three-dimensional(3D)integrated optoelectronic in...A planar-integrated optical system(PIOS)represents powerful optical imaging and information processing techniques and is a potential candidate for the realization of a three-dimensional(3D)integrated optoelectronic intelligent system.Coupling the optical wave carrying information into a planar transparent substrate(typically fused silica)is an essential prerequisite for the realization of such a PIOS.Unlike conventional grating couplers for nano-waveguides on the silicon-on-insulator platform,the grating couplers for PIOS enable to obtain a higher design freedom and to achieve much higher coupling efficiency.By combining the rigorous coupled wave algorithm and simulated annealing optimization algorithm,a highefficiency asymmetric double-groove grating coupler is designed for PIOS.It is indicated that,under the condition of the normal incidence of TE polarization,the diffraction efficiency of the-1st order is over 95%,and its average value is 97.3%and 92.8%in the C and C+L bands.The simulation results indicate that this type of grating coupler has good tolerance and is expected to be applied in optical interconnections,waveguide-based augmented reality glasses,and planar-integrated 3D interconnection optical computing systems.展开更多
By using the coupled mode theory and the transfer matrix technique,the optical transfer function is presented for analyzing the size of the waveguide,radius of the microring,free spectral range and amplitude coupling ...By using the coupled mode theory and the transfer matrix technique,the optical transfer function is presented for analyzing the size of the waveguide,radius of the microring,free spectral range and amplitude coupling ratio of the vertical coupling microring resonator.Under the central wavelength of 1550 nm,optimization and simulation are performed when the central deviation between the ring and the channel is 0,0.5,1μm,respectively, the 3-dB bandwidth of the spectral response is about 0.21,0.09,0.03 nm,and the intensity of the nonresonant light is below-30,-40,-50 dB,respectively.展开更多
The influence of human body on dynamic characteristics of footbridge was analyzed. A re- alistic footbridge was measured during a mass event. A simulation experiment system including a simple beam as object and a shak...The influence of human body on dynamic characteristics of footbridge was analyzed. A re- alistic footbridge was measured during a mass event. A simulation experiment system including a simple beam as object and a shaker as back ground excitation was built. The acceleration responses of beam were measured when person in static and active stated stood on the beam. The dynamic pa- rameters of the structure were identified by the time-domain approach and verified by theoretical and laboratory tests. The results showed that for the human-structure coupled system, nature frequency of the structure decreased and damping increased. Moreover, the increase of damping with passive person was bigger than that with active person.展开更多
The vertical coupling(VC)process and mechanism during the genesis of a tropical cyclone(TC)implied by the weak vertical shear of horizontal wind,one of the key factors impacting TC genesis,constitute important but una...The vertical coupling(VC)process and mechanism during the genesis of a tropical cyclone(TC)implied by the weak vertical shear of horizontal wind,one of the key factors impacting TC genesis,constitute important but unanswered fundamental scientific problems.This paper carried out a targeted investigation of this problem through numerical simulation and theoretical analyses.The main conclusions are as follows.Even if TC genesis occurs in a barotropic environment,a VC process still occurs between the trough(vortex)at the middle level and that at the lower level in the TC embryo area.VC mainly occurs at the tropical disturbance(TDS)stage.Only after the VC is accomplished can the tropical depression(TD)organize further by itself and develop into the tropical storm(TS)stage or the stronger tropical typhoon(TY)stage through the WISHE(wind-induced surface heat exchange)mechanism.In the VC process,vortical hot towers(VHTs)play vertical connecting roles and are the actual practitioners of the VC.Through the VHTs’vertical connections,the middle-and lower-troposphere trough axes move towards each other and realize the VC.VHTs can produce intensive cyclonic vorticity in the lower troposphere,which is mainly contributed by the stretching term.The tilting term can produce a single dipole or double dipole of vorticity,but the positive and negative vorticity pairs offset each other roughly.While the stretching term ensures that the cyclonic rotations of the wind field in the middle and lower levels tend to be consistent,the tilting term acts to uniformly distribute the horizontal wind in the vertical direction,and both terms facilitate the VC of the wind field.With the latent heat of condensation,VHTs heat the