Calcium ferrite(CF)is recognized as a potential green and efficient functional material because of its advantages of magnetism,electrochemistry,catalysis,and biocompatibility in the fields of materials chemistry,envir...Calcium ferrite(CF)is recognized as a potential green and efficient functional material because of its advantages of magnetism,electrochemistry,catalysis,and biocompatibility in the fields of materials chemistry,environmental engineering,and biomedicine.There-fore,the obtained research results need to be systematically summarized,and new perspectives on CF and its composite materials need to be analyzed.Based on the presented studies of CF and its composite materials,the types and structures of the crystal are summarized.In addition,the current application technologies and theoretical mechanisms with various properties in different fields are elucidated.Moreover,the various preparation methods of CF and its composite materials are elaborated in detail.Most importantly,the advantages and disadvantages of the synthesis methods of CF and its composite materials are discussed,and the existing problems and emerging challenges in practical production are identified.Furthermore,the key future research directions of CF and its composite materials have been prospected from the potential application technologies to provide references for its synthesis and efficient utilization.展开更多
The stable sub-angstrom resolution of the aberration-corrected scanning transmission electron microscope(ACSTEM)makes it an advanced and practical characterization technique for all materials.Owing to the prosperous a...The stable sub-angstrom resolution of the aberration-corrected scanning transmission electron microscope(ACSTEM)makes it an advanced and practical characterization technique for all materials.Owing to the prosperous advancement in computational technology,specialized software and programs have emerged as potent facilitators across the entirety of electron microscopy characterization process.Utilizing advanced image processing algorithms promotes the rectification of image distortions,concurrently elevating the overall image quality to superior standards.Extracting high-resolution,pixel-level discrete information and converting it into atomic-scale,followed by performing statistical calculations on the physical matters of interest through quantitative analysis,represent an effective strategy to maximize the value of electron microscope images.The efficacious utilization of quantitative analysis of electron microscope images has become a progressively prominent consideration for materials scientists and electron microscopy researchers.This article offers a concise overview of the pivotal procedures in quantitative analysis and summarizes the computational methodologies involved from three perspectives:contrast,lattice and strain,as well as atomic displacements and polarization.It further elaborates on practical applications of these methods in electronic functional materials,notably in piezoelectrics/ferroelectrics and thermoelectrics.It emphasizes the indispensable role of quantitative analysis in fundamental theoretical research,elucidating the structure–property correlations in high-performance systems,and guiding synthesis strategies.展开更多
Rechargeable lithium batteries with high-capacity cathodes/anodes promise high energy densities for nextgeneration electrochemical energy storage.However,the associated limitations at various scales greatly hinder the...Rechargeable lithium batteries with high-capacity cathodes/anodes promise high energy densities for nextgeneration electrochemical energy storage.However,the associated limitations at various scales greatly hinder their practical applications.Functional gradient material(FGM)design endows the electrode materials with property gradient,thus providing great opportunities to address the kinetics and stability obstacles.To date,still no review or perspective has covered recent advancements in gradient design at multiple scales for boosting lithium battery performances.To fill this void,this work provides a timely and comprehensive overview of this exciting and sustainable research field.We begin by overviewing the fundamental features of FGM and the rationales of gradient design for improved electrochemical performance.Then,we comprehensively review FGM design for rechargeable lithium batteries at various scales,including natural or artificial solid electrolyte interphase(SEI)at the nanoscale,micrometer-scale electrode particles,and macroscale electrode films.The link between gradient structure design and improved electrochemical performance is particularly highlighted.The most recent research into constructing novel functional gradients,such as valence and temperature gradients,has also been explored.Finally,we discussed the current constraints and future scope of FGM in rechargeable lithium batteries,aiming to inspire the development of novel FGM for next-generation high-performance lithium batteries.展开更多
Functionally graded materials(FGMs)are a novel class of composite materials that have attracted significant attention in the field of engineering due to their unique mechanical properties.This study aims to explore th...Functionally graded materials(FGMs)are a novel class of composite materials that have attracted significant attention in the field of engineering due to their unique mechanical properties.This study aims to explore the dynamic behaviors of an FGM stepped beam with different boundary conditions based on an efficient solving method.Under the assumptions of the Euler-Bernoulli beam theory,the governing differential equations of an individual FGM beam are derived with Hamilton’s principle and decoupled via the separation-of-variable approach.Then,the free and forced vibrations of the FGM stepped beam are solved with the transfer matrix method(TMM).Two models,i.e.,a three-level FGM stepped beam and a five-level FGM stepped beam,are considered,and their natural frequencies and mode shapes are presented.To demonstrate the validity of the method in this paper,the simulation results by ABAQUS are also given.On this basis,the detailed parametric analyses on the frequencies and dynamic responses of the three-level FGM stepped beam are carried out.The results show the accuracy and efficiency of the TMM.展开更多