upper and middle troposphere so that the 352 K equivalent potential temperature contour penetrates vertically into the 925–300 hPa layer,realizing the VC of the temperature field.While forming cloud towers,VHTs make the ambient air become moist and nearly saturated so that the 95%relative humidity contour penetrates vertically into the 925–400 hPa layer,realizing the VC of the humidity field.Due to the collective contributions of the VHTs,the embryo area develops into a warm,nearly saturated core with strong cyclonic vorticity.The barotropic instability mechanism may also occur during TC genesis over the Northwest Pacific and provide rich large-scale environmental vorticity for TC genesis.The axisymmetric distribution of VHTs is an important sign of TC genesis.When a TC is about to form,there may be accompanying phenomena between the axisymmetric process of VHTs and vortex Rossby waves.展开更多
In order to reflect the vertical random vibration characteristics of railway vehicles more truly and effectively,this paper regards the human body as a single-degree-of-freedom system attached to the bottom of the car...In order to reflect the vertical random vibration characteristics of railway vehicles more truly and effectively,this paper regards the human body as a single-degree-of-freedom system attached to the bottom of the carriage,and establishes a vertical dynamic model of railway vehicles by considering the influence of the coupling vibration effect between the passenger and the car body.The correctness of the model is verified by the real vehicle test.Then,the influence of the passengers on the vertical vibration characteristics of railway vehicles is analyzed,and the influence of the railway vehicle vibration on the vertical vibration characteristics of passengers is discussed in this paper.The research made in this paper can provide an effective model reference for the analysis of the vertical random vibration characteristics of railway vehicles and passengers,and for the optimization design of the suspension system parameters.展开更多
We demonstrate a novel oxide confined GaAs-based photonic crystal vertical cavity surface emitting laser (PC-VCSEL) operating at a wavelength of 850 nm based on coherent coupling. A ring-shaped light-emitting aperture...We demonstrate a novel oxide confined GaAs-based photonic crystal vertical cavity surface emitting laser (PC-VCSEL) operating at a wavelength of 850 nm based on coherent coupling. A ring-shaped light-emitting aperture is added to the conventional PC-VCSEL, and coherent coupling is achieved between the central defect aperture and the ring-shaped light-emitting aperture. Measurements show that under the continuous-wave (CW) injected current of 20 mA, a high power of 2 mW is obtained, and the side mode suppression ratio (SMSR) is larger than 20 dB. The average divergence angle is 4.2° at the current level of 20 mA. Compared with the results ever reported, the divergence angle is reduced.展开更多
基金Supported by the Fujian Natural Science Foundation under Grant No.A97009.
文摘Vertical transport I-V relations of type-I GaAs/A1As superlattices with doped wells and weak coupling between wells at 77K were investigated with quasistatic and dynamic method.Spontaneous current oscillations are also investigated.The domain formation time 70±30 ns is directly measured.By using discrete-tunneling model,the key parameters of the relation between tunneling current and the bias between adjacent wells were quantitatively determined from the experimental data.
文摘The intrinsic features involving a circularly symmetric beam profile with low divergence, planar geometry as well as the increasingly enhanced power of vertical-cavity surface-emitting lasers (VCSELs) have made the VCSEL a promising pump source in direct end bonding to a solid-state laser medium to form the minimized, on-wafer integrated laser system. This scheme will generate a surface contact pump configuration and thus additional end thermal coupling to the laser medium through the joint interface of both materials, apart from pump beam heating. This paper analytically models temperature distributions in both VCSEL and the laser medium from the end thermal coupling regarding surface contact pump configuration using a top-emitting VCSEL as the pump source for the first time. The analytical solutions are derived by introducing relative temperature and mean temperature expressions. The results show that the end contact heating by the VCSEL could lead to considerable temperature variations associated with thermal phase shift and thermal lensing in the laser medium. However, if the central temperature of the interface is increased by less than 20 K, the end contact heating does not have a significant thermal influence on the laser medium. In this case, the thermal effect should be dominated by pump beam heating. This work provides useful analytical results for further analysis of hybrid thermal effects on those lasers pumped by a direct VCSEL bond.