In this paper, the isogeometric analysis (IGA) is employed to develop an acoustic radiation model for a double plate-acoustic cavity coupling system, with a focus on analyzing the sound transmission loss (STL). The fu...In this paper, the isogeometric analysis (IGA) is employed to develop an acoustic radiation model for a double plate-acoustic cavity coupling system, with a focus on analyzing the sound transmission loss (STL). The functionally graded (FG) plate exhibits a different material properties in-plane, and the power-law rule is adopted as the governing principle for material mixing. To validate the harmonic response and demonstrate the accuracy and convergence of the isogeometric modeling, ANASYS is utilized to compare with numerical examples. A plane wave serves as the acoustic excitation, and the Rayleigh integral is applied to discretize the radiated plate. The STL results are compared with the literature, confirming the reliability of the coupling system. Finally, the investigation is conducted to study impact of cavity depth and power-law parameter on the STL.展开更多
This paper presents a new electromagnetic functional material developed byelectron-less nickel deposition technique, with a single hollow micro-sphere as the core templateand a thin nickel layer as the shell. The micr...This paper presents a new electromagnetic functional material developed byelectron-less nickel deposition technique, with a single hollow micro-sphere as the core templateand a thin nickel layer as the shell. The micrograph taken by a scanning electron microscope showsthe microstructures of the materials in detail. Scattering parameters of the waveguide sample holderfilled with the materials have been obtained over X band. The electromagnetic parameters computedfrom the measured S parameters show that the material with metallic hollow spheres has as highrelative permeability μ'_r as 19.0 with about 0.6 magnetic loss tangent over the whole bandwidth.Compared to the material with non-metallic spheres, the permeability μ'_r and the magnetic losstangent μ'_r increase greatly, while the permittivity remains lower than 1.8.展开更多
Tourist material has its own text features.To translate tourist material is to achieve its purpose by transferring its pragmatic force,which is determined by text features and functions of tourist material.Which strat...Tourist material has its own text features.To translate tourist material is to achieve its purpose by transferring its pragmatic force,which is determined by text features and functions of tourist material.Which strategies exactly should be used in a certain circumstance is not important provided the pragmatic force is transmitted successfully.展开更多
Based on the analyses of the severity of cutting process as well as the failure mechanisms of ceramic tools, a model for designing functionally gradient ceramic tool materials with symmetrical distribution is presente...Based on the analyses of the severity of cutting process as well as the failure mechanisms of ceramic tools, a model for designing functionally gradient ceramic tool materials with symmetrical distribution is presented, by which a Al 2O 3/(W,Ti)C ceramic tool material FG 2 was developed. Multi objective optimization method was employed in designing the compositional distribution of this ceramic tool material. The results of both continuous and intermittent cutting tests are indicative of the much better cutting behavior of the functionally gradient ceramic tool FG 2 than that of the common ceramic tool SG 4.展开更多
Traditional gear weight optimization methods consider gear tooth number, module, face width or other dimension parameters of gear as design variables. However, due to the complicated form and geometric features peculi...Traditional gear weight optimization methods consider gear tooth number, module, face width or other dimension parameters of gear as design variables. However, due to the complicated form and geometric features peculiar to the gear, there will be large amounts of design parameters in gear design, and the influences of gear parameters changing on gear trains, transmission system and the whole equipment have to be taken into account, which increases the complexity of optimization problem. This paper puts forward to apply functionally graded materials(FGMs) to gears and then conduct the optimization. According to the force situation of gears, the material distribution form of FGM gears is determined. Then based on the performance parameters analysis of FGMs and the practical working demands for gears, a multi-objective optimization model is formed. Finally by using the goal driven optimization(GDO) method, the optimal material distribution is achieved, which makes gear weight and the maximum deformation be minimum and the maximum bending stress do not exceed the allowable stress. As an example, the applying of FGM to automotive transmission gear is conducted to illustrate the optimization design process and the result shows that under the condition of keeping the normal working performance of gear, the method achieves in greatly reducing the gear weight. This research proposes a FGM gears design method that is able to largely reduce the weight of gears by optimizing the microscopic material parameters instead of changing the macroscopic dimension parameters of gears, which reduces the complexity of gear weight optimization problem.展开更多
The synthetic routes of porous carbons and the applications of the functional porous carbon-based composite electrode materials for lithium secondary batteries are reviewed. The synthetic methods have made great break...The synthetic routes of porous carbons and the applications of the functional porous carbon-based composite electrode materials for lithium secondary batteries are reviewed. The synthetic methods have made great breakthroughs to control the pore size and volume, wall thickness, surface area, and connectivity of porous carbons, which result in the development of functional porous carbon-based composite electrode materials. The effects of porous carbons on the electrochemical properties are further discussed. The porous carbons as ideal matrixes to incorporate active materials make a great improvement on the electrochemical properties because of high surface area and pore volume, excellent electronic conductivity, and strong adsorption capacity. Large numbers of the composite electrode materials have been used for the devices of electrochemical energy conversion and storage, such as lithium-ion batteries (LIBs), Li-S batteries, and Li-O2 batteries. It is believed that functional porous carbon-based composite electrode materials will continuously contribute to the field of lithium secondary batteries.展开更多