文摘The unsteady natural convective couple stress fluid flow over a semi-infinite vertical cylinder is analyzed for the homogeneous first-order chemical reaction effect. The couple stress fluid flow model introduces the length dependent effect based on the material constant and dynamic viscosity. Also, it introduces the biharmonic operator in the Navier-Stokes equations, which is absent in the case of Newtonian fluids. The solution to the time-dependent non-linear and coupled governing equations is carried out with an unconditionally stable Crank-Nicolson type of numerical schemes. Numerical results for the transient flow variables, the average wall shear stress, the Nusselt number, and the Sherwood number are shown graphically for both generative and destructive reactions. The time to reach the temporal maximum increases as the reaction constant K increases. The average values of the wall shear stress and the heat transfer rate decrease as K increases, while increase with the increase in the Sherwood number.
基金supported by the National Key Research and Development Program of China(Grant No.2019YFB2203001)the Strategic Priority Research Program of the Chinese Academy of Sciences(Grant No.XDB43000000)the National Natural Science Foundation of China(Grant No.61805232)。
文摘Since the advent of three-dimensional photonic integrated circuits,the realization of efficient and compact optical interconnection between layers has become an important development direction.A vertical interlayer coupler between two silicon layers is presented in this paper.The coupling principle of the directional coupler is analyzed,and the traditional method of using a pair of vertically overlapping inverse taper structures is improved.For the coupling of two rectangular waveguide layers,a pair of nonlinear tapers with offset along the transmission direction is demonstrated.For the coupling of two ridge waveguide layers,a nonlinear taper in each layer is used to achieve high coupling efficiency.The simulation results show that the coupling efficiency of the two structures can reach more than 90%in a wavelength range from 1500 nm to 1650 nm.Moreover,the crosstalk is reduced to less than-50 d B by using multimode waveguides at intersections.The vertical interlayer coupler with a nonlinear taper is expected to realize the miniaturization and dense integration of photonic integrated chips.
文摘An analysis is performed to study transient free convective boundary layer flow of a couple stress fluid over a vertical cylinder, in the absence of body couples. The solution of the time-dependent non-linear and coupled governing equations is carried out with the aid of an unconditionally stable Crank-Nicolson type of numerical scheme. Numerical results for the steady-state velocity, temperature as well as the time histories of the skin-friction coefficient and Nus- selt number are presented graphically and discussed. It is seen that for all flow variables as the couple stress control parameter, Co, is amplified, the time required for reaching the temporal maximum increases but the steady-state decreases.
基金Project supported by the National Natural Science Foundation of China (No.10176011).
文摘A new type of vibration structure (i.e. supporting system, called swing frame cus- tomarily) of vertical dynamic balancing machine has been designed, which is based on an analysis for the swing frame of a traditional double-plane vertical dynamic balancing machine. The static unbalance and couple unbalance can be e?ectively separated by using the new dynamic balancing machine with the new swing frame. By building the dynamics model, the advantages of the new structure are discussed in detail. The modal and harmonic response are analyzed by using the ANSYS7.0. By comparing the ?nite element modal analysis with the experimental modal analy- sis, the natural frequencies and vibration modes are found. There are many spring boards in the new swing frame. Their sti?nesses are di?erent and assorted with each other. Furthermore, there are three sensors on the measuring points. Therefore, the new dynamic balancing machine can measure static unbalance and coupling unbalance directly, and the interaction between them is faint. The result shows that the new vertical dynamic balancing machine is suitable for inertial measurement of ?ying objects, and can overcome the shortcomings of traditional double-plane vertical dynamic balancing machines, which the e?ect of plane-separation is inferior. The vertical dynamic balancing machine with the new vibration structure can ?nd wide application in the future. The modelling and analysis of the new vibration structure will provide theoretical basis and practical experience for designing new-type vertical dynamic balancing machines.