Thispaper proposed a new methodof producing Ceramic/ Metalfunctionally gradient mate rialby electroless platingtechnique. The experimentof producing SiC/ Ni PFGM wascar ried out with self made electroless plating ...Thispaper proposed a new methodof producing Ceramic/ Metalfunctionally gradient mate rialby electroless platingtechnique. The experimentof producing SiC/ Ni PFGM wascar ried out with self made electroless plating facilities. The results show that the thickness of FGMcoating andthegradientdistribution ofcompositioncanbecontrolled byoptimizingelec trolessplating technology and changing the parameters such as plating time, the additionspeed and concentration of SiCparticles. Analysisdemonstratesthatthereisastrongrelation ship amongthe SiCcontent,the microstructureandthe mechanicalproperty ofthe FGM.展开更多
In this paper, the dynamic interaction of two parallel cracks in functionally graded materials (FGMs) is investigated by means of the non-local theory. To make the analysis tractable, the shear modulus and the mater...In this paper, the dynamic interaction of two parallel cracks in functionally graded materials (FGMs) is investigated by means of the non-local theory. To make the analysis tractable, the shear modulus and the material density are assumed to vary exponentially with the coordinate vertical to the crack. To reduce mathematical difficulties, a one-dimensional non-local kernel is used instead of a twodimensional one for the dynamic problem to obtain stress fields near the crack tips. By use of the Fourier transform, the problem can be solved with the help of two pairs of dual integral equations, in which the unknown variables are the jumps of displacements across the crack surfaces. To solve the dual integral equations, the jumps of displacements across the crack surfaces are expanded in a series of Jacobi polynomials. Unlike the classical elasticity solutions, it is found that no stress singularity is present at the crack tips. The non-local elastic solutions yield a finite hoop stress at the crack tips. The present result provides theoretical references helpful for evaluating relevant strength and preventing material failure of FGMs with initial cracks. The magnitude of the finite stress field depends on relevant parameters, such as the crack length, the distance between two parallel cracks, the parameter describing the FGMs, the frequency of the incident waves and the lattice parameter of materials.展开更多
Micro/nanostructured crystals with controlled architectures are desirable for many applications in optics, electronics, biology, medicine, and energy conversions. Low-temperature, aqueous chemical routes have been wid...Micro/nanostructured crystals with controlled architectures are desirable for many applications in optics, electronics, biology, medicine, and energy conversions. Low-temperature, aqueous chemical routes have been widely investigated for the synthesis of particles, and arrays of oriented nanorods and nanotubes. In this paper, based on the ideal crystal shapes predicted by the chemical bonding theory, we have developed some potential chemical strategies to tune the microstructure of functional materials, ZnS and Nb205 nanotube arrays, MgO wiskers and nestlike spheres, and cubic phase Cu2O microcrystals were synthesized here to elucidate these strategies. We describe their controlled crystallization processes and illustrate the detailed key factors controlling their growth by examining various reaction parameters. Current results demonstrate that our designed chemical strategies for tuning microstructure of functional materials are applicable to several technologically important materials, and therefore may be used as a versatile and effective route to the controllable synthesis of other inorganic functional materials.展开更多
Free vibration of statically thermal postbuckled functionally graded material (FGM) beams with surface-bonded piezoelectric layers subject to both temperature rise and voltage is studied. By accurately considering t...Free vibration of statically thermal postbuckled functionally graded material (FGM) beams with surface-bonded piezoelectric layers subject to both temperature rise and voltage is studied. By accurately considering the axial extension and based on the Euler-Bernoulli beam theory, geometrically nonlinear dynamic governing equations for FGM beams with surface-bonded piezoelectric layers subject to thermo-electro- mechanical loadings are formulated. It is assumed that the material properties of the middle FGM layer vary continuously as a power law function of the thickness coordinate, and the piezoelectric layers are isotropic and homogenous. By assuming that the amplitude of the beam vibration is small and its response is harmonic, the above mentioned non-linear partial differential equations are reduced to two sets of coupled ordinary differential equations. One is for the postbuckling, and the other is for the linear vibration of the beam superimposed upon the postbuckled configuration. Using a shooting method to solve the two sets of ordinary differential equations with fixed-fixed boundary conditions numerically, the response of postbuckling and free vibration in the vicinity of the postbuckled configuration of the beam with fixed-fixed ends and subject to transversely nonuniform heating and uniform electric field is obtained. Thermo-electric postbuckling equilibrium paths and characteristic curves of the first three natural frequencies versus the temperature, the electricity, and the material gradient parameters are plotted. It is found that the three lowest frequencies of the prebuckled beam decrease with the increase of the temperature, but those of a buckled beam increase monotonically with the temperature rise. The results also show that the tensional force produced in the piezoelectric layers by the voltage can efficiently increase the critical buckling temperature and the natural frequency.展开更多
The mechanism of chloride ion penetration in high performance concrete was analy zed. The experimental results indicate that there are two important reasons that influence the anti-chloride penetration of high perfor...The mechanism of chloride ion penetration in high performance concrete was analy zed. The experimental results indicate that there are two important reasons that influence the anti-chloride penetration of high performance concrete. One is the function effect of mineral functional material, so that it increases conc rete's capability to resist chloride ion penetration. The other is combined acti on of mineral functional material's original capability of binding the chloride ion (physical adsorption) and physicochemical adsorption after hydration.展开更多
In this paper, the dynamic behavior of a permeable crack in functionally graded piezoelectric/piezomagnetic materials is investigated. To make the analysis tractable, it is assumed that the material properties vary ex...In this paper, the dynamic behavior of a permeable crack in functionally graded piezoelectric/piezomagnetic materials is investigated. To make the analysis tractable, it is assumed that the material properties vary exponentially with the coordinate parallel to the crack. By using the Fourier transform, the problem can be solved with the help of a pair of dual integral equations in which the unknown is the jump of displacements across the crack surfaces. These equations are solved to obtain the relations between the electric filed, the magnetic flux field and the dynamic stress field near the crack tips using the Schmidt method. Numerical examples are provided to show the effect of the functionally graded parameter and the circular frequency of the incident waves upon the stress, the electric displacement and the magnetic flux intensity factors of the crack.展开更多
This paper presents an exact solution of the crack tip field in functionally gradient material with exponential variation of elastic constants. The dimensionless Poisson's ratios v0 of the engineering materials (iro...This paper presents an exact solution of the crack tip field in functionally gradient material with exponential variation of elastic constants. The dimensionless Poisson's ratios v0 of the engineering materials (iron, glass …… ) are far less than one; therefore, neglecting them, one can simplify the basic equation and the exact solution is easy to obtain. Although the exact solution for the case v0 ≠ 0 is also obtained, it is very complicated and the main result is the same with the case v0 = 0 (it will be dealt with in Appendix VII). It has been found that the exponential term exp(ax + by) in the constitutive equations becomes exp( ax /2 + by/2- kr /2 ) in the exact solution.展开更多
Free vibration response of functionally graded material (FGM) beams is studied based on the Levinson beam theory (LBT). Equations of motion of an FGM beam are derived by directly integrating the stress-form equati...Free vibration response of functionally graded material (FGM) beams is studied based on the Levinson beam theory (LBT). Equations of motion of an FGM beam are derived by directly integrating the stress-form equations of elasticity along the beam depth with the inertial resultant forces related to the included coupling and higherorder shear strain. Assuming harmonic response, governing equations of the free vibration of the FGM beam are reduced to a standard system of second-order ordinary differential equations associated with boundary conditions in terms of shape functions related to axial and transverse displacements and the rotational angle. By a shooting method to solve the two-point boundary value problem of the three coupled ordinary differential equations, free vibration response of thick FGM beams is obtained numerically. Particularly, for a beam with simply supported edges, the natural frequency of an FGM Levinson beam is analytically derived in terms of the natural frequency of a corresponding homogenous Euler-Bernoulli beam. As the material properties are assumed to vary through the depth according to the power-law functions, the numerical results of frequencies are presented to examine the effects of the material gradient parameter, the length-to-depth ratio, and the boundary conditions on the vibration response.展开更多
This study presents an analytical solution of thermal and mechanical displacements, strains, and stresses for a thick-walled rotating spherical pressure vessel made of functionally graded materials (FGMs). The pressur...This study presents an analytical solution of thermal and mechanical displacements, strains, and stresses for a thick-walled rotating spherical pressure vessel made of functionally graded materials (FGMs). The pressure vessel is subject to axisymmetric mechanical and thermal loadings within a uniform magnetic field. The material properties of the FGM are considered as the power-law distribution along the thickness. Navier’s equation, which is a second-order ordinary differential equation, is derived from the mechanical equilibrium equation with the consideration of the thermal stresses and the Lorentz force resulting from the magnetic field. The distributions of the displacement, strains, and stresses are determined by the exact solution to Navier’s equation. Numerical results clarify the influence of the thermal loading, magnetic field, non-homogeneity constant, internal pressure, and angular velocity on the magneto-thermo-elastic response of the functionally graded spherical vessel. It is observed that these parameters have remarkable effects on the distributions of radial displacement, radial and circumferential strains, and radial and circumferential stresses.展开更多
A brand new direct and adaptive slicing approach is proposed, which canapparently improve the part accuracy and reduce the building time. At least two stages are includedin this operation: getting the crossing contour...A brand new direct and adaptive slicing approach is proposed, which canapparently improve the part accuracy and reduce the building time. At least two stages are includedin this operation: getting the crossing contour of the cutting plane with the solid part anddetermining the layer thickness. Apart from usual SPI algorithm, slicing of the solid model has itsspecial requirements. Enabling the contour line segments of the cross-section as long as possible isone of them, which is for improving manufacturing efficiency and is reached by adaptively adjustingthe step direction and the step size at every crossing point to obtain optimized secant height. Thelayer thickness determination can be divided into two phases: the geometry-based thicknessestimation and the material-based thickness verifying. During the former phase, the geometrytolerance is divided into two parts: a variety of curves are approximated by a circular arc, whichintroduces the first part, and the deviation error between the contour line in LM process and thecircular arc generates the second part. The latter phase is mainly verifying the layer thicknessestimated in the former stage and determining a new one if necessary. In addition, an example usingthis slicing algorithm is also illustrated.展开更多
基金supported by the National Natural Science Foundation of China(No.51574105)the Science and Technology Program of Hebei Province,China(No.23564101D)+2 种基金the Natural Science Foundation of Hebei Province,China(No.E2021209147)the Key Research Project of North China University of Science and Technology(No.ZD-ST-202308)the Postgraduate Innovation Funding Project of Hebei Province,China(No.CXZZBS2024135).