文摘A new type of vibration structure of vertical dynamic balancing machine isdesigned, which is based on the analysis for swing frame of a traditional vertical dynamic balancingmachine. The static unbalance and couple unbalance can be separated effectively by using the newmachine with the new swing frame. By building the dynamics model, the advantages of the newstructure are discussed in detail. The modal and harmonic response are analyzed by using theANSYS7.0. By comparing the finite element modal analysis with the experimental modal analysis, thenatural frequencies and vibration modes are found out. There are many spring boards in the new swingframe. Their stiffness is different and assort with each other. Furthermore, there are threesensors on the measurement points. Therefore, the new dynamic balancing machine can measure thestatic unbalance and couple unbalance directly, and the influence between them is faint. The newstructure has the function of belt-strain compensation to improve the measurement precision. Thepractical result indicates that the new vertical dynamic balancing machine is suitable for inertialmeasurement of flying objects, and can overcome the shortcomings of traditional double-planevertical dynamic balancing machines. The vertical dynamic balancing machine with the new vibrationstructure can be widely used in the future applications. The modeling and analysis of the newvibration structure provide theoretic instruction and practical experience for designing new type ofvertical dynamic balancing machines. Based on the design principles such as stiffness-matching,frequency-adjacence and strain-compensation and so on, various new type of vibration structures canbe designed.
文摘The force-coupling method (FCM) developed by Maxey and Patel (2001) was modified and applied to trace the trajectories of spherical bubbles with solid-like and slip surfaces. Careful comparison was made to the experimental results of Takemura et al. (2000, 2002a, 2002b). First, the result obtained by use of the original version of the FCM was compared to the experimental results. It was found that the original FCM was not feasible for tracing spherical bubble trajectories. Then, a correction was made to the FCM calculation of the bubble velocity by renormalization in terms of the bubble Reynolds number, which could very well trace the trajectory of the bubble with a solid-like, no-slip surface, but not that of a bubble with a slip surface. Finally, a substantial correction was made to the monopole term of the FCM, which could trace the trajectory of a bubble with a solid-like or slip surface very well even for the Reynolds number up to 20.
文摘Based on the variational prineiple of incomplete generalized potential energy with large deflection, the vertical nonlinear vibrational differential equation of self-anchored suspension bridge is presented by taking the effect of coupling of flexural and axial action into consideration. The linear vertical equation is obtained by omitting the nonlinear term, and the pseudo excitation method(PEM). Taking the self-anchored concrete suspension bridge over Lanqi Songhua river for an example, the expected peak responses of main beam, towers and cables are calculated. And the seismic spatial effects on vertical seismic response of self-anchored suspension bridges are discussed.
基金funded by the U.S.Department of Energy,Office of Science,Basic Energy Sciences with award No.DE-SC0020077.
文摘Oxide-metal based nanocomposite thin films have attracted great interests owing to their unique anisotropic structure and physical properties.A wide range of Au-based oxide-metal nanocomposites have been demonstrated,while other metal systems are scarce due to the challenges in the initial nucleation and growth as well as possible interdiffusions of the metallic nanopillars.In this work,a unique anodic aluminum oxide(AAO)template was used to grow a thin Co seed layer and the following self-assembled metal-oxide(Co-BaTiO_(3))vertically aligned nanocomposite thin film layer.The AAO template allows the uniform growth of Co-seeds and successfully deposition of highly ordered Co pillars(with diameter<5 nm and interval between pillars<10 nm)inside the oxide matrix.Significant magnetic anisotropy and strong magneto-optical coupling properties have been observed.A thin Au-BaTiO_(3) template was also later introduced for further enhanced nucleation and ordered growth of the Co-nanopillars.Taking the advantage of such a unique nanostructure,a large out-of-plane(OP)coercive field(Hc)of~5000 Oe has been achieved,making the nanocomposite an ideal candidate for high density perpendicular magnetic tunneling junction(p-MTJ).A strong polar magneto-optical Kerr effect(MOKE)has also been observed which inspires a novel optical-based reading method of the MTJ states.
基金supported by the National Natural Science Foundation of China(No.51775038).
文摘Considering the dynamic variation of roll gap and the transverse distribution of dynamic rolling force along the work roll width direction, the movement and deformation of rolls system, influenced by the coupling of vertical chatter and transverse bending vibration, may cause instability and also bring product defect of thickness difference. Therefore, a rigid-flexible coupling vibration model of the rolls system was presented. The influence of dynamic characteristics on the rolling process stability and strip thickness distribution was investigated. Firstly, assuming the symmetry of upper and lower structures of six-high rolling mill, a transverse bending vibration model of three-beam system under simply supported boundary conditions was established, and a semi-analytical solution method was proposed to deal with this model. Then, considering both variation and change rate of the roll gap, a roll vertical chatter model with structure and process coupled was constructed, and the critical rolling speed for self-excited instability was determined by Routh stability criterion. Furthermore, a rigid-flexible coupling vibration model of the rolls system was built by connecting the vertical chatter model and transverse bending vibration model through the distribution of dynamic rolling force, and the dynamic characteristics of rolls system were analyzed. Finally, the strip exit thickness distributions under the stable and unstable rolling process were compared, and the product shape and thickness distribution characteristics were quantitatively evaluated by the crown and maximum longitudinal thickness difference.