文摘Calcium ferrite(CF)is recognized as a potential green and efficient functional material because of its advantages of magnetism,electrochemistry,catalysis,and biocompatibility in the fields of materials chemistry,environmental engineering,and biomedicine.There-fore,the obtained research results need to be systematically summarized,and new perspectives on CF and its composite materials need to be analyzed.Based on the presented studies of CF and its composite materials,the types and structures of the crystal are summarized.In addition,the current application technologies and theoretical mechanisms with various properties in different fields are elucidated.Moreover,the various preparation methods of CF and its composite materials are elaborated in detail.Most importantly,the advantages and disadvantages of the synthesis methods of CF and its composite materials are discussed,and the existing problems and emerging challenges in practical production are identified.Furthermore,the key future research directions of CF and its composite materials have been prospected from the potential application technologies to provide references for its synthesis and efficient utilization.
基金Project supported by the financial support from the National Key R&D Program of China(Grant No.2021YFB3201100)the National Natural Science Foundation of China(Grant No.52172128)the Top Young Talents Programme of Xi’an Jiaotong University.
文摘The stable sub-angstrom resolution of the aberration-corrected scanning transmission electron microscope(ACSTEM)makes it an advanced and practical characterization technique for all materials.Owing to the prosperous advancement in computational technology,specialized software and programs have emerged as potent facilitators across the entirety of electron microscopy characterization process.Utilizing advanced image processing algorithms promotes the rectification of image distortions,concurrently elevating the overall image quality to superior standards.Extracting high-resolution,pixel-level discrete information and converting it into atomic-scale,followed by performing statistical calculations on the physical matters of interest through quantitative analysis,represent an effective strategy to maximize the value of electron microscope images.The efficacious utilization of quantitative analysis of electron microscope images has become a progressively prominent consideration for materials scientists and electron microscopy researchers.This article offers a concise overview of the pivotal procedures in quantitative analysis and summarizes the computational methodologies involved from three perspectives:contrast,lattice and strain,as well as atomic displacements and polarization.It further elaborates on practical applications of these methods in electronic functional materials,notably in piezoelectrics/ferroelectrics and thermoelectrics.It emphasizes the indispensable role of quantitative analysis in fundamental theoretical research,elucidating the structure–property correlations in high-performance systems,and guiding synthesis strategies.
基金financial support from the National Natural Science Foundation of China(Nos.52261160384 and 52072208)the Project of Department of Education of Guangdong Province(No.2022ZDZX3018)+2 种基金the Natural Science Foundation of Guangdong(No.2023A1515010020)the Innovation and Technology Fund(No.ITS-325-22FP)the Shenzhen Science and Technology Program(No.KJZD20230923114107014)。
文摘Rechargeable lithium batteries with high-capacity cathodes/anodes promise high energy densities for nextgeneration electrochemical energy storage.However,the associated limitations at various scales greatly hinder their practical applications.Functional gradient material(FGM)design endows the electrode materials with property gradient,thus providing great opportunities to address the kinetics and stability obstacles.To date,still no review or perspective has covered recent advancements in gradient design at multiple scales for boosting lithium battery performances.To fill this void,this work provides a timely and comprehensive overview of this exciting and sustainable research field.We begin by overviewing the fundamental features of FGM and the rationales of gradient design for improved electrochemical performance.Then,we comprehensively review FGM design for rechargeable lithium batteries at various scales,including natural or artificial solid electrolyte interphase(SEI)at the nanoscale,micrometer-scale electrode particles,and macroscale electrode films.The link between gradient structure design and improved electrochemical performance is particularly highlighted.The most recent research into constructing novel functional gradients,such as valence and temperature gradients,has also been explored.Finally,we discussed the current constraints and future scope of FGM in rechargeable lithium batteries,aiming to inspire the development of novel FGM for next-generation high-performance lithium batteries.
基金the National Natural Science Foundation of China(Nos.12302007,12372006,and 12202109)the Specific Research Project of Guangxi for Research Bases and Talents(No.AD23026051)。
文摘Functionally graded materials(FGMs)are a novel class of composite materials that have attracted significant attention in the field of engineering due to their unique mechanical properties.This study aims to explore the dynamic behaviors of an FGM stepped beam with different boundary conditions based on an efficient solving method.Under the assumptions of the Euler-Bernoulli beam theory,the governing differential equations of an individual FGM beam are derived with Hamilton’s principle and decoupled via the separation-of-variable approach.Then,the free and forced vibrations of the FGM stepped beam are solved with the transfer matrix method(TMM).Two models,i.e.,a three-level FGM stepped beam and a five-level FGM stepped beam,are considered,and their natural frequencies and mode shapes are presented.To demonstrate the validity of the method in this paper,the simulation results by ABAQUS are also given.On this basis,the detailed parametric analyses on the frequencies and dynamic responses of the three-level FGM stepped beam are carried out.The results show the accuracy and efficiency of the TMM.
文摘In this paper, the isogeometric analysis (IGA) is employed to develop an acoustic radiation model for a double plate-acoustic cavity coupling system, with a focus on analyzing the sound transmission loss (STL). The functionally graded (FG) plate exhibits a different material properties in-plane, and the power-law rule is adopted as the governing principle for material mixing. To validate the harmonic response and demonstrate the accuracy and convergence of the isogeometric modeling, ANASYS is utilized to compare with numerical examples. A plane wave serves as the acoustic excitation, and the Rayleigh integral is applied to discretize the radiated plate. The STL results are compared with the literature, confirming the reliability of the coupling system. Finally, the investigation is conducted to study impact of cavity depth and power-law parameter on the STL.
文摘This paper presents a new electromagnetic functional material developed byelectron-less nickel deposition technique, with a single hollow micro-sphere as the core templateand a thin nickel layer as the shell. The micrograph taken by a scanning electron microscope showsthe microstructures of the materials in detail. Scattering parameters of the waveguide sample holderfilled with the materials have been obtained over X band. The electromagnetic parameters computedfrom the measured S parameters show that the material with metallic hollow spheres has as highrelative permeability μ'_r as 19.0 with about 0.6 magnetic loss tangent over the whole bandwidth.Compared to the material with non-metallic spheres, the permeability μ'_r and the magnetic losstangent μ'_r increase greatly, while the permittivity remains lower than 1.8.
文摘Tourist material has its own text features.To translate tourist material is to achieve its purpose by transferring its pragmatic force,which is determined by text features and functions of tourist material.Which strategies exactly should be used in a certain circumstance is not important provided the pragmatic force is transmitted successfully.
文摘Based on the analyses of the severity of cutting process as well as the failure mechanisms of ceramic tools, a model for designing functionally gradient ceramic tool materials with symmetrical distribution is presented, by which a Al 2O 3/(W,Ti)C ceramic tool material FG 2 was developed. Multi objective optimization method was employed in designing the compositional distribution of this ceramic tool material. The results of both continuous and intermittent cutting tests are indicative of the much better cutting behavior of the functionally gradient ceramic tool FG 2 than that of the common ceramic tool SG 4.
基金Supported by National Hi-tech Research and Development Program of China(863 Program,Grant No.2015AA042505)
文摘Traditional gear weight optimization methods consider gear tooth number, module, face width or other dimension parameters of gear as design variables. However, due to the complicated form and geometric features peculiar to the gear, there will be large amounts of design parameters in gear design, and the influences of gear parameters changing on gear trains, transmission system and the whole equipment have to be taken into account, which increases the complexity of optimization problem. This paper puts forward to apply functionally graded materials(FGMs) to gears and then conduct the optimization. According to the force situation of gears, the material distribution form of FGM gears is determined. Then based on the performance parameters analysis of FGMs and the practical working demands for gears, a multi-objective optimization model is formed. Finally by using the goal driven optimization(GDO) method, the optimal material distribution is achieved, which makes gear weight and the maximum deformation be minimum and the maximum bending stress do not exceed the allowable stress. As an example, the applying of FGM to automotive transmission gear is conducted to illustrate the optimization design process and the result shows that under the condition of keeping the normal working performance of gear, the method achieves in greatly reducing the gear weight. This research proposes a FGM gears design method that is able to largely reduce the weight of gears by optimizing the microscopic material parameters instead of changing the macroscopic dimension parameters of gears, which reduces the complexity of gear weight optimization problem.
基金supported by the Programs of National 973 (2011CB935900)NSFC (51231003 and 21231005)+1 种基金111 Project (B12015)Tianjin High-Tech (10SYSYJC27600)
文摘The synthetic routes of porous carbons and the applications of the functional porous carbon-based composite electrode materials for lithium secondary batteries are reviewed. The synthetic methods have made great breakthroughs to control the pore size and volume, wall thickness, surface area, and connectivity of porous carbons, which result in the development of functional porous carbon-based composite electrode materials. The effects of porous carbons on the electrochemical properties are further discussed. The porous carbons as ideal matrixes to incorporate active materials make a great improvement on the electrochemical properties because of high surface area and pore volume, excellent electronic conductivity, and strong adsorption capacity. Large numbers of the composite electrode materials have been used for the devices of electrochemical energy conversion and storage, such as lithium-ion batteries (LIBs), Li-S batteries, and Li-O2 batteries. It is believed that functional porous carbon-based composite electrode materials will continuously contribute to the field of lithium secondary batteries.