基金supported by Natural Science Foundation of China(52178441)the Scientific Research Projects of the China Academy of Railway Sciences Co.,Ltd.(Grant No.2022YJ043).
文摘Rail weld irregularities are one of the primary excitation sources for vehicle-track interaction dynamics in modern high-speed railways.They can cause significant wheel-rail dynamic interactions,leading to wheel-rail noise,component damage,and deterioration.Few researchers have employed the vehicle-track interaction dynamic model to study the dynamic interactions between wheel and rail induced by rail weld geometry irregularities.However,the cosine wave model used to simulate rail weld irregularities mainly focuses on the maximum value and neglects the geometric shape.In this study,novel theoretical models were developed for three categories of rail weld irregularities,based on measurements of the high-speed railway from Beijing to Shanghai.The vertical dynamic forces in the time and frequency domains were compared under different running speeds.These forces generated by the rail weld irregularities that were measured and modeled,respectively,were compared to validate the accuracy of the proposed model.Finally,based on the numerical study,the impact force due to rail weld irrregularity is modeled using an Artificial Neural Network(ANN),and the optimum combination of parameters for this model is found.The results showed that the proposed model provided a more accurate wheel/rail dynamic evaluation caused by rail weld irregularities than that established in the literature.The ANN model used in this paper can effectively predict the impact force due to rail weld irrregularity while reducing the computation time.
基金supported by the Shanghai Science and Technology Committee(Nos.19JC1415400,19DZ1191102,and 20ZR1464700)in part by the Cutting-Edge Sciences Important Research Program,Bureau of Frontier Sciences and Education,Chinese Academy of Sciences(No.QYZDJSSW-JSC014)。
文摘A planar-integrated optical system(PIOS)represents powerful optical imaging and information processing techniques and is a potential candidate for the realization of a three-dimensional(3D)integrated optoelectronic intelligent system.Coupling the optical wave carrying information into a planar transparent substrate(typically fused silica)is an essential prerequisite for the realization of such a PIOS.Unlike conventional grating couplers for nano-waveguides on the silicon-on-insulator platform,the grating couplers for PIOS enable to obtain a higher design freedom and to achieve much higher coupling efficiency.By combining the rigorous coupled wave algorithm and simulated annealing optimization algorithm,a highefficiency asymmetric double-groove grating coupler is designed for PIOS.It is indicated that,under the condition of the normal incidence of TE polarization,the diffraction efficiency of the-1st order is over 95%,and its average value is 97.3%and 92.8%in the C and C+L bands.The simulation results indicate that this type of grating coupler has good tolerance and is expected to be applied in optical interconnections,waveguide-based augmented reality glasses,and planar-integrated 3D interconnection optical computing systems.
基金Project supported by the Science and Technology Development of Jilin Province(Nos.20110320,201201078)
文摘By using the coupled mode theory and the transfer matrix technique,the optical transfer function is presented for analyzing the size of the waveguide,radius of the microring,free spectral range and amplitude coupling ratio of the vertical coupling microring resonator.Under the central wavelength of 1550 nm,optimization and simulation are performed when the central deviation between the ring and the channel is 0,0.5,1μm,respectively, the 3-dB bandwidth of the spectral response is about 0.21,0.09,0.03 nm,and the intensity of the nonresonant light is below-30,-40,-50 dB,respectively.
基金Supported by the International S&T Cooperation Program of China(2010DFB74280)
文摘The influence of human body on dynamic characteristics of footbridge was analyzed. A re- alistic footbridge was measured during a mass event. A simulation experiment system including a simple beam as object and a shaker as back ground excitation was built. The acceleration responses of beam were measured when person in static and active stated stood on the beam. The dynamic pa- rameters of the structure were identified by the time-domain approach and verified by theoretical and laboratory tests. The results showed that for the human-structure coupled system, nature frequency of the structure decreased and damping increased. Moreover, the increase of damping with passive person was bigger than that with active person.