文摘Thispaper proposed a new methodof producing Ceramic/ Metalfunctionally gradient mate rialby electroless platingtechnique. The experimentof producing SiC/ Ni PFGM wascar ried out with self made electroless plating facilities. The results show that the thickness of FGMcoating andthegradientdistribution ofcompositioncanbecontrolled byoptimizingelec trolessplating technology and changing the parameters such as plating time, the additionspeed and concentration of SiCparticles. Analysisdemonstratesthatthereisastrongrelation ship amongthe SiCcontent,the microstructureandthe mechanicalproperty ofthe FGM.
基金The project supported by the National Natural Science Foundation of China(90405016,10572044)the Specialized Research Fund for the Doctoral Program of Higher Education(20040213034)
文摘In this paper, the dynamic interaction of two parallel cracks in functionally graded materials (FGMs) is investigated by means of the non-local theory. To make the analysis tractable, the shear modulus and the material density are assumed to vary exponentially with the coordinate vertical to the crack. To reduce mathematical difficulties, a one-dimensional non-local kernel is used instead of a twodimensional one for the dynamic problem to obtain stress fields near the crack tips. By use of the Fourier transform, the problem can be solved with the help of two pairs of dual integral equations, in which the unknown variables are the jumps of displacements across the crack surfaces. To solve the dual integral equations, the jumps of displacements across the crack surfaces are expanded in a series of Jacobi polynomials. Unlike the classical elasticity solutions, it is found that no stress singularity is present at the crack tips. The non-local elastic solutions yield a finite hoop stress at the crack tips. The present result provides theoretical references helpful for evaluating relevant strength and preventing material failure of FGMs with initial cracks. The magnitude of the finite stress field depends on relevant parameters, such as the crack length, the distance between two parallel cracks, the parameter describing the FGMs, the frequency of the incident waves and the lattice parameter of materials.
基金the financial support of the program for the New Century Excellent Talents in University(Grant No.NCET-05-0278)the National Natural Science Foundation of China(Grant No.20471012)+1 种基金the Foundation for the Author of National Excellent Doctoral Dissertation of China(Grant No.200322)the Research Fund for the Doctoral Program of Higher Education(Grant No.20040141004).
文摘Micro/nanostructured crystals with controlled architectures are desirable for many applications in optics, electronics, biology, medicine, and energy conversions. Low-temperature, aqueous chemical routes have been widely investigated for the synthesis of particles, and arrays of oriented nanorods and nanotubes. In this paper, based on the ideal crystal shapes predicted by the chemical bonding theory, we have developed some potential chemical strategies to tune the microstructure of functional materials, ZnS and Nb205 nanotube arrays, MgO wiskers and nestlike spheres, and cubic phase Cu2O microcrystals were synthesized here to elucidate these strategies. We describe their controlled crystallization processes and illustrate the detailed key factors controlling their growth by examining various reaction parameters. Current results demonstrate that our designed chemical strategies for tuning microstructure of functional materials are applicable to several technologically important materials, and therefore may be used as a versatile and effective route to the controllable synthesis of other inorganic functional materials.
基金supported by the National Natural Science Foundation of China (Nos. 10872083 and10602021)the Doctoral Foundation of Ministry of Education of China (No. 200807310002)
文摘Free vibration of statically thermal postbuckled functionally graded material (FGM) beams with surface-bonded piezoelectric layers subject to both temperature rise and voltage is studied. By accurately considering the axial extension and based on the Euler-Bernoulli beam theory, geometrically nonlinear dynamic governing equations for FGM beams with surface-bonded piezoelectric layers subject to thermo-electro- mechanical loadings are formulated. It is assumed that the material properties of the middle FGM layer vary continuously as a power law function of the thickness coordinate, and the piezoelectric layers are isotropic and homogenous. By assuming that the amplitude of the beam vibration is small and its response is harmonic, the above mentioned non-linear partial differential equations are reduced to two sets of coupled ordinary differential equations. One is for the postbuckling, and the other is for the linear vibration of the beam superimposed upon the postbuckled configuration. Using a shooting method to solve the two sets of ordinary differential equations with fixed-fixed boundary conditions numerically, the response of postbuckling and free vibration in the vicinity of the postbuckled configuration of the beam with fixed-fixed ends and subject to transversely nonuniform heating and uniform electric field is obtained. Thermo-electric postbuckling equilibrium paths and characteristic curves of the first three natural frequencies versus the temperature, the electricity, and the material gradient parameters are plotted. It is found that the three lowest frequencies of the prebuckled beam decrease with the increase of the temperature, but those of a buckled beam increase monotonically with the temperature rise. The results also show that the tensional force produced in the piezoelectric layers by the voltage can efficiently increase the critical buckling temperature and the natural frequency.
基金Funded by the Country Project of Tacking Key Problem for Fif teen Plan(No.2001BA307B05 08)
文摘The mechanism of chloride ion penetration in high performance concrete was analy zed. The experimental results indicate that there are two important reasons that influence the anti-chloride penetration of high performance concrete. One is the function effect of mineral functional material, so that it increases conc rete's capability to resist chloride ion penetration. The other is combined acti on of mineral functional material's original capability of binding the chloride ion (physical adsorption) and physicochemical adsorption after hydration.
基金Project supported by the National Natural Science Foundation of China (Nos.90405016 and 10572044)the Special Research Fund for the Doctoral Program of Higher Education (No.2004021334)
文摘In this paper, the dynamic behavior of a permeable crack in functionally graded piezoelectric/piezomagnetic materials is investigated. To make the analysis tractable, it is assumed that the material properties vary exponentially with the coordinate parallel to the crack. By using the Fourier transform, the problem can be solved with the help of a pair of dual integral equations in which the unknown is the jump of displacements across the crack surfaces. These equations are solved to obtain the relations between the electric filed, the magnetic flux field and the dynamic stress field near the crack tips using the Schmidt method. Numerical examples are provided to show the effect of the functionally graded parameter and the circular frequency of the incident waves upon the stress, the electric displacement and the magnetic flux intensity factors of the crack.
文摘This paper presents an exact solution of the crack tip field in functionally gradient material with exponential variation of elastic constants. The dimensionless Poisson's ratios v0 of the engineering materials (iron, glass …… ) are far less than one; therefore, neglecting them, one can simplify the basic equation and the exact solution is easy to obtain. Although the exact solution for the case v0 ≠ 0 is also obtained, it is very complicated and the main result is the same with the case v0 = 0 (it will be dealt with in Appendix VII). It has been found that the exponential term exp(ax + by) in the constitutive equations becomes exp( ax /2 + by/2- kr /2 ) in the exact solution.
基金supported by the National Natural Science Foundation of China(No.11272278)
文摘Free vibration response of functionally graded material (FGM) beams is studied based on the Levinson beam theory (LBT). Equations of motion of an FGM beam are derived by directly integrating the stress-form equations of elasticity along the beam depth with the inertial resultant forces related to the included coupling and higherorder shear strain. Assuming harmonic response, governing equations of the free vibration of the FGM beam are reduced to a standard system of second-order ordinary differential equations associated with boundary conditions in terms of shape functions related to axial and transverse displacements and the rotational angle. By a shooting method to solve the two-point boundary value problem of the three coupled ordinary differential equations, free vibration response of thick FGM beams is obtained numerically. Particularly, for a beam with simply supported edges, the natural frequency of an FGM Levinson beam is analytically derived in terms of the natural frequency of a corresponding homogenous Euler-Bernoulli beam. As the material properties are assumed to vary through the depth according to the power-law functions, the numerical results of frequencies are presented to examine the effects of the material gradient parameter, the length-to-depth ratio, and the boundary conditions on the vibration response.
文摘This study presents an analytical solution of thermal and mechanical displacements, strains, and stresses for a thick-walled rotating spherical pressure vessel made of functionally graded materials (FGMs). The pressure vessel is subject to axisymmetric mechanical and thermal loadings within a uniform magnetic field. The material properties of the FGM are considered as the power-law distribution along the thickness. Navier’s equation, which is a second-order ordinary differential equation, is derived from the mechanical equilibrium equation with the consideration of the thermal stresses and the Lorentz force resulting from the magnetic field. The distributions of the displacement, strains, and stresses are determined by the exact solution to Navier’s equation. Numerical results clarify the influence of the thermal loading, magnetic field, non-homogeneity constant, internal pressure, and angular velocity on the magneto-thermo-elastic response of the functionally graded spherical vessel. It is observed that these parameters have remarkable effects on the distributions of radial displacement, radial and circumferential strains, and radial and circumferential stresses.
基金This project is supported by National Natural Science Foundation of China (No.59975015, No.50275018) Doctoral Foundation of Ministry of Edu-cation of China (No.1999014102).
文摘A brand new direct and adaptive slicing approach is proposed, which canapparently improve the part accuracy and reduce the building time. At least two stages are includedin this operation: getting the crossing contour of the cutting plane with the solid part anddetermining the layer thickness. Apart from usual SPI algorithm, slicing of the solid model has itsspecial requirements. Enabling the contour line segments of the cross-section as long as possible isone of them, which is for improving manufacturing efficiency and is reached by adaptively adjustingthe step direction and the step size at every crossing point to obtain optimized secant height. Thelayer thickness determination can be divided into two phases: the geometry-based thicknessestimation and the material-based thickness verifying. During the former phase, the geometrytolerance is divided into two parts: a variety of curves are approximated by a circular arc, whichintroduces the first part, and the deviation error between the contour line in LM process and thecircular arc generates the second part. The latter phase is mainly verifying the layer thicknessestimated in the former stage and determining a new one if necessary. In addition, an example usingthis slicing algorithm is also illustrated.