基金the National Basic Research Program of China(Grant No.2015CB452804)the National Natural Science Foundation of China(Grant No.41475051)。
文摘The vertical coupling(VC)process and mechanism during the genesis of a tropical cyclone(TC)implied by the weak vertical shear of horizontal wind,one of the key factors impacting TC genesis,constitute important but unanswered fundamental scientific problems.This paper carried out a targeted investigation of this problem through numerical simulation and theoretical analyses.The main conclusions are as follows.Even if TC genesis occurs in a barotropic environment,a VC process still occurs between the trough(vortex)at the middle level and that at the lower level in the TC embryo area.VC mainly occurs at the tropical disturbance(TDS)stage.Only after the VC is accomplished can the tropical depression(TD)organize further by itself and develop into the tropical storm(TS)stage or the stronger tropical typhoon(TY)stage through the WISHE(wind-induced surface heat exchange)mechanism.In the VC process,vortical hot towers(VHTs)play vertical connecting roles and are the actual practitioners of the VC.Through the VHTs’vertical connections,the middle-and lower-troposphere trough axes move towards each other and realize the VC.VHTs can produce intensive cyclonic vorticity in the lower troposphere,which is mainly contributed by the stretching term.The tilting term can produce a single dipole or double dipole of vorticity,but the positive and negative vorticity pairs offset each other roughly.While the stretching term ensures that the cyclonic rotations of the wind field in the middle and lower levels tend to be consistent,the tilting term acts to uniformly distribute the horizontal wind in the vertical direction,and both terms facilitate the VC of the wind field.With the latent heat of condensation,VHTs heat the upper and middle troposphere so that the 352 K equivalent potential temperature contour penetrates vertically into the 925–300 hPa layer,realizing the VC of the temperature field.While forming cloud towers,VHTs make the ambient air become moist and nearly saturated so that the 95%relative humidity contour penetrates vertically into the 925–400 hPa layer,realizing the VC of the humidity field.Due to the collective contributions of the VHTs,the embryo area develops into a warm,nearly saturated core with strong cyclonic vorticity.The barotropic instability mechanism may also occur during TC genesis over the Northwest Pacific and provide rich large-scale environmental vorticity for TC genesis.The axisymmetric distribution of VHTs is an important sign of TC genesis.When a TC is about to form,there may be accompanying phenomena between the axisymmetric process of VHTs and vortex Rossby waves.
基金This work is supported by the National Natural Science Foundation of China(51575325).
文摘In order to reflect the vertical random vibration characteristics of railway vehicles more truly and effectively,this paper regards the human body as a single-degree-of-freedom system attached to the bottom of the carriage,and establishes a vertical dynamic model of railway vehicles by considering the influence of the coupling vibration effect between the passenger and the car body.The correctness of the model is verified by the real vehicle test.Then,the influence of the passengers on the vertical vibration characteristics of railway vehicles is analyzed,and the influence of the railway vehicle vibration on the vertical vibration characteristics of passengers is discussed in this paper.The research made in this paper can provide an effective model reference for the analysis of the vertical random vibration characteristics of railway vehicles and passengers,and for the optimization design of the suspension system parameters.
基金supported by the Key Program of the National Natural Sci-ence Foundation of China (Grant No. 10634080)the National Natural Sci-ence Foundation of China (Grant No. 60677046)+1 种基金the National Basic Re-search Program of China (Grant No. 2006CB921700)the National High Technology Research and Development Program of China (Grant No.2006AA03Z403)
文摘We demonstrate a novel oxide confined GaAs-based photonic crystal vertical cavity surface emitting laser (PC-VCSEL) operating at a wavelength of 850 nm based on coherent coupling. A ring-shaped light-emitting aperture is added to the conventional PC-VCSEL, and coherent coupling is achieved between the central defect aperture and the ring-shaped light-emitting aperture. Measurements show that under the continuous-wave (CW) injected current of 20 mA, a high power of 2 mW is obtained, and the side mode suppression ratio (SMSR) is larger than 20 dB. The average divergence angle is 4.2° at the current level of 20 mA. Compared with the results ever reported, the divergence angle is reduced.